Influence of Tissue Injury on Skin Temperature

  • L. D. Reed
  • R. C. Black


Thermography has application in the investigation of the nature and extent of tissue trauma. However, the effects of tissue injury on skin temperatures may also interfere with other diagnostic uses of thermography. Specific examples relating to the main pathological agents, (pressure, heat, cold, nuclear radiation, etc) are briefly reviewed. The effects of trauma are discussed with reference to the pathophysiology of tissues, the resulting thermal responses, and the diagnostic process. Particular emphasis is given to the example of pressure sores. In this application it has been possible to extend the subjective interpretation of thermograms (obtained after removal of pressure) to detailed studies of the time-dependence of thermographie patterns and the quantitative analyses of the areas involved. It was found in this example that the surface temperatures, after the application and relief of sufficient tissue loading, increased to a maximum and then decreased. The temperature decrease (observed after peak temperature was attained) was approximately two degrees centigrade within the first 15 minutes in the case of normal subjects. The corresponding decrease was markedly less in the case of regions involving compromized tissue.


Skin Temperature Pressure Sore Infrared Thermography Tissue Trauma Thermal Recovery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Lloyd Williams, Pictorial heat scanning, Phys. Med. Biol. 9: 433 (1964).Google Scholar
  2. 2.
    D. A. Kliot, S. J. Birnbaum, Thermographic studies of wound healing, Am. J. Obst. and Gynec. 93: 515 (1965).Google Scholar
  3. 3.
    S. M. Viitanen, J. Viljanto, Wound healing - a thermographie study, Annles Chirurgial et Gynecologiae Fenniae 60: 101 (1972).Google Scholar
  4. 4.
    L. Acciarri, L. Cugola, R. Maso, L. Nogarin, The thermographie hand, Acta Thermographica 3: 65 (1978).Google Scholar
  5. 5.
    R. N. Lawson, G. D. Modek, D. R. Webster, Thermographie assessment of burns and frostbite, Can. Med. Ass. J. 84: 1129 (1961).Google Scholar
  6. 6.
    R. Mladick, N. Georgiade, F. Thorne, A clinical evaluation of the use of thermography in determining degree of burn injury, Plastic and Reconstructive Surgery 38: 512 (1966).CrossRefGoogle Scholar
  7. 7.
    G. Buwalda, Thermographie Assessment of Burns and Frostbite, in: “Medical Thermography, Bibliol. Radiol. No. 5,” Karger, Basel (1961)Google Scholar
  8. 8.
    M. Hackett, Color thermography in the diagnosis of burn depth, in: “Transactions of the Fifth International Congress of Plastic and Reconstructive Surgery, Melbourne,” J. T. Hueston ed. Butterworth, Sydney, London (1971).Google Scholar
  9. 9.
    M. Hackett and H. P. Henderson, Infrared thermography in medicine, in: Industrial and Civil Applications of Infrared Technology, SPIE Vol. 110, p. 74–77 (1977).Google Scholar
  10. 10.
    M. Hackett, The use of thermography in the assessment of depth of burn and blood supply of flaps, with preliminary reports on its use in Dupuytren’s contracture and treatment of varicose ulcers, Brit. J. of Plastic Surgery 27: 311 (1974).CrossRefGoogle Scholar
  11. 11.
    M. Hackett, The place of thermography in medicine, Acta Thermographica 1: 176 (1976).Google Scholar
  12. 12.
    A. Sowa, Thermographie estimation of burn depth, Acta Thermographica 4: 30 (1971).Google Scholar
  13. 13.
    M. P. Hamlet, J. Veghte, W. D. Bowers, J. Boyce, Thermographic evaluation of experimentally produced frostbite of rabbit feet, Cryobiology 14: 197 (1977).CrossRefGoogle Scholar
  14. 14.
    M. Tonegutti, L. Acciarri, A. Racavelli, Fundamentals of contact thermography in female breast diseases, Acta Thermographica supplement, Bertoncello Artigrafiche, Padova (1980).Google Scholar
  15. 15.
    M. Gautherie, D. Gros, C. H. Gros, Contribution of infrared thermography to the surveillance of irradiated breast carcinomas, Acta Thermographica 2: 23 (1977).Google Scholar
  16. 16.
    F. Amalric, D. Giraud, C. Altschuler, R. Amalric, J. M. Spitalier, Infrared thermographie follow-up after breast cancer curative radiotherapy, Acta Thermographica 4: 54 (1979).Google Scholar
  17. 17.
    E. B. Silberstein, J. Kattan, The use of thermography in radiobiological dosimetry, Acta Thermographica 2: 91 (1977).Google Scholar
  18. 18.
    H. E. Johns, J. R. Cunningham, “The Physics of Radiology,” Third Edition, Charles C. Thomas, Springfield, Ill. (1969).Google Scholar
  19. 19.
    F. Lelik, G. Kezy, Contact thermography in sports medicine, Acta Thermographica 4: 24 (1979).Google Scholar
  20. 20.
    H. T. Bergtholdt, Thermography and athletic injuries, in: “Medical Thermography, Theory and Clinical Applications,” S. LTematsu ed., Brentwood Publishing Corp., Los Angeles (1976).Google Scholar
  21. 21.
    H. T. Bergtholdt, Thermography on insensitive limbs, in: “Medical Thermography, Theory and Clinical Applications,” S. LTematsu ed., Brentwood Publishing Corp., Los Angeles (1976).Google Scholar
  22. 22.
    A. A. Barton, M. Barton, The clinical and thermographical evaluation of pressure sores, Age and Ageing 2: 55 (1973).CrossRefGoogle Scholar
  23. 23.
    P. I. Branemark, K. Nilsson, Thermographie and microvascular studies of the peripheral circulation, in: “Medical Thermography. Biol. Radiol. No. 5,” Karger, Basel (1969).Google Scholar
  24. 24.
    H. Killian, “Cold and Frost Injuries - Rewarming Damages Biological, Angiological and Clinical Aspects,” Springer-Verlag, Berlin (1981).CrossRefGoogle Scholar
  25. 25.
    A. Nagasawa, H. Okada, Thermal recovery, in: “Medical Thermography,” K. Atsumi ed., University of Tokyo Press, Tokyo (1973).Google Scholar
  26. 26.
    M. Kosiak, Etiology and pathology of ischemic ulcers, Arch. Phys. Med. Rehabil. 40: 62 (1959).Google Scholar
  27. 27.
    P. W. Brand, T. D. Sabin, J. F. Burke, Sensory denervation, study of its cause and its prevention in leprosy and of management of insenstive limbs, SRS Project No RC-40-M Final Report, Carville USPS Hospital, Carville, LA (1971).Google Scholar
  28. 28.
    P. W. Brand, Pressure sores - the problem, in: “Bedsore Biomechanics,” R. M. Kenedi, J. M. Cowden, eds., MacMillan, London (1976a).Google Scholar
  29. 29.
    A. A. Barton, The pathogenesis of skin wounds due to pressure, in: “Bedsore Biomechanics,” R. M. Kenedi, J. M. Cowden, eds., MacMillan, London (1976).Google Scholar
  30. 30.
    P. I. Branemark, Microvascular function at reduced flow rates, in: “Bedsore Biomechanics,” R. M. Kenedi, J. M. Cowden, eds., MacMillan, London (1976).Google Scholar
  31. 31.
    P. J. Verhonick, D. W. Lewis, H. O. Goller, Thermography in the study of decubitus ulcers, Nursing Research 21: 233 (1972).Google Scholar
  32. 32.
    H. Goller, D. W. Lewis, R. E. McLaughlin, Thermographie studies of human skin subjected to localized pressure, Am. J. Roent. Rad. Ther. Nucl. Med. 113: 749 (1974).Google Scholar
  33. 33.
    R. S. Trandel, D. W. Lewis, P. J. Verhonick, Thermographie investigation of decubitus ulcers, Bull. Prosthetics Research, Fall 1975; 137 (1975).Google Scholar
  34. 34.
    J. Rogers, L. F. Wilson, Preventing recurrent tissue breakdown after “pressure sore” closures, Plastic and Reconstructive Surgery, 56: 419 (1975).CrossRefGoogle Scholar
  35. 35.
    G. Pye, P. Bowker, Skin temperature as an indicator of stress in soft tissue, Engineering in Medicine 5: 58 (1976).CrossRefGoogle Scholar
  36. 36.
    S. D. Mahanty, Thermal response of the skin to the application of localized pressure, Arch. of Phys. Med. and Rehabil. 60: 584 (1979).Google Scholar
  37. 37.
    S. D. Mahanty, R. B. Roemer, Thermal and circulatory response of tissue to localized pressure applications: a mathematical model, Arch. of Phys. Med. Rehabil. 61: 335 (1980).Google Scholar
  38. 38.
    M. S. Bergtholdt, P. W. Brand, Thermography: an aid in the management of insensitive feet and stumps, Arch. of Phys. Med. and Rehabil. 56: 205 (1975).Google Scholar
  39. 39.
    P. W. Brand, Patient monitoring, in: “Bedsore Biomechanics,” R. M. Kenedi, J. M. Cowden eds., MacMillan, London (1976b).Google Scholar
  40. 40.
    R. Black, A. F. Filippone, Thermography in a seating program, in: Frontiers in Biomedical Engineering, Proceedings of 8th CMBÉ Conference. Canadian Medical and Biological Engineereing Society, Ottawa (1980).Google Scholar
  41. 41.
    R. Black, G. Hahn, Color thermography in a pediatric tissue trauma program, in: “Medical Thermography,” R. Ghys ed., European Press, Ghent (1978).Google Scholar
  42. 42.
    L. D. Reed, M. R. Howat, J. E. Ulrichsen, Thermographie Areameter, US Patent 4,218, 707 (1980).Google Scholar
  43. 43.
    A. A. Moss, H. Y. Kressel, A. C. Brito, Use of thermography to predict intestinal viability and survival after ischemic injury: blind experimental study, Investigative Radiology 16: 24 (1981).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • L. D. Reed
    • 1
  • R. C. Black
    • 2
  1. 1.Environmental Protection SectionDefence Research EstablishmentOttawaCanada
  2. 2.Medical Engineering SectionNational Research Council of CanadaOttawaCanada

Personalised recommendations