Sintering of Crystalline Oxides

  • G. C. Kuczynski


The general theory of sintering accounts fairly well for various aspects of sintering of metallic particles. The experiments on sintering of spheres of various oxides revealed that although the predominant mechanism of the process seems to be that of volume diffusion, the actual sintering rates are often much faster than those which could be expected from the measured diffusion coefficients. This augmentation of diffusivity may be quite large. For instance, in sintering of A12O3 spheres, the rates observed were consistently 102 to 104 times higher than those calculated from the known oxygen diffusivity which, being slower than that of aluminum, should control the sintering rate. In Fe2O3, the effect was even larger.


Diffusion Coefficient Apparent Diffusion Coefficient Anion Vacancy Crystalline Oxide Neck Growth 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Coble, R. L., and J. E. Burke, in: J. E. Burke (ed.), Progress in Ceramic Science, Vol. 3, Pergamon (New York), 1963, p. 199.Google Scholar
  2. 2.
    Kuczynski, G. C., J. Appl. Phys. 21: 632 (1950).CrossRefGoogle Scholar
  3. 3.
    Kuczynski, G. C., L. Abernathy, and J. Allan, Kinetics of High Temperature Processes, Technical Press and J. Wiley (New York), 1959, p. 163.Google Scholar
  4. 4.
    Coble, R., J. Am. Ceram. Soc. 41: 55 (1958).CrossRefGoogle Scholar
  5. 5.
    Kuczynski, G. C., and A. Rozner, to be published.Google Scholar
  6. 6.
    Kuczynski, G. C., Plansee Proc, 4th Seminar, Reutle/Tyrol, 1961, p. 166.Google Scholar
  7. 7.
    Whitmore, D. H., and T. Kawai, J. Am. Ceram. Soc. 45: 375 (1962).CrossRefGoogle Scholar
  8. 8.
    Vasilos, T., and R. M. Spriggs, J. Am. Ceram. Soc. 46: 493 (1963).CrossRefGoogle Scholar
  9. 9.
    Hutchings, J., and J. P. Roberts, Trabajos Tercera Reunion International Ractividad de los Solidos (Madrid), 1957, p. 389.Google Scholar
  10. 10.
    Kuczynski, G. G, L. Abernathy, and J. Allan, Plansee Proc, 3rd Seminar, Reutle/Tyrol, 1959, p. 1.Google Scholar
  11. 11.
    Kuczynski, G. C., “La Theorie du Frittage,” Centre d’Etudes Nucleares de Saclay, 1961.Google Scholar
  12. 12.
    Kuczynski, G. C., and D. Readey, J. Am. Ceram. Soc, to be published.Google Scholar
  13. 13.
    Paladino, A. E., and W. D. Kingery, J. Chem. Phys. 37: 457 (1962).CrossRefGoogle Scholar
  14. 14.
    Oishi, Y., and W. D. Kingery, J. Chem. Phys. 33: 480 (1960).CrossRefGoogle Scholar
  15. 15.
    Lindner, R., Arkiv. Kemi 4: 381 (1952).Google Scholar
  16. 16.
    Kingery, W. D, D. C. Hill, and R. P. Nelson, J. Am. Ceram. Soc. 43: 473 (1960).CrossRefGoogle Scholar
  17. 17.
    Laurent, J. F., and J. Bénard, Phys. Chem. Solids 7: 218 (1958).CrossRefGoogle Scholar
  18. 18.
    Paladino, A. E., and R. L. Coble, J. Am. Ceram. Soc. 46: 133 (1963).CrossRefGoogle Scholar
  19. 19.
    Wagner, C., Atom Movements, ASM (Cleveland), 1951, p. 153.Google Scholar
  20. 20.
    Brebrick, R. F., J. Appl. Phys. 30: 811 (1959).CrossRefGoogle Scholar
  21. 21.
    Kingery, W. D., D. G. Hill, and R. P. Nelson, J. Am. Ceram. Soc. 43: 473 (1960).CrossRefGoogle Scholar
  22. 22.
    Pappis, J., and W. D. Kingery, J. Am. Ceram. Soc. 44: 459 (1961).CrossRefGoogle Scholar
  23. 23.
    Kuczynski, G. G. and M. O’Keeffe, to be published.Google Scholar

Copyright information

© Metal Powder Industries Federation and The Metallurgical Society of AIME 1966

Authors and Affiliations

  • G. C. Kuczynski
    • 1
  1. 1.Department of Metallurgical Engineering and Materials ScienceUniversity of Notre DameNotre DameUSA

Personalised recommendations