Advertisement

Probability Description of High-Energy Scattering and the Smooth Quasi-Potential

  • A. A. Logunov
  • O. A. Khrustalev

Abstract

The relation between the probability and quasi-potential descriptions of high-energy scattering is studied. It is shown that the probability description of scattering can be considered as a justification for the introduction of smooth quasi-potentials into quantum field theory.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    A. A. Logunov, Nguyen Van Hieu, and O. A. Khrustalev, Problems in Theoretical Physics [in Russian], Nauka, Moscow (1969)Google Scholar
  2. 2.
    S. P. Alliluev, S. S. Gerstein, and A. A. Logunov, Phys. Lett., 18, 195 (1965)ADSCrossRefGoogle Scholar
  3. 3.
    A. A. Logunov and A. N. Tavkhelidze, Nuovo Cimento, 29, 380 (1963).CrossRefGoogle Scholar
  4. 4.
    V. I. Savrin and O. A. Khrustalev, Preprint Institute of High-Energy Physics 68–19-K, Serpukhov (1968); O. A. Khrustalev, V. I. Savrin, and N. E. Tyurin, Communications JINR E2–4479 (1969).Google Scholar
  5. 5.
    N. Byers and C. N. Yang, Phys. Rev., 142, 976 (1966).ADSCrossRefGoogle Scholar
  6. 6.
    A. A. Logunov and O. A. Khrustalev, Preprint Institute of High-Energy Physics 69–20, Serpukhov (1969).Google Scholar
  7. 7.
    A. A. Logunov and O. A. Khrustalev, Preprint Institute of High-Energy Physics 69–21, Serpukhov (1969).Google Scholar
  8. 8.
    T. T. Chou and C. N. Yang, Phys. Rev., 170, 1591 (1968).ADSCrossRefGoogle Scholar
  9. 9.
    L. Durand and R. Lipes, Phys. Rev. Lett., 20B, 637 (1968).ADSCrossRefGoogle Scholar
  10. 10.
    R. Glauber, Lectures in Theoretical Physics, Vol. 1, Interscience, New York (1959).Google Scholar
  11. 11.
    V. R. Garsevanishvili et al., Phys. Lett., 29B, 191 (1969).CrossRefGoogle Scholar
  12. 12.
    O. A. Khrustalev, Preprint Institute of High-Energy Physics 69–24, Serpukhov (1969).Google Scholar
  13. 13.
    F. Calogero, Nuovo Cimento, 28, 66 (1963).CrossRefGoogle Scholar
  14. 14.
    G. N. Watson, Theory of Bessel Functions, Macmillan, New York (1944).MATHGoogle Scholar
  15. 15.
    V. I. Savrin, N. E. Tyurin, and O. A. Khrustalev, Preprint Institute of High-Energy Physics 69–23, Serpukhov (1969).Google Scholar
  16. 16.
    V. I. Savrin, N. E. Tyurin, and O. A. Khrustalev, Preprint Institute of High-Energy Physics 69–65, Serpukhov (1969).Google Scholar

Copyright information

© Consultants Bureau, New York 1972

Authors and Affiliations

  • A. A. Logunov
  • O. A. Khrustalev

There are no affiliations available

Personalised recommendations