Cemented Titanium Carbide Cutting Tools

  • D. Moskowitz
  • M. HumenikJr.


The basic concepts important to the development of cemented titanium carbide cutting tools are briefly reviewed. Studies concerned with the chemical interaction during sintering between the binder and carbide phases in the titanium carbide-nickel-molybdenum system are described, particularly with respect to the substitutional solid solution of molybdenum in titanium carbide. The effect of changes in binder composition and content on the physical properties of these materials is discussed. Comparative laboratory machinability test results are presented for titanium-carbide-base and tungsten-carbide-base cutting tools at various hardness levels. The performance of titanium-carbide-base tools in production machining operations is also discussed.


Tool Life Tungsten Carbide Titanium Carbide Carbide Phase Cement Carbide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schwarzkopf, P., and R. Kieffer, Cemented Carbides, Macmillan (New York), 1960.Google Scholar
  2. 2.
    Steinitz, R., “Cermets—New High-Temperature Materials,” Jet Propulsion 25: 326 (1955).Google Scholar
  3. 3.
    Deutsch, G. G, “The Use of Cermets as Gas-Turbine Blading,” in: R. F. Hehemann and G. M. Ault (eds.), High-Temperature Materials, John Wiley and Sons (New York), 1959.Google Scholar
  4. 4.
    Iron Age183(12): 101 (1959).Google Scholar
  5. 5.
    Production43(5): 99 (1959).Google Scholar
  6. 6.
    Gensamer, M., “Strength and Ductility,” Trans. ASM 36: 30 (1946).Google Scholar
  7. 7.
    Gensamer, M., E. B. Pearsall, W. S. Pellini, and J. R. Low, Jr., “The Tensile Properties of Pearlite, Bainite, and Spheroidite,” Trans. ASM 30: 983 (1942).Google Scholar
  8. 8.
    Gensamer, M., E. B. Pearsall, and G. V. Smith, “The Mechanical Properties of the Isothermal Decomposition Products of Austenite,” Trans. ASM 28: 380 (1940).Google Scholar
  9. 9.
    Shaw, R. B., L. A. Shepard, C. D. Starr, and J. E. Dorn, “The Effect of Dispersions on the Tensile Properties of Aluminum-Copper Alloys,” Trans. ASM 45: 249 (1953).Google Scholar
  10. 10.
    Gurland, J., and P. Bardzil, “Relation of Strength, Composition, and Hardness of Sintered WC-Co Alloys,” Trans. AIME 203: 311 (1955).Google Scholar
  11. 11.
    Lenel, F. V., “Observation of SAP and Present Theories for Its Remarkable High-Temperature Strength,” in: R. F. Hehemann and G. M. Ault (eds.), High-Temperature Materials, John Wiley and Sons (New York), 1959.Google Scholar
  12. 12.
    Parikh, N. M., “Modes of Fracture and Slip in Cemented Carbides,” in: R. F. Hehemann and G. M. Ault (eds.), High-Temperature Materials, John Wiley and Sons (New York), 1959.Google Scholar
  13. 13.
    Low, J. R., Jr., “Observations on the Brittle Fracture of Cemented Titanium Carbide,” Trans. AIME 206:982(1956).Google Scholar
  14. 14.
    Kreimer, G. S., and N. A. Alekseyeva, “Mechanism of Fracture in Sintered Tungsten-Cobalt Carbides,” Fiz. Metal. i Metalloved. 13(4): 609 (1962).Google Scholar
  15. 15.
    Humenik, M., Jr., and N. M. Parikh, “Cermets: I, Fundamental Concepts Related to Microstructure and Physical Properties of Cermet Systems,” J. Am. Ceram. Soc. 39: 60 (1956).CrossRefGoogle Scholar
  16. 16.
    Parikh, N. M., and M. Humenik, Jr., “Cermets: II, Wettability and Microstructure Studies in Liquid-Phase Sintering,” J. Am. Ceram. Soc. 40: 315 (1957).CrossRefGoogle Scholar
  17. 17.
    Humenik, M., Jr., and T. J. Whalen, “Physicochemical Aspects of Cermets,” in: J. R. Tinkelpaugh and W. B. Crandall (eds.), Cermets, Reinhold Publ. Corp. (New York), 1960.Google Scholar
  18. 18.
    Eremenko, V. N., and T. Ya. Velikanova, “Scientific Bases of Powder Metallurgy Interaction of Molybdenum with Titanium Carbide,” Poroshkovaya Met. No. 5(17): 3 (1963).Google Scholar
  19. 19.
    Stover, E. R., and J. Wulff, “Studies in the System Nickel-Titanium-Carbon,” WADC 54–212 (1954).Google Scholar
  20. 20.
    Violante, E. J., “Phase Separation and Analysis of Sintered Titanium Carbide-Nickel Cermets Using Alcoholic Bromine,” Anal. Chem. 33:1600 (1961).CrossRefGoogle Scholar
  21. 21.
    Mott, B. W., Micro-Indentation Hardness Testing, Butterworth’s (London), 1956.Google Scholar
  22. 22.
    Gilman, J., “The Strength of Ceramic Crystals,” in: C. Klingsberg (ed.), The Physics and Chemistry of Ceramics, Gordon and Breach (New York), 1963.Google Scholar

Copyright information

© Metal Powder Industries Federation and The Metallurgical Society of AIME 1966

Authors and Affiliations

  • D. Moskowitz
    • 1
  • M. HumenikJr.
    • 1
  1. 1.Ford Motor CompanyDearbornUSA

Personalised recommendations