Advertisement

Regulation of Biochemical Processes through Protein Phosphorylation and Dephosphorylation: Several Important Examples

  • Francoise Lamy
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 44)

Abstract

In 1969, Greengard has postulated that all the effects of cAMP are secondary to the phosphorylation of cellular proteins by cAMP activated protein kinases1. Much evidence has now accumulated in many laboratories which supports this concept (Fig.1). Recent studies indicate that a diverse group of regulatory agents, including but by no means limited to those agents acting through cAMP, may achieve certain of their biological actions through effects on the phosphorylation of specific proteins. These regulatory agents include hormones and neurotransmitters whose action involve cGMP, Ca2+ or still unknown mediators2. The protein kinases which are regulated by agents that do not act through cAMP are termed cAMP independent protein kinases. They include a cGMP-dependent protein kinase, Ca2+-dependent protein kinases, a double-stranded RNA-dependent protein kinase, etc. Other effectors specific for other kinases will certainly be discovered.

Keywords

Myosin Light Chain Myosin Light Chain Kinase Dependent Protein Kinase Hormone Sensitive Lipase Pyruvate Kinase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Kuo and P. Greengard, 1969, Proc. Natl. Acad. Sci, USA, 64: 1349.PubMedCrossRefGoogle Scholar
  2. 2.
    P. Greengard, (1978), Science, 199: 146.PubMedCrossRefGoogle Scholar
  3. 3.
    E. Krebs and J. Beavo, (1979), Ann. Rev. Biochem., 48: 923.PubMedCrossRefGoogle Scholar
  4. 4.
    E. Krebs, (1973), Endocrinology, Proceedings of the 4th International Congress, 17–29.Google Scholar
  5. 5.
    H. Nimmo and P. Cohen, (1977), Adv. Cycl. Nucl. Res., 8: 145.Google Scholar
  6. 6.
    P. Cohen, (1978), Curr. Top. Cell Regul., 14: 118.Google Scholar
  7. 7.
    S. Shenolikar, P.T. Cohen, P. Cohen, A. Nairn and S. Perry, (1979), Eur. J. Biochem., 100: 329.PubMedCrossRefGoogle Scholar
  8. 8.
    K. Huang and F. Huang, (1980), J.B.C., 255: 3141.Google Scholar
  9. 9.
    D. Rylatt and P. Cohen, (1979), FEBS Letters, 98: 71.PubMedCrossRefGoogle Scholar
  10. 10.
    A. De Padi-Roach, P. Roach and J. Larner, (1979), J.B.C., 254: 12062.Google Scholar
  11. 11.
    N. Embi, D. Rylatt and P. Cohen, (1979), Eur. J. Biochem., 100: 339.PubMedCrossRefGoogle Scholar
  12. 12.
    T. Soderling, A. Srivastava, M. Bass and B. Khatra, (1979), PNAS, 76: 2536.PubMedCrossRefGoogle Scholar
  13. 13.
    K. Walsh, D. Millikin, K. Schiender and E. Reimann, (1979), J.B.C., 254: 6611.Google Scholar
  14. 14.
    P. Roach, A. De Paoli-Roach and J. Larner, (1978), J. Cycl. Nucl. Res., 4: 245.Google Scholar
  15. 15.
    M. Dietz, J. Chiasson, T. Soderling and J. Exton, (1980), J.B.C., 255: 2301.Google Scholar
  16. 16.
    J. Foulkes and P. Cohen, (1979), Eur. J. Biochem., 97: 251.PubMedCrossRefGoogle Scholar
  17. 17.
    H. De Wulf, S. Keppens, J. Vandenheede, F. Haustraete, C. Proost and H. Carton, (1980), in “Hormones and Cell Regulation”, J. Dumont and J. Nunez, eds., Elsevier, Holland, 4: 47.Google Scholar
  18. 18.
    L. Engström, (1978), Curr. Top. Cell Regul., 13: 29.Google Scholar
  19. 19.
    J. Riou, T. Claus and S. Pilkis, (1978), J.B.C., 253: 656.Google Scholar
  20. 20.
    M. Nagano, H. Ishibashi, V. McCully and G. Cottam, (1980), Arch. Biochem. and Biophys., 203: 271.CrossRefGoogle Scholar
  21. 21.
    P. Belfrage, G. Fredrikson, N. Nilsson and P. Stralfors, (1980), FEBS Letters, 111: 120.PubMedCrossRefGoogle Scholar
  22. 22.
    N. Nilsson, P. Stralfors, G. Fredrikson and B. Belgrage, (1980), FEES Letters, 111: 125.CrossRefGoogle Scholar
  23. 23.
    K. Kim, (1979), Mol. Cell. Biochem., 28: 27.PubMedCrossRefGoogle Scholar
  24. 24.
    D. Hardie and P. Cohen, (1978), FEBS Letters, 91: 1.PubMedCrossRefGoogle Scholar
  25. 25.
    R. Brownsey, W. Hughes and R. Denton, (1979), Biochem. J., 184: 23.PubMedGoogle Scholar
  26. 26.
    K. Lee and K. Kim, (1979), J.B.C., 254: 1450.Google Scholar
  27. 27.
    L. Witters, E. Kowaloff and J. Avruch, (1979), J.B.C., 254: 245.Google Scholar
  28. 28.
    D. Hardie and P. Cohen, (1979), FEBS Letters, 103: 333.PubMedCrossRefGoogle Scholar
  29. 29.
    G. Krakower and K. Kim, (1980), Biochem. Biophys. Res. Com., 92: 389.PubMedCrossRefGoogle Scholar
  30. 30.
    T. Linn and P. Srere, (1979), J. Biol. Chem., 254: 1691.PubMedGoogle Scholar
  31. 31.
    M. Alexander, E. Kowaloff, L. Witters, D. Dennihy and J. Avruch, (1979), J. Biol. Chem., 254: 8052.PubMedGoogle Scholar
  32. 32.
    A. Janski, P. Srere, N. Cornell and R. Veech, (1979), J. Biol. Chem., 254: 9365.Google Scholar
  33. 33.
    P. Guy, P. Cohen and D. Hardie, (1980), FEBS Letters, 109: 205.PubMedCrossRefGoogle Scholar
  34. 34.
    P. Greengard, (1978), in “Cyclic Nucleotides, Phosphorylated Proteins and Neuronal Function”, Raven Press, New York.Google Scholar
  35. 35.
    J. Forn and P. Greengard, (1978), PNAS, 75: 5195.PubMedCrossRefGoogle Scholar
  36. 36.
    V. Strömbom, J. Forn, A. Dolphin and P. Greengard, (1979), PNAS, 76: 4687.PubMedCrossRefGoogle Scholar
  37. 37.
    F.E. Bloom, T. Ueda, E. Battenberg and P. Greengard, (1979), PNAS, 76: 5982.PubMedCrossRefGoogle Scholar
  38. 38.
    P. De Camilli, T. Ueda, F.E. Bloom, E. Battenberg and P. Greengard (1979), Proc. Natl. Acad. Sci., USA, 76: 5977.PubMedCrossRefGoogle Scholar
  39. 39.
    T. Yamauchi and G. Fujisawa, (1979), J.B.C., 254: 503.Google Scholar
  40. 40.
    T. Joh, D. Park and D. Reis, (1978), PNAS, 75: 4744.PubMedCrossRefGoogle Scholar
  41. 41.
    P. Vulliet, T. Langan and N. Weiner, (1980), PNAS, 77: 92.PubMedCrossRefGoogle Scholar
  42. 42.
    P. Sheterline, (1977), Biochem. J., 168: 533.PubMedGoogle Scholar
  43. 43.
    R. Sloboda, S. Rudolph, J. Rosenbaum and P. Greengard, (1975), PNAS, 72: 177.PubMedCrossRefGoogle Scholar
  44. 44.
    D.J. Schlichter, J.E. Casnellie and P. Greengard, (1978), Nature, 273: 61.PubMedCrossRefGoogle Scholar
  45. 45.
    L. Waxman, (1979), Arch. Biochem. Biophys., 195: 300.PubMedCrossRefGoogle Scholar
  46. 46.
    G. Fairbanks, I. Steck and D. Wallack, (1971), Biochemistry, 10: 2606.PubMedCrossRefGoogle Scholar
  47. 47.
    M. Sheetz, R. Painter and S. Singer, (1976), Biochemistry, 15: 4486.PubMedCrossRefGoogle Scholar
  48. 48.
    S. Lux, (1979), Semin. Hematol., 16: 21.PubMedGoogle Scholar
  49. 49.
    J. Palek and S. Lui, (1979), Semin. Hematol., 16: 75.PubMedGoogle Scholar
  50. 50.
    C. Pinder, D. Bray and W. Gratzer, (1977), Nature, 270: 752.PubMedCrossRefGoogle Scholar
  51. 51.
    W. Birchmeier and S. Singer, (1977), J. Cell Biol., 73: 647.PubMedCrossRefGoogle Scholar
  52. 52.
    J. Anderson and J. Tyler, (1980), J.B.C., 255: 1259.Google Scholar
  53. 53.
    H. Rattle, T. Langan, S. Danby and E. Bradbury, (1977), Eur. J. Biochem., 81: 499.PubMedCrossRefGoogle Scholar
  54. 54.
    R. Cole, (1977), in “Molecular Biology of the Mammalian Genetic Apparatus7P. T’So, ed., North-Holland, Amsterdam,pp 93.Google Scholar
  55. 55.
    T.A. Langan, (1978), in “Methods in Cell Biology”, G. Stein, and J. Stein, eds., Academic Press, New York., 19: 127.Google Scholar
  56. 56.
    T. Langan, (1973), in “Advances in Cyclic Nucleotide Research” P. Greengard and G. Robison, eds., Raven Press, New York, 3: 99.Google Scholar
  57. 57.
    F. Lamy, R. Lecocq and J.E. Dumont, (1977), Eur. J. Biochem., 73: 529.PubMedCrossRefGoogle Scholar
  58. 58.
    H. Matthews and E. Bradbury, (1978), Exp. Cell Res., 111: 343.PubMedCrossRefGoogle Scholar
  59. 59.
    S. Corbett, E. Bradbury and H. Matthews, (1980), Exp. Cell Res. 128: 127.PubMedCrossRefGoogle Scholar
  60. 60.
    S. Ochoa and C. de Haro, (1979), Ann. Rev. Biochem., 48: 549.PubMedCrossRefGoogle Scholar
  61. 61.
    M. Lloyd, J. Osborne, B. Safer, G. Powell and W. Merrick, (1980), J.B.C., 255: 1189.Google Scholar
  62. 62.
    P. Farrel, T. Hunt and R. Jackson, (1978), Eur. J. Biochem., 89: 517.CrossRefGoogle Scholar
  63. 63.
    D. Levin, V. Ernst and I. London, (1979), J.B.C., 254: 7935.Google Scholar
  64. 64.
    D. Levin, R. Petryshyn and I. London, (1980), Proc. Natl. Acad. Sci., USA, 77: 832.PubMedCrossRefGoogle Scholar
  65. 65.
    R. Ranu, (1980), FEBS Letters, 112: 211.PubMedCrossRefGoogle Scholar
  66. 66.
    V. Du Vernay and J. Traugh, (1978), Biochemistry, 17: 2045.PubMedCrossRefGoogle Scholar
  67. 67.
    R.S. Adelstein and E. Eisenberg, (1980), Ann. Rev. Biochem. 49: 921.PubMedCrossRefGoogle Scholar
  68. 68.
    S.A. Jeacocke and P.J. England, (1980), Biochem. J., 188: 763PubMedGoogle Scholar
  69. 69.
    J.T. Barron, M. Barany, K. Barany and R.V. Storti, (1980), J.B.C., 255: 6238.Google Scholar
  70. 70.
    R.A. Janis, B.M. Moats-Staats and R.T. Gualtieri, (1980), BBRC, 96: 265.PubMedGoogle Scholar
  71. 71.
    M. Collett, A. Purchio and R. Erikson, (1980), Nature, 285: 167.PubMedCrossRefGoogle Scholar
  72. 72.
    T. Hunter and B. Sefton, (1980), PNAS, 77: 1311.PubMedCrossRefGoogle Scholar
  73. 73.
    B. Sefton, T. Hunter, K. Beeman and W. Eckhart, (1980), Cell, 20: 807.PubMedCrossRefGoogle Scholar
  74. 74.
    H. Oppermann, A. Levinson, H. Varmus, L. Levintow and J. Bishop, (1979), PNAS, 76: 1804.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • Francoise Lamy
    • 1
  1. 1.Institut de Recherche InterdisciplinaireUniversite Libre de BruxellesBelgium

Personalised recommendations