Advertisement

Creep Mechanisms and Their Role in the Sintering of Metal Powders

  • F. V. Lenel
  • G. S. Ansell

Abstract

Material transport in sintering of loose metal powder aggregates and of powder compacts with or without an external load can be considered as creep. Creep takes place under the influence of stresses due to surface tension forces, to externally applied forces including gravity, or to internal stresses. Creep mechanisms important in sintering include slip controlled by dislocation climb and creep due to movement of vacancies from boundaries under tensile to those under compressive stress (Herring-Nabarro microcreep). The type of creep mechanism involved in any particular sintering experiment depends primarily on the temperature and the level of stress. Stresses due to surface tension forces may be calculated by applying the virtual work concept to the change in geometry of particle aggregates during sintering. By determining the rates involved in sintering, such as increase in contact area between particles or shrinkage rate, as a function of temperature and of stress, the type of creep mechanism can be identified.

Keywords

Creep Rate Slip Plane Copper Powder Surface Tension Force Stress Dependence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lenel, F. V., H. H. Hausner, E. Hayashi, and G. S. Ansell, Powder Met. 8: 25 (1961).Google Scholar
  2. 2.
    Lenel, F. V., H. H. Hausner, O. V. Roman, and G. S. Ansell, Trans. Met. Soc. AIME 227: 640 (1963).Google Scholar
  3. 3.
    Lenel, F. V., H. H. Hausner, I. A. Shanshoury, J. G. Early, and G. S. Ansell, Powder Met. 10: 190 (1962).Google Scholar
  4. 4.
    Herring, G, in: W. E. Kingston (ed.), The Physics of Powder Metallurgy, McGraw-Hill (New York), 1951, p. 143.Google Scholar
  5. 5.
    Nabarro, F. R. N., Report on a Conference on the Strength of Materials, The Physical Society (London), 1948, p. 75.Google Scholar
  6. 6.
    Herring, C., J. Appl. Phys. 21: 437 (1950).CrossRefGoogle Scholar
  7. 7.
    Udin, H., A. Shaler, and J. Wulff, Trans. AIME 185: 186 (1949).Google Scholar
  8. 8.
    Pranatis, A. L., and G. M. Pound, Trans. AIME 203: 664 (1955).Google Scholar
  9. 9.
    Alexander, B. H., G. L. Kuczynski, and M. H. Dawson, in: W. E. Kingston (ed.), The Physics of Powder Metallurgy, McGraw-Hill (New York), 1951, p. 202.Google Scholar
  10. 10.
    Buttner, F. H., H. Udin, J. Wulff, Trans. AIME 194: 401 (1952).Google Scholar
  11. 11.
    Greenough, A. P., Phil Mag. 43: 1075 (1952).Google Scholar
  12. 12.
    Kuczynski, G. G, Trans. AIME 185: 169 (1949).Google Scholar
  13. 13.
    Friedel, J., in: G. Thomas and J. Washburn (eds.), Electron Microscopy and Strength of Crystals, Interscience (New York), 1963, p. 605.Google Scholar
  14. 14.
    Price, P. B., Friedel, J., in: G. Thomas and J. Washburn (eds.), Electron Microscopy and Strength of Crystals, Interscience (New York), 1963, p. 41.Google Scholar
  15. 15.
    Bartlett, J. T., and J. W. Michell, Phil. Mag. 5: 445 (1960).CrossRefGoogle Scholar
  16. 16.
    Weertman, J., J. Appl. Phys. 28: 1185 (1957).CrossRefGoogle Scholar
  17. 17.
    Weertman, J., J. Appl. Phys. 28: 1185 (1957), p. 362.CrossRefGoogle Scholar
  18. 18.
    Weertman, J., Trans. Met. Soc. AIME 218: 207 (1960).Google Scholar
  19. 19.
    Ansell, G. S., and J. Weertman, Trans. AIME 215: 309 (1950).Google Scholar
  20. 20.
    McLean, D., in: Vacancies and Other Point Defects in Metals and Alloys, The Institute of Metals (London), 1958.Google Scholar
  21. 21.
    Early, J. G., F. V. Lenel, and G. S. Ansell, Trans. Met. Soc. AIME 230: 1641 (1964).Google Scholar
  22. 22.
    Leary, E. A., to be published.Google Scholar
  23. 23.
    Burr, M. F., Ph.D. Thesis, Dept. of Materials Engineering, Rensselaer Polytechnic Institute (Troy, New York), August 1964. See also M. F. Burr, F. V. Lenel, and G. S. Ansell, “Influence of Pressure on the Sintering Kinetics of Silver,” to be published.Google Scholar
  24. 1.
    Seigle, L., Progr. Powder Met. 20: 221 (1964).Google Scholar
  25. 2.
    Kingery, W. D., and M. Berg, J. Appl. Phys. 26: 1205 (1955).CrossRefGoogle Scholar
  26. 3.
    Pines, B. Ya., Usp. Fiz. Nauk 54: 501 (1954).Google Scholar
  27. 4.
    Brett, J., and L. Seigle, “Fundamentals of Sintering, VII, Final Report,” AEC Contract AT (30–1) 2102, Dec. 15, 1963.Google Scholar

Copyright information

© Metal Powder Industries Federation and The Metallurgical Society of AIME 1966

Authors and Affiliations

  • F. V. Lenel
    • 1
  • G. S. Ansell
    • 1
  1. 1.Rensselaer Polytechnic InstituteTroyUSA

Personalised recommendations