Particle-Size Analysis in Cemented Carbide Technology

  • H. F. Fischmeister
  • H. E. Exner
  • G. Lindelöf


Techniques for particle-size analysis in the subsieve range are reviewed. The common source of error is the agglomeration of the powder particles, which is critically affected in preparation for analysis. Complete dispersion of agglomerates cannot be achieved without incipient comminution of individual particles. Therefore, the conventional concept of a “true” size distribution (referring to a state of complete deagglomeration) is inherently inapplicable. For practical size control, the powder must be observed in that special state of agglomeration which prevails at the critical moment of processing, i.e., compaction or sintering (in liquid-phase sintering systems). Empirically, the choice of a control method can be based on the following criteria: (1) reproducibility, (2) sensitivity to changes in powder characteristics, and (3) correlation with processing or end properties. Nine different methods are evaluated in these terms, using a series of WC powders with systematically varied properties.


Tungsten Carbide Coulter Counter Cement Carbide Sintered Specimen Dissolution Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fischmeister, H., C. A. Blande, and S. Palmqvist, Powder Met. 7: 82 (1961).Google Scholar
  2. 2.
    Cadle, R. D., Particle Size Determination, Interscience Publishers, Inc. (New York), 1955.Google Scholar
  3. 3.
    Orr, C., and J. M. Dallavalle, Fine Particle Measurement, The Macmillan Company (New York), 1959.Google Scholar
  4. 4.
    Rose, H. E., The Measurement of Particle Size in Very Fine Powders, Constable (London), 1953.Google Scholar
  5. 5.
    Batel, W., “Einführung in die Korngrössenmesstechnik,” Springer-Verlag (Berlin), 1960.Google Scholar
  6. 6.
    Bachmann, D., and H. Gerstenberg, Chem.-Ing.-Tech. 29: 589 (1957).CrossRefGoogle Scholar
  7. 7.
    Bachmann, D., Dechema-Monograph. 31: 23 (1959).Google Scholar
  8. 8.
    Eadie, F. S., and R. E. Payne, Iron Age 174(10): 99 (1954).Google Scholar
  9. 9.
    Eadie, F. S., and R. E. Payne, Brit. Chem. Eng. 1: 306 (1956).Google Scholar
  10. 10.
    Bostock, W., Rev. Sei. Instr. 29: 209 (1952).Google Scholar
  11. 11.
    Cohen, L., Instr. Pract. 13: 1036 (1959).Google Scholar
  12. 12.
    Häkkä, L. R., Proc. 3rd Intern. Symp. Reactivity Solids, Madrid, 1959, p. 567.Google Scholar
  13. 13.
    Brunauer, S., P. H. Emmet, and E. Teller, J. Am. Chem. Soc. 60: 309 (1938).CrossRefGoogle Scholar
  14. 14.
    Emmet, P. H., ASTM Spec. Tech. Publ. 51: 95 (1941).Google Scholar
  15. 15.
    Nelson, F. M., and F. T. Eggertsen, Anal. Chem. 30: 1387 (1958).CrossRefGoogle Scholar
  16. 16.
    Gooden, E. L., and S. M. Smith, Ind. Eng. Chem. 12: 479 (1940).Google Scholar
  17. 17.
    Rose, H. E., Engineering 169: 350, 405 (1950).Google Scholar
  18. 18.
    Fischmeister, H. F., Jernkontorets Ann. 147: 57 (1963).Google Scholar
  19. 19.
    Bernard, R., and F. Davoine, Optik 10: 150 (1953).Google Scholar
  20. 20.
    Ehrlich, G., and D. Schulze, Kolloid-Z. 155: 19 (1957).CrossRefGoogle Scholar
  21. 21.
    Parravano, G., Proc. 4th Intern. Symp. Reactivity Solids, Amsterdam, 1960, p. 83.Google Scholar
  22. 22.
    Rumpf, H., in: W. A. Knepper (ed.), International Symposium on Agglomeration, Interscience Publishers, Inc. (New York), 1962, p. 379.Google Scholar
  23. 23.
    Delisle, L., J. Metals 1: 228 (1949).Google Scholar
  24. 24.
    Gregg, C. C. (reported by A. I. Michaels), ASTM Spec. Tech. Publ. 234: 207 (1959).Google Scholar
  25. 25.
    Michaels, A. I., T. L. Weaver, and R. C. Nelson, ASTM Bull. 247: 74 (1960).Google Scholar
  26. 26.
    Michaels, A. I., ASTM Spec. Tech. Publ. 234: 207 (1959).Google Scholar
  27. 27.
    Exner, H. E., “Struktur und Eigenschaften der Hartlegierung WC 10 % Co,” Dissertation at Montanistische Hochschule Leoben, published as report JKU 684–20, Jernkontorets Laboratory for Powder Metallurgy, Stockholm, 1964.Google Scholar
  28. 28.
    Fischmeister, H. F., and H. E. Exner, Planseeber. Pulvermet. 13: 178 (1965).Google Scholar
  29. 29.
    Fischmeister, H. F., and H. E. Exner, Arch. Eisenhüttenw. (1966, in print).Google Scholar
  30. 29a.
    Exner, H. E. and H. F. Fischmeister, Arch. Eisenhüttenw. (1966, in print).Google Scholar
  31. 30.
    J. Gurland, Trans. AIME 212: 452 (1958).Google Scholar
  32. 31.
    Exner, H. E., and H. F. Fischmeister, Z. Metallk. (1966, in print).Google Scholar
  33. 32.
    Fischmeister, H. F., Proceedings of the First International Congress of Stereology, Congressprint, Vienna, 1963, Paper No. 27; see also Z. Prakt. Metallographie 3: 18 (1966).Google Scholar

Copyright information

© Metal Powder Industries Federation and The Metallurgical Society of AIME 1966

Authors and Affiliations

  • H. F. Fischmeister
    • 1
  • H. E. Exner
    • 1
  • G. Lindelöf
    • 1
  1. 1.Jernkontoret Laboratory for Powder Metallurgy ResearchSwedish Institute for Metal ResearchStockholmSweden

Personalised recommendations