Advertisement

Short-Range Repulsion and Broken Chiral Symmetry in Low-Energy Scattering

  • V. V. Serebryakov
  • D. V. Shirkov

Abstract

The introduction of short-range repulsive “potentials” into the low-energy equations for the lower partial waves makes it possible to eliminate the main difficulties of the pure elastic low-energy (Pele) approximation. In principle, it is then possible to obtain solutions with short s-wave scattering lengths and broad resonances. The use of threshold conditions that follow from chiral symmetry enables one (under certain simple additional conditions) to express the main resonance scattering parameters in terms of thepion decay characteristics. Thus, on the basis of the approximation of broken chiral symmetry and unitarity dispersion equations for low-energy ππ and πN scattering, expressions are obtained for the masses, lifetimes, and coupling constants for p-wave resonances, it being only necessary to specify the pion and nucleon masses and lifetimes and the Fermi coupling constant.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    D. V. Shirkov, V. V. Serebryakov, and V. A. Mescheryakov, Dispersion Theories of Strong Interactions at Low Energy [in Russian], Moscow, Nauka (1967).Google Scholar
  2. 1a.
    D. V. Shirkov, V. V. Serebryakov, and V. A. Mescheryakov, Dispersion Theories of Strong Interactions at Low Energy, North-Holland, Amsterdam-London (1969).Google Scholar
  3. 2.
    J. J. Sakurai, Ann. of Phys., 11, 1 (1960).ADSCrossRefGoogle Scholar
  4. 3.
    G. Chew, M. Goldberger, F. Low, and V. Nambu, Phys. Rev., 106, 1337 (1957).ADSMathSciNetCrossRefGoogle Scholar
  5. 4.
    J. J. Sakurai, Phys. Rev. Lett., 17, 1021 (1966).ADSCrossRefGoogle Scholar
  6. 5.
    S. Adler and R. Dashen, Current Algebras and Applications to Particle Physics, Benjamin, New York (1968);Google Scholar
  7. 5a.
    B. Renner, Current Algebras and Their Applications, Pergamon Press, Oxford (1968).MATHGoogle Scholar
  8. 6.
    M. Gell-Mann, Phys. Rev., 125, 1067 (1962); M. Gell-Mann, Physics, 1, 63 (1964).CrossRefGoogle Scholar
  9. 7.
    M. Gell-Mann and M. Levy, Nuovo Cimento, 16, 705 (1960).CrossRefGoogle Scholar
  10. 8.
    R. P. Feynman, M. Gell-Mann, and G. Zweig, Phys. Rev. Lett., 13, 678 (1964).ADSMathSciNetCrossRefGoogle Scholar
  11. 9.
    T. D. Lee, S. Weinberg, and B. Zumino, Phys. Rev. Lett., 18, 1029 (1969).ADSCrossRefGoogle Scholar
  12. 10.
    Y. Nambu, Phys. Rev. Lett., 4, 380 (1960).ADSCrossRefGoogle Scholar
  13. 11.
    S. Weinberg, Phys. Rev. Lett., 18, 198 (1967);ADSGoogle Scholar
  14. 11a.
    J. Wess and B. Zumino, Phys. Rev., 163, 1727 (1967);ADSCrossRefGoogle Scholar
  15. 11b.
    J. Cronin, Phys. Rev., 161, 1483 (1967);ADSCrossRefGoogle Scholar
  16. 11c.
    R. Arnowitt, M. M. Friedmann, and P. Math, Phys. Rev. Lett., 19, 1085 (1967).ADSCrossRefGoogle Scholar
  17. 12.
    G. Kramer, Chiral Symmetric Meson-Nucleon Lagrangians, Argonne preprint, ANL/HEP 6817(1968).Google Scholar
  18. 13.
    S. Weinberg, Phys. Rev., 166, 1568 (1968).ADSCrossRefGoogle Scholar
  19. 14.
    S. Gasiorowicz and D. A. Geffen, Effective Lagrangians and Field Algebras with Chiral Symmetry, Argonne preprint ANL/HEP 6809 (1968);Google Scholar
  20. 14a.
    Rev. Mod. Phys., 41, No. 3, 531–573, July (1969).Google Scholar
  21. 15.
    S. L. Glashow and S. Weinberg, Phys. Rev. Lett., 20, 224 (1968).ADSCrossRefGoogle Scholar
  22. 16.
    S. Coleman, J. Wess, and B. Zumino, Phys. Rev., 177, 2239, 2247 (1969).ADSGoogle Scholar
  23. 17.
    W. A. Bardeen and B. W. Lee, Nuclear and Particle Physics (ed. by B. Margolis and C. Lam ), Benjamin, New York (1968).Google Scholar
  24. 18.
    M. L. Goldberger and S. B. Treiman, Phys. Rev., 110, 1178 (1958).ADSMathSciNetCrossRefGoogle Scholar
  25. 19.
    S. Weinberg, Phys. Rev. Lett., 17, 336 (1966).ADSCrossRefGoogle Scholar
  26. 20.
    V. Barger and M. Olsson, Phys. Rev. Lett., 18, 1428 (1966).Google Scholar
  27. 21.
    A. A. Logunov, L. D. Solovjov, and A. N. Tavkhelidze, Phys. Lett., 24B, 181 (1967).CrossRefGoogle Scholar
  28. 22.
    K. Kawarabayashi and M. Suzuki, Phys. Rev. Lett., 16, 255 (1966).ADSCrossRefGoogle Scholar
  29. 23.
    Riazzudin and Fayyazuddin, Phys. Rev., 147, 1071 (1966).ADSCrossRefGoogle Scholar
  30. 24.
    Y. Fujii, Phys. Lett., 24B, 190 (1967).CrossRefGoogle Scholar
  31. 25.
    V. V. Serebryakov and D. V. Shirkov, Yad. Fiz., 6, 170 (1967).Google Scholar
  32. 26.
    J. Engels, G. Hóhler, and B. Petersson, “Na and p Exchange in 7rN Scattering,” Karlsruhe preprint (1969).Google Scholar
  33. 27.
    S. Weinberg, Algebraic Realization of Chiral Symmetry, Massachusetts preprint CTP-39 (1968).Google Scholar
  34. 28.
    E. M. Levin and L. L. Frankfurt, ZhÉTF Pis. Red., 45, 244 (1965).Google Scholar
  35. 29.
    V. I. Lend’el and V. V. Serebryakov, Yad. Fiz., 7, 879 (1968);Google Scholar
  36. 29a.
    E. F. Krasnopevtsev and V. L. Chernyak, Yad. Fiz., 7, 1114 (1968).Google Scholar
  37. 30.
    W. D. Walker et al., Phys. Rev. Lett., 18, 630 (1967).ADSCrossRefGoogle Scholar

Copyright information

© Consultants Bureau, New York 1972

Authors and Affiliations

  • V. V. Serebryakov
  • D. V. Shirkov

There are no affiliations available

Personalised recommendations