Advertisement

Regulation of Carbon Metabolism in Filamentous Fungi

  • William McCullough
  • Clive F. Roberts
  • Stephen A. Osmani
  • Michael C. Scrutton

Abstract

Fungi are primarily soil organisms and as agents of decay produce extracellular enzymes degrading many natural polymers, especially polysaccharides (Section 2). The majority of fungi also utilize a wide range of growth substrates including poly-and oligosaccharides, hexoses, pentoses, many organic acids and alcohols, but cannot metabolize C1 compounds such as methanol (Cooney and Levine, 1972). Although most filamentous fungi are obligate aerobes, they exhibit high affinities for oxygen and thus grow at very low oxygen concentrations (Bull and Bushell, 1976). It is therefore difficult to demonstrate true anaerobic growth, which is found only in a few fungi such as Blastocladiella ramosa (Held et al, 1969), Mucor species (Bartnicki-Garcia and Nickerson, 1962), and Fusarium oxysporum (Gunner and Alexander, 1964). The capacity for fermentation in a limiting concentration of oxygen is, however, more common. For example, a lactic acid fermentation is found in aquatic lower fungi, an alcoholic fermentation in F. lini, and fermentations yielding lactic acid, ethanol, and CO2 in Rhizopus species (see Cochrane, 1976). Anaerobic growth or fermentation may demand specific nutritional requirements such as thiamine and nicotinic acid in Figure 1. Relationships between primary and secondary metabolism in filamentous fungi. The origins of major classes of secondary metabolites produced by filamentous fungi are shown in relation to the central pathways of intermediary metabolism. Apart from the 3-lactam antibiotics, no attempt is made to show the many fungal products that arise by further reactions between secondary metabolites of diverse origins. The biosynthesis of certain organic acids is discussed in some detail (Section 3.4) and illustrated in Figs. 5–7.

Keywords

Aspergillus Niger Filamentous Fungus Pyruvate Kinase Itaconic Acid Neurospora Crassa 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, P. R., and Deploey, J. J., 1976, Amylase production by Mucor miehei, Mycologia 68: 934–938.PubMedCrossRefGoogle Scholar
  2. Ahmed, S. A., Smith, J. E., and Anderson, J. G., 1972, Mitochondria] activity during citric acid production by Aspergillus niger, Trans. Br. Mycol. Soc. 59: 51–60.CrossRefGoogle Scholar
  3. Allam, A. M., Hassan, M. M., and Elzainy, T. A., 1975, Formation and cleavage of 2-keto-3deoxygluconate by 2-keto-3-deoxygluconate aldolase of Aspergillus niger, J. Bacteriol. 124: 1128–1131.PubMedGoogle Scholar
  4. Almin, K. E., Eriksson, K.-E., and Pettersson, B., 1975, Extracellular enzyme system utilized by the fungus Sporotrichum pulverulentum for the breakdown of cellulose. (2) Activities of the five endo-1,4–13-glucanases towards carboxymethyl cellulose, Eur. J. Biochem. 51: 207–211.PubMedCrossRefGoogle Scholar
  5. Aoki, K., Arai, M., Minoda, Y., and Yamada, K., 1971, Acid-soluble a-amylase of black As-pergilli. VII. Sulthydryl group, Agric. Biol. Chem. 35: 1913–1920.CrossRefGoogle Scholar
  6. Apirion, D., 1965, The two-way selection of mutants and revertants in respect to acetate utilization and resistance to fluoro-acetate in Aspergillus nidulans, Genet. Res. 6: 317–329.PubMedCrossRefGoogle Scholar
  7. Armitt, S., McCullough, W., and Roberts, C. F., 1976, Analysis of acetate non-utilizing (acu) mutants in Aspergillus nidulans, J. Gen. Microbiol. 92: 263–282.PubMedGoogle Scholar
  8. Ashworth, J. M., and Komberg, H. L., 1963, Fine control of the glyoxylate cycle by allosteric inhibition of isocitrate lyase, Biochim. Biophys. Acta 73: 519–522.PubMedCrossRefGoogle Scholar
  9. Ballard, F. J., and Hanson, R. W., 1967, The citrate cleavage pathway and lipogenesis in rat adipose tissue: Replenishment of oxaloacetate, J. Lipid Res. 8: 73–79.PubMedGoogle Scholar
  10. Ballio, A., di Vittorio, V., and Russi, S., 1964, The isolation of trehalose and polyols from the conidia of Penicillium chrysogenum Thom, Arch. Biochem. Biophys. 107: 177–183.PubMedCrossRefGoogle Scholar
  11. Bartnicki-Garcia, S., 1968, Cell wall chemistry, morphogenesis and taxonomy in fungi, Annu. Rev. Microbiol. 22: 87–108.PubMedCrossRefGoogle Scholar
  12. Bartnicki-Garcia, S., and Nickerson, W. J., 1961, Thiamine and nicotinic acids: Anaerobic growth factors for Mucor rouxii, J. Bacteriol. 82: 142–148.PubMedGoogle Scholar
  13. Bartnicki-Garcia, S., and Nickerson, W. J., 1962, Induction of yeast-like development in Mucor by carbon dioxide, J. Bacteriol. 84: 829–840.PubMedGoogle Scholar
  14. Barton, L. L., Georgi, C. E., and Lineback, D. R., 1972, Effect of maltose on glucoamylase formation by Aspergillus niger, J. Bacteriol. 111: 771–777.PubMedGoogle Scholar
  15. Bata, J., Vallier, P., and Colobert, L., 1978, a-Amylase activity in lysosomes of Aspergillus oryzae, Experientia 34: 572–573.Google Scholar
  16. Beever, R. E., 1973, Pyruvate carboxylase and N. crassa suc mutants, Neurospora Newsl. 20: 15–16.Google Scholar
  17. Beever, R. E., 1975, Regulation of 2-phosphoenolpyruvate carboxykinase and isocitrate lyase synthesis in Neurospora crassa, J. Gen. Microbiol. 86: 197–200.PubMedGoogle Scholar
  18. Beever, R. E., and Fincham, J. R. S., 1973, Acetate non-utilizing mutants of Neurospora crassa: acu-6, the structural gene for PEP carboxylase and inter-allelic complementation at the acu-6 locus, Mol. Gen. Genet. 126: 217–226.PubMedCrossRefGoogle Scholar
  19. Beevers, H., 1969, Glyoxysomes of castor bear endosperm and their relation to gluconeogenesis, Ann. N.Y. Acad. Sci. 168: 313–324.PubMedCrossRefGoogle Scholar
  20. Bendetskii, K. M., Tarovenko, V. L., Korchagina, G. T., Senatovora, T. P., and Khakhanova, T. S., 1974, The action of transglucosylase from Aspergillus awamori on maltose, Biokhimiya 39: 557–564.Google Scholar
  21. Bentley, R., and Thiessen, C. P., 1957a, Biosynthesis of itaconic acid in Aspergillus terreus. I. Tracer studies with C14-labeled substrates, J. Biol. Chem. 226: 673–687.PubMedGoogle Scholar
  22. Bentley, R., and Thiessen, C. P., 1957b, Biosynthesis of itaconic acid in Aspergillus terreus. III. The properties and reaction mechanism of cis-aconitic acid decarboxylase, J. Biol. Chem. 226: 703–720.PubMedGoogle Scholar
  23. Benveniste, K., and Munkres, K. D., 1970, Cytoplasmic and mitochondrial malate dehydrogenases of Neurospora: Regulatory and enzymic properties, Biochim. Biophys. Acta 220: 161–177.PubMedGoogle Scholar
  24. Berghem, L. E. R., Pettersson, L. G., and Axio-Fredriksson, W.-B., 1976, The mechanism of enzymatic cellulose degradation: Purification and some properties of two different 1,4–13-glucan glucanohydrolases from Trichoderma viride, Eur. J. Biochem. 61: 621–663.PubMedCrossRefGoogle Scholar
  25. Berry, D. R., Chmiel, A., and Al Obaidi, Z., 1977, Citric acid production by Aspergillus niger, in: Genetics and Physiology of Aspergillus ( J. E. Smith and J. A. Pateman, eds.), pp. 405–426, Academic Press, New York.Google Scholar
  26. Bloom, S. J., and Johnson, M. J., 1962, The pyruvate carboxylase of Aspergillus niger, J. Biol. Chem. 237: 2718–2720.PubMedGoogle Scholar
  27. Blumenthal, H. J., 1976, Reserve carbohydrates in fungi, in: The Filamentous Fungi, Vol. 2 ( J. E. Smith and D. R. Berry, eds.), pp. 292–307, Arnold, London.Google Scholar
  28. Boonsaeng, V., Sullivan, P. A., and Shepherd, M. G., 1974, Succinate dehydrogenase of Mucor rouxii and Penicillium duponti, Can. J. Biochem. 52: 751–761.PubMedCrossRefGoogle Scholar
  29. Boonsaeng, V., Sullivan, P. A., and Shepherd, M. G., I977a, Phosphofructokinase and glucose catabolism of Mucor and Penicillium species, Can. J. Microbiol. 23: 1214–1224.Google Scholar
  30. Boonsaeng, V., Sullivan, P. A., and Shepherd, M. G., 1977b, Mannitol production in fungi during glucose catabolism, Can. J. Microbiol. 22: 808–816.CrossRefGoogle Scholar
  31. Bos, C. J., Slakhorst, M., Visser, J., and Roberts, C. F., 1981, A third unlinked gene controlling the pyruvate dehydrogenase complex in Aspergillus nidulans, J. Bacteriol. 148: 594–599.PubMedGoogle Scholar
  32. Boschloo, J. G., and Roberts, C. F., 1979, D-Galactose requiring mutants in Aspergillus nidulans lacking phosphoglucomutase, FEBS Lett. 104: 17–20.PubMedCrossRefGoogle Scholar
  33. Bottger, I., Wieland, O., Brdiczka, D., and Pette, D., 1969, Intracellular localization of pyruvate carboxylase and phosphoenol pyruvate carboxykinase in rat liver, Eur. J. Biochem. 8: 113–119.PubMedCrossRefGoogle Scholar
  34. Bowes, I., and Mattey, M., 1979, The effect of manganese and magnesium ions on mitochondrial NADP+-dependent isocitrate dehydrogenase from Aspergillus niger, FEMS Microbiol. Lett. 6: 219–222.CrossRefGoogle Scholar
  35. Bowes, I., and Mattey, M., 1980, A study of mitochondrial NADP+-specific isocitrate dehydrogenase from selected strains of Aspergillus niger, FEMS Microbiol. Lett. 7: 323–325.CrossRefGoogle Scholar
  36. Brody, S., 1973, Metabolism, cell walls, and morphogenesis, in: Developmental Regulation: Aspects of Cell Differentiation ( S. J. Coward, ed.), pp. 107–154, Academic Press, New York.Google Scholar
  37. Brody, S., and Nyc, J. F., 1970, Altered fatty acid distribution in mutants of Neurospora crassa, J. Bacteriol. 104: 780–786.PubMedGoogle Scholar
  38. Brody, S., and Tatum, E. L., 1966, The primary effect of a morphological mutation in Neurospora crassa, Proc. Natl. Acad. Sci. USA 56: 1290–1297.PubMedCrossRefGoogle Scholar
  39. Brody, S., and Tatum, E. L., 1967, Phosphoglucomutase mutants and morphological changes in Neurospora crassa, Proc. Natl. Acad. Sci. USA 58: 923–930.PubMedCrossRefGoogle Scholar
  40. Bull, A. T., and Bushell, M. E., 1976, Environmental control of fungal growth, in: The Filamentous Fungi, Vol. 2 ( J. E. Smith and D. R. Berry, eds.), pp. 1–31, Arnold, London.Google Scholar
  41. Bushell, M. E., and Bull, A. T., 1981, Anaplerotic metabolism of Aspergillus nidulans and its effect on biomass synthesis in carbon limited chemostats, Arch. Microbiol. 128: 282–287.PubMedCrossRefGoogle Scholar
  42. Camargo, E. P., Meuser, R., and Sonnebom, D., 1969, Kinetic analyses of the regulation of glycogen synthetase activity in zoospores and growing cells of the water mold Blastocladiella emersonii, J. Biol. Chem. 244: 5910–5919.PubMedGoogle Scholar
  43. Carter, B. L. A., Bull, A. T., Pirt, S. J., and Rowley, B. I., 1971, Relationship between energy substrate utilisation and specific growth rate in Aspergillus nidulans, J. Bacteriol. 108: 309–313.PubMedGoogle Scholar
  44. Cassady, W. E., Leiter, E. H., Bergquist, A., and Wagner, R. P., 1972, Separation of mitochondrial membranes of Neurospora crassa. 11. Submitochondrial localization of the isoleucine—valine biosynthetic pathway, J. Cell Biol. 53: 66–72.PubMedCrossRefGoogle Scholar
  45. Casselton, L. A., and Casselton, P. J., 1974, Functional aspects of fluoracetate resistance in Coprinus with special reference to acetyl-CoA synthetase deficiency, Mol. Gen. Genet. 132: 255–264.CrossRefGoogle Scholar
  46. Casselton, P. J., 1976, Anaplerotic pathways, in: The Filamentous Fungi, Vol. 2 ( J. E. Smith and D. R. Berry, eds.), pp. 121–136, Arnold, London.Google Scholar
  47. Cazzulo, J. J., and Stoppani, A. O. M., 1968, The regulation of yeast pyruvate carboxylase by acetyl-coenzyme A and L-aspartate, Arch. Biochem. Biophys. 127: 563–567.PubMedCrossRefGoogle Scholar
  48. Cleland, W. W., and Johnson, M. J., 1954, Tracer experiments on the mechanism of citric acid formation by Aspergillus niger, J. Biol. Chem. 208: 679–689.PubMedGoogle Scholar
  49. Cochrane, V. W., 1976, Glycolysis, in: The Filamentous Fungi, Vol. 2 ( J. E. Smith and D. R. Berry, eds.), pp. 65–91, Arnold, London.Google Scholar
  50. Cohen, P., 1983, Control of enzyme activity, in: Outlines in Biology, 2nd ed. ( W. J. Brammar and M. Edidin, eds.), Chapman Hall, London.Google Scholar
  51. Colvin, H. J., Sauer, B. L., and Munkres, K. D., 1973, Glucose utilization and ethanolic fermentation by wild-type and extrachromosomal mutants of Neurospora crassa, J. Bacteriol. 116: 1322–1328.PubMedGoogle Scholar
  52. Cooney, C. L., and Levine, D. W., 1972, Microbial utilization of methanol, Adv. Appl. Microbiol. 15: 337–365.PubMedCrossRefGoogle Scholar
  53. Corina, D. L., and Munday, K. A., 1971, Studies on polyol function in Aspergillus clavatus: A role for mannitol and ribitol, J. Gen. Microbiol. 69: 221–227.PubMedGoogle Scholar
  54. Corzo, R., and Tatum, E. L., 1953, Biosynthesis of itaconic acid, Fed. Proc. 12: 470.Google Scholar
  55. Cotter, D. A., La Clave, A. J., Wegener, W. S., and Niederpruem, D. J., 1970, CO2 control of fruiting in Schizophyllum commune: Non-involvement of sustained isocitrate lyase derepression, Can. J. Microbiol. 16: 605–608.PubMedCrossRefGoogle Scholar
  56. Courtright, J. B., 1975, Intracellular localization and properties of glycerokinase and glycerophosphate dehydrogenase in Neurospora crassa, Arch. Biochem. Biophys. 167: 21–33.CrossRefGoogle Scholar
  57. Courtright, J. B., 1977, Characteristics of a glycerol utilization mutant of Neurospora crassa, J. Bacteriol. 124: 497–502.Google Scholar
  58. Crook, E. H., and Stone, B. A., 1957, The enzymatic hydrolysis of 0-glucosides, Biochemical Journal 65: 1–12.PubMedGoogle Scholar
  59. Cuppoletti, J., and Segel, I. H., 1979, Glycogen phosphorylase from Neurospora crassa: Purification of a high-speed-activity, nonphosphorylated form, J. Bacteriol. 139: 411–417.PubMedGoogle Scholar
  60. Das, T. K., and Sen, K., 1983, Studies on the control of enzymes for the glyoxylate cycle in Aspergillus terreur IRRL 16043, Curr. Microbiol. 9: 55–58.CrossRefGoogle Scholar
  61. Day, D. F., 1978, A thermophilic glucoamylase from Cephalosporium eichhorniae, Curr. Microbiol. 1: 181–184.CrossRefGoogle Scholar
  62. Day, P. R., 1974, Genetics of Host—Parasite Interaction, Freeman, San Francisco.Google Scholar
  63. Dekker, R. F. H., 1980, Interaction and characterization of a cellobiose dehydrogenase produced by a species of Monilia, J. Gen. Microbiol. 120: 309–316.Google Scholar
  64. Deleyn, F., Claeyssens, M., Van Beeumen, J., and De Bruyne, C. K., 1978, Purification and properties of ß-xylosidase from Penicillium wortmanni, Can. J. Biochem. 56: 43–50.PubMedCrossRefGoogle Scholar
  65. Denor, P. F., and Courtright, J. B., 1978, Isolation and characterization of glycerol-3-phosphate dehydrogenase-defective mutants of Neurospora crassa, J. Bacteriol. 136: 960–968.PubMedGoogle Scholar
  66. Denton, R. M., and Halestrap, A. P., 1979, Regulation of pyruvate metabolism in mammalian tissues, Essays Biochem. 15: 37–77.PubMedGoogle Scholar
  67. Dunn-Coleman, N. S., and Pateman, J. A., 1979, The regulation of hexokinase and phosphoglucomutase activity in Aspergillus nidulans, Mol. Gen. Genet. 171: 69–73.PubMedCrossRefGoogle Scholar
  68. Eidsa, G., 1972, Dissertation in microbiology, University of Bergen, Norway.Google Scholar
  69. Elzainy, T. A., Hassan, M. M., and Allam, A. M., 1973a, New pathway for nonphosphorylated degradation of gluconate by Aspergillus niger, J. Bacteriol. 114: 457–459.PubMedGoogle Scholar
  70. Elzainy, T. A., Hassan, M. M., and Allam, A. M., 1973b, Occurrence of the nonphosphorylative pathway for gluconate degradation in different fungi, Biochem. Syst. 1: 127–128.CrossRefGoogle Scholar
  71. Ergle, D. R., 1947, The glycogen content of Phymatotrichum schleroti, J. Am. Chem. Soc. 69: 2061–2062.PubMedCrossRefGoogle Scholar
  72. Eriksson, K.-E, 1978, Enzymatic mechanisms involved in cellulose hydrolysis by the rot fungus Sporotrichum pulverulentum, Biotechnol. Bioeng. 20: 317–332.CrossRefGoogle Scholar
  73. Eriksson, K.-E., 1981, Cellulases of fungi, in: Trends in the Biology of Fermentations for Fuels and Chemicals ( A. Hollaender, ed.), pp. 19–32, Plenum Press, New York.Google Scholar
  74. Eriksson, K.-E., and Hamp, S. G., 1978, Regulation of endo-1,4–0-glucanase production in Sporotrichum pulverulentum, Eur. J. Biochem. 90: 183–190.PubMedCrossRefGoogle Scholar
  75. Eriksson, K.-E., and Pettersson, B., 1972, Extracellular enzyme system utilised by the fungus Chrysosporium lignorum for the breakdown of cellulose, in: Biodeterioration of Materials (A. H. Walters and E. H. Hueck-Van Der Plas), Vol. 2, pp. 116–120, Applied Sciences Publishers, London.Google Scholar
  76. Eriksson, K.-E., and Pettersson, B., 1975a, Extracellular enzyme system utilized by the fungus Sporotrichum pulverulentum. 1. Separation, purification and physico-chemical characterization of five endo-l,4–13-glucanases, Eur. J. Biochem. 51: 193–206.PubMedCrossRefGoogle Scholar
  77. Eriksson, K.-E., and Pettersson, B., 1975b, Extracellular enzyme system utilized by the fungus Sporotrichum pulverulentum for the breakdown of cellulose. 3. Purification and physico-chemical characterisation of an exo-1,4-(3-glucanase, Eur. J. Biochem. 51: 213–218.PubMedCrossRefGoogle Scholar
  78. Evans, C. T., Scragg, A. H., and Ratledge, C., 1983, A comparative study of citrate efflux from mitochondria of oleaginous and nonoleaginous yeasts, Eur. J. Biochem. 130: 195–204.PubMedCrossRefGoogle Scholar
  79. Fagerstam, L. G., and Pettersson, L. G., 1979, The cellulolytic complex of Trichoderma reesei QM9414, FEBS Lett. 98: 363–367.PubMedCrossRefGoogle Scholar
  80. Fantes, P. A., and Roberts, C. F., 1973, 3-Galactosidase activity and lactose utilization in Aspergillus nidulans, J. Gen. Microbiol. 77: 471–486.Google Scholar
  81. Feir, H. A., and Suzuki, I., 1969, Pyruvate carboxylase of Aspergillus niger: Kinetic study of a biotin-containing carboxylase, Can. J. Biochem. 47: 697–710.Google Scholar
  82. Fincham, J. R. S., Day, P. R., and Radford, A., 1979, Fungal Genetics, Blackwell, Oxford. Flavell, R. B., and Fincham, J. R. S., 1968, Acetate non-utilizing mutants in Neurospora crassa. II. Biochemical deficiencies and the role of certain enzymes, J. Bacteriol. 95: 1063–1068.Google Scholar
  83. Flavell, R. B., and Woodward, D. O., 1970, The concurrent regulation of metabolically related enzymes: The Krebs cycle and glyoxylate shunt enzymes in Neurospora, Eur. J. Biochem. 17: 284–291.PubMedCrossRefGoogle Scholar
  84. Flawia, M. M., and Torres, N. H., 1972, Activation of membrane-bound adenylate cyclase by glucagon in Neurospora crassa, Proc. Natl. Acad. Sci USA 69: 2870–2873.PubMedCrossRefGoogle Scholar
  85. Flawia, M. M., and Tones, N. H., 1973, Adenylate cyclase activity in Neurospora crassa. II. Modulation by glucagon and insulin, J. Biol. Chem. 248: 4517–4520.PubMedGoogle Scholar
  86. Fogarty, W. M., and Kelly, C. T., 1980, Amylases, amyloglucosidases and related glucanases, in: Microbial Enzymes and Bioconversions ( A. H. Rose, ed.), pp. 115–158, Academic Press, New York.Google Scholar
  87. Freedberg, I. M., Levin, Y., Kay, C. M., McCubbin, W. D., and Katchalski-Katzir, E., 1975, Purification and characterisation of Aspergillus niger exo-1,4-glucosidase, Biochim. Biophys. Acta 391: 361–381.PubMedGoogle Scholar
  88. French, D., 1980, Amylases: Enzymatic mechanisms, in: Trends in the Biology of Fermentations for Fuels and Chemicals ( A. Hollaender, ed.), pp. 151–182, Plenum Press, New York.Google Scholar
  89. Fuscaldo, K. E., Lechner, J. F., and Bazinet, G., 1971, Genetic and biochemical studies of the hexose monophosphate shunt in Neurospora crassa. I. The influence of genetic defects in the pathway on colonial morphology, Can. J. Microbiol. 17: 783–788.PubMedCrossRefGoogle Scholar
  90. Fuska, J., and Proksa, B., 1976, Cytotoxic and antitumour antibiotics produced by microorganisms, Adv. Appl. Microbiol. 20: 259–370.PubMedCrossRefGoogle Scholar
  91. Gajewski, W., Litwinska, J., Paszewski, A., and Chojnacki, T., 1972, Isolation and characterization of lactose non-utilizing mutants of Aspergillus nidulans, Mol. Gen. Genet. 116: 99–106.PubMedCrossRefGoogle Scholar
  92. Gold, M. H., Farrand, R. J., Levoni, J. P., and Segel, I. H., 1974, Neurospora crassa glycogen phosphorylase: Interconversion and kinetic properties of the “active” form, Arch. Biochem. Biophys. 161: 515–527.Google Scholar
  93. Gorbacheva, I. V., and Rodionova, N. A., 1977a, Studies on xylan degrading enzymes. I. Purification and characterisation of endo-1,4–3-xylanase from Aspergillus niger str14, Biochim. Biophys. Acta 484: 79–93.PubMedGoogle Scholar
  94. Gorbacheva, I. V., and Rodionova, N. A., 1977b, Studies on xylan-degrading enzymes. II. Action pattern on endo-1,4–13-xylanase from Aspergillus niger str.14 on xylan and xylooligosaccharides, Biochim. Biophys. Acta 484: 94–102.PubMedGoogle Scholar
  95. Gratzner, H. G., 1972, Cell wall alterations associated with the hyperproduction of extracellular enzymes in Neurospora crassa, J. Bacteriol. 111: 443–446.PubMedGoogle Scholar
  96. Graves, L. B., Armentrout, V. N., and Maxwell, D. P., 1976, Distribution of glyoxylate cycle enzymes between microbodies and mitochondria in Aspergillus tamarii, Planta 132: 143–148.CrossRefGoogle Scholar
  97. Gunasekaran, M., 1972, Physiological studies on Phymatotrichum omnivorum. 1. Pathways of glucose catabolism, Arch. Mikrobiol. 83: 328–3311.CrossRefGoogle Scholar
  98. Gunner, H. B., and Alexander, M., 1964, Anaerobic growth of Fusarium oxysporum, J. Bacteriol. 87: 1309–1316.Google Scholar
  99. Gwm, E. K., and Brown, R. D., 1977, Comparison of four purified extracellular 1,4–3-n-glucan cellobiohydrolase enzymes from Trichoderma viride, Biochim. Biophys. Acta 492: 225–231.Google Scholar
  100. Haarasilta, S., and Taskinen, L., 1977, Location of three key enzymes of gluconeogenesis in bakers yeast, Arch. Microbiol. 113: 159–161.PubMedCrossRefGoogle Scholar
  101. Habison, A., Kubicek, C. P., and Rohr, M. 1979, Phosphofructokinase as a regulatory enzyme in citric acid producing Aspergillus niger, FEMS Microbiol. Lett. 5: 39–42.CrossRefGoogle Scholar
  102. Habison, A., Kubicek, C. P., and Rohr, M., 1983, Partial purification and regulatory properties of phosphofructokinase from Aspergillus niger, Biochem. J. 209: 669–676.Google Scholar
  103. Hakansson, U., Fagerstam, L. G., Pettersson, L. G., and Andersson, L., 1978, Purification and characterisation of a low molecular weight 1,4–13-glucan glucanohydrolase from the cellulolytic fungus Trichoderma viride QM9414, Biochim. Biophys. Acta 524: 385–392.PubMedGoogle Scholar
  104. Hakansson, U., Fagerstam, L. G., Pettersson, L. G., and Andersson, L., 1979, A 1,4-ß-glucan glucanohydrolase from the cellulolytic fungus Trichoderma viride QM94I4, Biochem. J. 179: 141–149.PubMedGoogle Scholar
  105. Hall, D. O., and Greenawalt, J. W., 1967, The preparation and biochemical properties of mitochondria from Neurospora crassa, J. Gen. Microbiol. 48: 419–430.Google Scholar
  106. Hammond, J. B. W., 1981, Variations in enzyme activity during periodic fruiting of Agaricus bisporus, New Phytol. 89: 419–428.CrossRefGoogle Scholar
  107. Hang, Y. D., and Woodams, E. E., 1977, Baked-bean waste: A potential substrate for producing fungal amylases, Appl. Environ. Microbiol. 33: 1293–1294.PubMedGoogle Scholar
  108. Hankinson, 0., 1972, Regulation of the pentose phosphate pathway and of mannitol-l-phosphate dehydrogenase in Aspergillus nidulans, Ph.D. thesis, University of Cambridge.Google Scholar
  109. Hankinson, 0., 1974, Mutants of the pentose phosphate pathway in Aspergillus nidulans, J. Bacteriol. 117: 1121–1130.Google Scholar
  110. Hankinson, O., and Cove, D. J., 1974, Regulation of the pentose phosphate pathway in the fungus Aspergillus nidulans, J. Biol. Chem. 249: 2344–2353.Google Scholar
  111. Hankinson, O., and Cove, D. J., 1975, Regulation of mannitol-l-phosphate dehydrogenase in Aspergillus nidulans, Can. J. Microbiol. 21: 99–101.CrossRefGoogle Scholar
  112. Harding, R. W., Caroline, D. F., and Wagner, R. P., 1970, The pyruvate dehydrogenase complex from the mitochondrial fraction of Neurospora crassa, Arch. Biochem. Biophys. 138: 653–661.CrossRefGoogle Scholar
  113. Hartman, R. E., and Keen, N. T., 1974a, The pyruvate carboxylase of Verticillium albo-atrum, J. Gen. Microbiol. 81: 15–19.Google Scholar
  114. Hartman, R. E., and Keen, N. T., 1974b, The phosphoenol pyruvate carboxykinase of Verticillium albo-atrum, J. Gen. Microbiol. 81: 21–26.Google Scholar
  115. Hayaishi, O., Shimazono, H., Katagri, M., and Saito, Y., 1956, Enzymatic formation of oxalate and acetate from oxaloacetate, J. Am. Chem. Soc. 78: 5126–5127.CrossRefGoogle Scholar
  116. Hayashida, S., 1975, Selective submerged productions of three types of glucoamylases by a Blackkoji mould, Agric. Biol. Chem. 39: 2093–2099.CrossRefGoogle Scholar
  117. Hayashida, S., Nomura, T., Yoshino, E., and Hongo, M., 1976, The formation and properties of subtilisin-modified glucoamylase, Agric. Biol. Chem. 40: 141–146.CrossRefGoogle Scholar
  118. Held, A. A., 1970, Nutrition and fermentative energy metabolism of the water mould Aqualinderella fermentons, Mycologia 62: 339–358.CrossRefGoogle Scholar
  119. Held, A. A., Emerson, R., Fuller, M. S., and Gleason, F. H., 1969, Blastocladiella and Aqualinderella: Fermentative water moulds with high carbon dioxide optima, Science 165: 706–709.Google Scholar
  120. Hers, H. G., and Van Schaftingen, E., 1982, Fructose, 2,6-bisphosphate 2 years after its discovery, Biochem. J. 206: 1–12.PubMedGoogle Scholar
  121. Holligan, P. M., and Jennings, D. H., 1972a, Carbohydrate metabolism in the fungus Dendryphiella satina. II. The influence of different carbon and nitrogen sources on the accumulation of mannitol and arabitol, New Phytol. 71: 583–594.CrossRefGoogle Scholar
  122. Holligan, P. M., and Jennings, D. H., 1972b, Carbohydrate metabolism in the fungus Dendryphiella satina. I. Changes in the levels of soluble carbohydrates during growth, New Phytol. 71: 569582.Google Scholar
  123. Holligan, P. M., and Jennings, D. H., 1972c, Carbohydrate metabolism in the fungus Dendryphiella satina. III. The effect of the nitrogen source on the metabolism of [1–14C]- and [6–14C]-glucose, New Phytol. 71: 1119–1133.CrossRefGoogle Scholar
  124. Horikoshi, K., Iida, S., and Ikeda, Y., 1965, Mannitol and mannitol dehydrogenase in conidia of Aspergillus oryzae, J. Bacteriol. 89: 326–330.Google Scholar
  125. Hutt, K., and Gatenbeck, S., 1978, Production of NADPH in the mannitol cycle and its relation to polyketide formation in Alternaria alternata, Eur. J. Biochem. 88: 607–612.CrossRefGoogle Scholar
  126. Hutt, K., and Gatenbeck, S., 1979, Enzyme activities of the mannitol cycle and some connected pathways in Alternaria alternata, with comments on the regulation of the cycle, Acta Chem. Scand. Ser. B 33: 239–243.Google Scholar
  127. Hutt, K., Veide, A., and Gatenbeck, S., 1980, The distribution of NADPH regenerating mannitol cycle among fungi, Arch. Microbiol. 128: 253–255.CrossRefGoogle Scholar
  128. Ingram, J. M., and Hochster, R. M., 1957, Purification and properties of fructose diphosphate aldolase from Fusarium oxysporum F. lycopersici, Can. J. Biochem. 45: 929–936.CrossRefGoogle Scholar
  129. Jagannathan, V., Singh, K., and Damodaran, M., 1956, Carbohydrate metabolism in citric acid fermentation. 4. Purification and properties of aldolase from Aspergillus niger, Biochem. J. 63: 94–101.Google Scholar
  130. Jakubowska, J., 1977, Itaconic and itatartaric acid biosynthesis, in: Genetics and Physiology of Aspergillus (J. E. Smith and J. A. Pateman, eds.), pp. 427–451, Academic Press, New York.Google Scholar
  131. Jobe, A., and Bourgeois, S., 1972, Lac repressor—operator interaction. VI. The natural inducer of the lac operon, J. Mol. Biol. 69: 397–408.Google Scholar
  132. Johanson, R. A., Hill, J. M., and McFadden, B. A., 1974, Isocitrate lyase from Neurospora crassa. I. Purification, kinetic mechanism, and interaction with inhibitors, Biochim. Biophys. Acta 364: 327–340.PubMedGoogle Scholar
  133. Joshi, A. P., and Ramakrishnan, C. V., 1959, Mechanism of formation and accumulation of citric acid in Aspergillus niger. I. Citric acid formation and oxaloacetic hydrolase in the citric acid producing strain of Aspergillus niger, Enzymologia 21: 43–51.Google Scholar
  134. Kapoor, M., 1975, Subunit structure and some properties of pyruvate kinase of Neurospora, Can. J. Biochem. 53: 109–119.CrossRefGoogle Scholar
  135. Kapoor, M., O’Brien, M., and Braun, A., 1976, Modification of the regulatory properties of pyruvate kinase of Neurospora by growth at elevated temperatures, Can. J. Biochem. 54: 398407.Google Scholar
  136. Katz, J., and Wood, H. G., 1960, The use of glucose-C14 for the evaluation of the pathways of glucose metabolism, J. Biol. Chem. 235: 2165–2177.PubMedGoogle Scholar
  137. Kelly, J. M., and Hynes, M. J., 1977, Increased and decreased sensitivity to carbon catabolite repression of enzymes of acetate metabolism in mutants of Aspergillus nidulans, Mol. Gen. Genet. 156: 87–92.CrossRefGoogle Scholar
  138. Kelly, J. M., and Hynes, M. J., 1981, The regulation of phosphoenolpyruvate carboxykinase and the NADP-linked malic enzyme in Aspergillus nidulans, J. Gen. Microbiol. 123: 371–375.Google Scholar
  139. Kelly, J. M., and Hynes, M. J., 1982, The regulation of NADP-linked isocitrate dehydrogenase in Aspergillus nidulans, J. Gen. Microbiol. 128: 23–28.Google Scholar
  140. Khouw, B. T., and McCurdy, H. D., 1969, Tricarboxylic acid cycle enzymes and morphogenesis in Blastocladiella emersonii, J. Bacteriol. 99: 197–205.Google Scholar
  141. King, H. B., and Casselton, L. A., 1977, Genetics and function of isocitrate lyase in Coprinus, Mol. Gen. Genet. 157: 319–325.CrossRefGoogle Scholar
  142. Kinghorn, J. R., and Pateman, J. A., 1973, NAD and NADP L-glutamate dehydrogenase activity in ammonium regulation in Aspergillus nidulans, J. Gen. Microbial. 78: 39–46.Google Scholar
  143. Kisor, R. C., and Niehaus, W. G., 1981, Purification and kinetic characterization of mannitol-1phosphate dehydrogenase from Aspergillus niger, Arch. Biochem. Biophys. 211: 613–621.CrossRefGoogle Scholar
  144. Kiser, M., Kubicek, C. P., and Rohr, M., 1980, Influence of manganese on morphology and cell wall composition of Aspergillus niger during citric acid fermentation, Arch. Microbial. 128: 2633.CrossRefGoogle Scholar
  145. Kobayashi, M., and Matsuda, M., 1978, Action of the glucoamylase on dextrans as an exodextranase, Agric. Biol. Chem. 42: 181–183.CrossRefGoogle Scholar
  146. Kobr, M. J., and Vanderhaeghe, F., 1973, Changes in density of organelles from Neurospora, Experientia 29: 1221–1223.CrossRefGoogle Scholar
  147. Kobr, M. J., Turian, G., and Zimmerman, E. J., 1965, Changes in enzymes regulating isocitrate breakdown in Neurospora crassa, Arch. Mikrobiol. 52: 169–177.Google Scholar
  148. Kobr, M. J., Vanderhaeghe, F., and Combepine, G., 1969, Particulate enzymes of the glyoxylate cycle in Neurospora crassa, Biochem. Biophys. Res. Commun. 37: 640–645.CrossRefGoogle Scholar
  149. Koller, W., and Kindl, H., 1977, Glyoxylate cycle enzymes of the glyoxysomal membrane from cucumber cotyledons, Arch. Biochem. Biophys. 181: 236–248.PubMedCrossRefGoogle Scholar
  150. Kornberg, H. L., I966a, Anaplerotic sequences and their role in metabolism, Essays Biochem. 2: 131.Google Scholar
  151. Kornberg, H. L., 1966b, The role and control of the glyoxylate cycle in Escherichia coli, Biochem. J. 99: 1–11.Google Scholar
  152. Krebs, H. A., 1972, The Pasteur effect and the relations between respiration and fermentation, Essays Biochem. 8: 1–34.PubMedGoogle Scholar
  153. Kubicek, C. P., and Rohr, M., 1977, Influence of manganese on enzyme synthesis and citric acid accumulation in Aspergillus niger, Eur. J. Appl. Microbiol. 4: 167–175.CrossRefGoogle Scholar
  154. Kubicek, C. P., and Rohr, M., 1978, The role of the tricarboxylic acid cycle in citric acid accumulation by Aspergillus niger, Eur. J. Appl. Microbiol. Biotechnol. 5: 263–271.CrossRefGoogle Scholar
  155. Kubicek, C. P., and Rohr, M., 1980, Regulation of citrate synthase from the citric acid-accumulating fungus Aspergillus niger, Biochem. Biophys. Acta 615: 449–457.Google Scholar
  156. Kubicek, C. P., Hampel, W., and Rohr, M., 1979a, Manganese deficiency leads to elevated amino acid pools in citric acid accumulating Aspergillus niger, Arch. Microbial. 123: 73–79.CrossRefGoogle Scholar
  157. Kubicek, C. P., Zehentgruber, O., and Rohr, M., 1979b, An indirect method for studying the fine control of citric acid formation by Aspergillus niger, Biotechnol. Lett. 1: 47–52.CrossRefGoogle Scholar
  158. Kubicek, C. P., Zehentgruber, O., El-Kalak, H., and Rohr, M., 1980, Regulation of citric acid production by oxygen: Effect of dissolved oxygen tension on adenylate levels and respiration in Aspergillus niger, Appl. Microbial. Biotechnol. 9: 101–115.CrossRefGoogle Scholar
  159. Kuwana, H., and Wagner, R. P., 1969, The iv-3 mutants of Neurospora crassa. I. Genetic and biochemical characteristics, Genetics 62: 479–485.PubMedGoogle Scholar
  160. Kuwana, H., Caroline, D. F., Harding, R. W., and Wagner, R. P., 1968, An acetohydroxy acid synthetase from Neurospora crassa, Arch. Biochem. Biophys. 128: 184–193.CrossRefGoogle Scholar
  161. Lagos, R., and Ureta, T., 1980, The hexokinases from wild-type and morphological mutant strains of Neurospora crassa, Eur. J. Biochem. 104: 357–365.Google Scholar
  162. Lakshminarayana, K., Modi, V. V., and Shah, V. K., 1969, Studies on gluconate metabolism in Aspergillus niger. II. Comparative studies on the enzyme make-up of the adapted and parent strains of Aspergillus niger, Arch. Mikrobiol. 66: 396–405.CrossRefGoogle Scholar
  163. Lal, M., and Bhargava, P. M., 1962, Reversal by pyruvate of fluoride inhibition of Aspergillus terreus, Biochim. Biophys. Acta 58: 628–630.CrossRefGoogle Scholar
  164. Lambers, H., 1980, The physiological significance of cyanide-resistant respiration in higher plants, Plant Cell Environ. 3: 293–302.CrossRefGoogle Scholar
  165. La Nauze, I. M., 1966, Aconitase and isocitric dehydrogenases of Aspergillus niger in relation to citric acid production, J. Gen. Microbiol. 44: 73–81.PubMedGoogle Scholar
  166. Lechevalier, H. A., 1975, Production of the same antibiotics by members of different genera of microorganisms, Adv. Appl. Microbiol. 19: 25–45.PubMedCrossRefGoogle Scholar
  167. Lechner, J. F., Fuscaldo, K. E., and Bazinet, G., 1971, Genetic and biochemical studies on the hexose monophosphate shunt in Neurospora crassa. II. Characterization of biochemical defects of the morphological mutants colonial 2 and colonial 3, Can. J. Microbiol. 17: 789–794.PubMedCrossRefGoogle Scholar
  168. Lee, W. H., 1967a, Carbon balance of mannitol fermentation and the biosynthetic pathway, Appl. Microbiol. 15: 1206–1210.PubMedGoogle Scholar
  169. Lee, W. H., 1967b, Mannitol acetyl phosphate phosphotransferase of Aspergillus, Biochem. Biophys. Res. Commun. 29: 337–342.CrossRefGoogle Scholar
  170. LeJohn, H. B., 1971, Enzyme regulation, lysine pathways and cell wall structures as indicators of major lines of evolution in fungi, Nature 231: 164–169.CrossRefGoogle Scholar
  171. LeJohn, H. B., McCrea, B. E., Suzuki, I., and Jackson, S., 1969, Association—dissociation reactions of mitochondrial isocitric dehydrogenase induced by protons and various ligands, J. Biol. Chem. 244: 2484–2493.Google Scholar
  172. Lenz, H., Wunderwald, P., and Eggerer, H., 1976, Partial purification and some properties of oxalacetase from Aspergillus niger, Eur. J. Biochem. 65: 225–236.CrossRefGoogle Scholar
  173. Lewis, D. H., and Smith, D. C., 1967, Sugar alcohols (polyols) in fungi and green plants. I. Distribution, physiology and metabolism, New Phytol. 66: 143–184.CrossRefGoogle Scholar
  174. Lewis, K. F., and Weinhouse, S., 1951, Studies on the mechanism of citric acid production in Aspergillus niger, J. Am. Chem. Soc. 73: 2500–2503.CrossRefGoogle Scholar
  175. Libor, S. M., Sundaram, T. K., and Scrutton, M. C., 1978, Pyruvate carboxylase from a thermophilic Bacillus, Biochem. J. 169: 543–558.Google Scholar
  176. Lineback, D. R., Aira, L. A., and Horner, R. L., 1972, Structural characterisation of the two forms of glucoamylase from Aspergillus niger, Cereal Chem. 49: 283–298.Google Scholar
  177. Lockwood, L. B., 1975, Organic acid production, in: The Filamentous Fungi, Vol. 1 ( J. E. Smith and D. R. Berry, eds.), pp. 140–157, Arnold, London.Google Scholar
  178. Loewenberg, J. R., and Chapman, C. M., 1977, Sophorose metabolism and cellulase induction in Trichoderma, Arch. Microbiol. 113: 61–64.CrossRefGoogle Scholar
  179. Lützen, N. W., Nielsen, M. H., Oxenboell, K. M., Schulein, M., and Stentebjerg-Olesen, B., 1983, Cellulases and their application in the conversion of lignocellulose to fermentable sugars, Philos. Trans. R. Soc. London Ser. B 300: 283–291.CrossRefGoogle Scholar
  180. Ma, H., Kubicek, C. P., and Rohr, M., 1981, Malate dehydrogenase isoenzymes in Aspergillus niger, FEMS Microbiol. Lett. 12: 147–151.CrossRefGoogle Scholar
  181. McCullough, W., and Roberts, C. F., 1974, The role of malic enzyme in Aspergillus nidulans, FEBS Leu. 41: 238–242.CrossRefGoogle Scholar
  182. McCullough, W., and Roberts, C. F., 1980, Genetic regulation of isocitrate lyase activity in Aspergillus nidulans, J. Gen. Microbiol. 120: 67–84.Google Scholar
  183. McCurdy, H. D., and Cantino, E. C., 1960, Isocitritase, glycine—alanine transaminase, and development in Blastocladiella emersonii, Plant Physiol. 35: 463–476.Google Scholar
  184. McLaughlin, D. J., 1973, Ultrastructure of sterigma growth and basidiospore formation in Coprinus and Boletus, Can. J. Bot. 51: 145–150.CrossRefGoogle Scholar
  185. Mandels, M., Parrish, F. W., and Reese, E. T., 1962, Sophorose as an inducer of cellulase in Trichoderma viride, J. Bacteriol. 83: 400–408.Google Scholar
  186. Mattey, M., 1977, Citrate regulation of citric acid production in Aspergillus niger, FEMS Microbiol. Leu. 2: 71–74.CrossRefGoogle Scholar
  187. Mattoo, A. K., and Parikh, N. R., 1975, Influence of sodium pyruvate on Neurospora fructose diphosphatase, Neurospora Newsl. 22: 9–10.Google Scholar
  188. Maxwell, D. P., Williams, P. H., and Maxwell, M. D., 1970, Microbodies and lipid bodies in the hyphal tips of Sclerotina sclerotiorum, Can. J. Bot. 48: 1689–1691.CrossRefGoogle Scholar
  189. Maxwell, D. P., Armentrout, V. N., and Graves, L. B., 1977, Microbodies in plant pathogenic fungi, Annu. Rev. Phytopathol. 15: 119–134.CrossRefGoogle Scholar
  190. May, J. W., and Sloan, J., 1981, Glycerol utilization by Schizosaccharomyces pombe: Dehydrogenation as the initial step, J. Gen. Microbiol. 123: 183–185.Google Scholar
  191. Miall, L. M., 1978, Organic acids, in: Primary Products of Metabolism ( A. H. Rose, ed.), pp. 47119, Academic Press, New York.Google Scholar
  192. Mitchell, D., and Shaw, M., 1966, Metabolism of glucose-14C, pyruvate-14C, and mannitol-14C by Melampsora lini. II. Conversion to soluble products, Can. J. Bot. 46: 453–460.CrossRefGoogle Scholar
  193. Monori, B. M., Kubicek, C. P., and Rohr, M., 1984, Pyruvate kinase from Aspergillus niger: A regulatory enzyme in glycolysis?, Can. J. Microbiol. 30: 16–22.CrossRefGoogle Scholar
  194. Montenecort, B. S., Nhlapo, S. D., Trimino-Vazques, H., Cuskey, S., Schamhart, D. H. J., and Eveleigh, D. E., 1980, Regulatory controls in relation to overproduction of fungal cellulases, in: Trends in the Biology of Fermentations for Fuels and Chemicals ( A. Hollaender, ed.), pp. 3353, Plenum Press, New York.Google Scholar
  195. Morita, T., Shimizu, K., Ohga, M., and Korenaga, T., 1966, Studies on amylases of Aspergillus oryzae cultured on rice. I. Isolation and purification of glucoamylase, Agric. Biol. Chem. 30: 114–121.CrossRefGoogle Scholar
  196. Moss, M. O., 1977, Aspergillus mycotoxins, in: Genetics and Physiology of Aspergillus (J. E. Smith and J. A. Pateman, eds.), pp. 499–524, Academic Press, New York.Google Scholar
  197. Murayama, T., and Ishikawa, T., 1973, Mutation in Neurospora crassa affecting some of the extracellular enzymes and several growth characteristics, J. Bacteriol. 115: 796–804.PubMedGoogle Scholar
  198. Neilson, N. E., 1955, The aconitase of Aspergillus niger, Biochim. Biophys. Acta 17: 139–140.CrossRefGoogle Scholar
  199. Newsholme, E. A., and Crabtree, B., 1981, Theoretical considerations into the regulation of the flux through metabolic pathways, in: Short-term Control of Liver Metabolism ( L. Hue and G. Vander Werve, eds.), pp. 3–17, Elsevier/North-Holland, Amsterdam.Google Scholar
  200. Ng, A. M. L., Smith, J. E., and McIntosh, A. F., 1973, Changes in activity of tricarboxylic acid cycle and glyoxylate cycle enzymes during synchronous development of Aspergillus niger, Trans. Br. Mycol. Soc. 61: 13–20.CrossRefGoogle Scholar
  201. Niehaus, W. G., and Dilts, R. P., 1982, Purification and characterization of mannitol dehydrogenase from Aspergillus parasiticus, J. Bacteriol. 151: 243–250.Google Scholar
  202. Nisizawa, T., Suzuki, H., Nakayama, M., and Nisizawa, K., 1971a, Inductive formation of cellulase by sophorose in Trichoderma viride, J. Biochem. 70: 375–385.Google Scholar
  203. Nisizawa, T., Suzuki, H., and Nisizawa, K., 1971b, De novo synthesis of cellulase induced by sophorose in Trichoderma viride cells, J. Biochem. 70: 387–393.PubMedGoogle Scholar
  204. Nisizawa, T., Suzuki, H., and Nisizawa, K., 1972, Catabolite repression of cellulase formation in Trichoderma viride, J. Biochem. 71: 999–1007.Google Scholar
  205. North, M. J., 1973, Cold-induced increase of glycerol kinase in Neurospora crassa, FEBS Lett. 35: 67–70.CrossRefGoogle Scholar
  206. Nowakowska-Waszczuck, A., 1973, Utilization of some tricarboxylic-acid-cycle intermediates by mitochondria and growing mycelium of Aspergillus terreur, J. Gen. Microbiol. 79: 19–29.Google Scholar
  207. O’Connell, B. T., and Paznokas, J. L., 1980, Glyoxylate cycle in Mucor racemosus, J. Bacteriol. 143: 416–421.Google Scholar
  208. Okumura, R., Tokuda, K., Uchii, Y., and Kuwana, H., 1977, Pyruvate dehydrogenase complex mutants of Neurospora crassa, Jpn. J. Genet. 52: 469–470.Google Scholar
  209. Orthofer, R., Kubicek, C. P., and Rohr, M., 1979, Lipid levels and manganese deficiency in citric acid producing strains of Aspergillus niger, FEMS Microbiol. Lett. 5: 403–406.CrossRefGoogle Scholar
  210. Osmani, S. A., and Scrutton, M. C., 1981, Activation of pyruvate carboxylase from Aspergillus nidulans by acetyl coenzyme A, FEBS Lett. 135: 253–256.CrossRefGoogle Scholar
  211. Osmani, S. A., and Scrutton, M. C., 1983, The sub-cellular localisation of pyruvate carboxylase and some other enzymes in Aspergillus nidulans, Eur. J. Biochem. 133: 551–560.CrossRefGoogle Scholar
  212. Osmani, S. A., and Scrutton, M. C., 1985, The subcellular localisation and regulatory properties of pyruvate carboxylase from Rhizopus arrhizus, Eur. J. Biochem. 147: 119–128.CrossRefGoogle Scholar
  213. Osmani, S. A., Marston, F. A. O., Selmes, I. P., Chapman, A. G., and Scrutton, M. C., 1981, Pyruvate carboxylase from Aspergillus nidulans: Regulatory properties, Eur. J. Biochem. 118: 271–278.PubMedCrossRefGoogle Scholar
  214. Osmani, S. A., Mayer, F., Marston, F. A. O., Selmes, I. P., and Scrutton, M. C., 1984, Pyruvate carboxylase from Aspergillus nidulans: Effects of regulatory modifiers on the structure of the enzyme, Eur. J. Biochem. 139: 509–518.PubMedCrossRefGoogle Scholar
  215. O’Sullivan, J., and Casselton, P. J., 1973, The subcellular localization of glyoxylate cycle enzymes in Coprinus lagopus, J. Gen. Microbiol. 75: 333–337.Google Scholar
  216. Overman, S. A., and Romano, A. H., 1969, Pyruvate carboxylase of Rhizopus nigricans and its role in fumaric acid production, Biochem. Biophys. Res. Commun. 37: 457–463.PubMedCrossRefGoogle Scholar
  217. Pall, M. L., 1981, Adenosine 3’,5’-phosphate in fungi, Microbiol. Rev. 45: 462–480.PubMedGoogle Scholar
  218. Parry, J. B., Stewart, J. C., and Heptinstall, J., 1983, Purification of the major endoglucanase from Aspergillus fumigatus Fresenius, Biochem. J. 213: 437–444.PubMedGoogle Scholar
  219. Passeron, S., and Terenzi, H., 1970, Activation of pyruvate kinase of Mucor rouxii by manganese ions, FEBS Lett. 6: 213–216.PubMedCrossRefGoogle Scholar
  220. Paszczynski, A., Miedziak, I., Lobarzewski, J., Kochmanska, J., and Trojanowski, J., 1982, A simple method of affinity chromatography for the purification of glucoamylase obtained from Aspergillus niger C, FEBS Lett. 149: 63–66.PubMedCrossRefGoogle Scholar
  221. Pateman, J. A., and Kinghorn, J. R., 1977, Genetic regulation of nitrogen metabolism, in: Genetics and Physiology of Aspergillus ( J. E. Smith and J. A. Pateman, eds.), pp. 203–241, Academic Press, New York.Google Scholar
  222. Paveto, E., and Passeron, S., 1977, Some kinetic properties of Mucor rouxii phosphofructokinase: Effect of cyclic adenosine 3’,5’-monophosphate, Arch. Biochem. Biophys. 178: 1–7.PubMedCrossRefGoogle Scholar
  223. Payton, M. A., and Roberts, C. F., 1976, Mutants of Aspergillus nidulans lacking pyruvate kinase, FEBS Lett. 66: 73–76.PubMedCrossRefGoogle Scholar
  224. Payton, M. A., McCullough, W., and Roberts, C. F., 1976, Agar as a carbon source and its effect on the utilization of other carbon sources by acetate non-utilizing (acu) mutants of Aspergillus nidulans, J. Gen. Microbiol. 94: 228–233.Google Scholar
  225. Payton, M. A., McCullough, W., Roberts, C. F., and Guest, J. R., 1977, Two unlinked genes for the pyruvate dehydrogenase complex in Aspergillus nidulans, J. Bacteriol. 129: 1222–1226.Google Scholar
  226. Pazur, J. H., Knull, H. R., and Cepure, A., 1971, Glycoenzymes: Structure and properties of the two forms of glucoamylase from Aspergillus niger, Carbohydr. Res. 20: 83–96.CrossRefGoogle Scholar
  227. Plant, G. W. E., 1970, DPN-linked isocitrate dehydrogenase of animal tissues, Curr. Top. Cell. Regul. 2: 1–27.Google Scholar
  228. Pontecorvo, G., 1956, The parasexual cycle in fungi, Annu. Rev. Microbiol. 10: 393–400.PubMedCrossRefGoogle Scholar
  229. Ramakrishnan, C. V., and Martin, S. M., 1955, Isocitric dehydrogenase in Aspergillus niger, Arch. Biochem. Biophys. 55: 403–407.CrossRefGoogle Scholar
  230. Ramakrishnan, C. V., Steel, R., and Lentz, C. P., 1955, Mechanism of citric acid formation and accumulation in Aspergillus niger, Arch. Biochem. Biophys. 55: 270–273.CrossRefGoogle Scholar
  231. Raper, K. B., and Fennell, D. I., 1965, The Genus Aspergillus, Williams Wilkins, Baltimore. Raper, K. B., and Thom, C., 1949, A Manual of the Penicillia, Williams Wilkins, Baltimore.Google Scholar
  232. Reed, L. J., 1969, Pyruvate dehydrogenase complex, Curr. Top. Cell. Regul. 1: 233–251.Google Scholar
  233. Reed, L. J., 1981, Regulation of mammalian pyruvate dehydrogenase complex by a phosphorylation—dephosphorylation cycle, Curr. Top. Cell. Regul. 18: 95–106.PubMedGoogle Scholar
  234. Reese, E. T., 1975, Polysaccharases and the hydrolysis of insoluble substrates, in: Biological Transformation of Wood by Microorganisms ( W. Leise, ed.), pp. 165–181, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  235. Reese, E. T., Maguire, A. H., and Parrish, F. W., 1968, Glucosidases and exo-glucanases, Can. J. Biochem. 46: 25–34.PubMedGoogle Scholar
  236. Reese, E. T., Maguire, A. H., and Parrish, F. W., 1973, Production of ß-D-xylopyranosidases by fungi, Can. J. Microbiol. 19: 1065–1074.PubMedCrossRefGoogle Scholar
  237. Reilly, P. J., 1981, Xylanases: Structure and function, in: Trends in the Biology of Fermentations for Fuels and Chemicals ( A. Hollaender, ed.), pp. 111–129, Plenum Press, New York.Google Scholar
  238. Reinert, W. R., and Marzluf, G. A., 1974, Fructosediphosphatase of Neurospora crassa, Neurospora Newsl. 21: 16.Google Scholar
  239. Rho, D., Desrochers, M., Jubasek, L., Driguez, H., and Defaye, J., 1982, Induction of cellulase in Schizophyllum commune: Thiocellobiose as a new inducer, J. Bacteriol. 149: 47–53.PubMedGoogle Scholar
  240. Rifai, M. A., 1969, A Revision of the Genus Trichoderma Mycological Papers, Commonwealth Mycological Institute, Kew, Surrey, England, No. 116, pp. 37–42.Google Scholar
  241. Robbins, E. A., and Boyer, P. D., 1957, Determination of the equilibrium of the hexokinase reaction and the free energy of hydrolysis of adenosine triphosphate, J. Biol. Chem. 224: 121–135.PubMedGoogle Scholar
  242. Roberts, C. F., 1963, The adaptive metabolism of D-galactose in Aspergillus nidulans, J. Gen. Microbiol. 31: 285–295.Google Scholar
  243. Rodionova, N. A., Gorbacheva, I. V., and Buivid, V. A., 1977, Fractionation and purification of endo-1,4–3-xylosidases of Aspergillus niger, Biochemistry (USSR) 42: 505–519.Google Scholar
  244. Rohr, M., and Kubicek, C. P., 1981, Regulatory aspects of citric acid fermentation by Aspergillus niger, Process Biochem. 16: 34–37.Google Scholar
  245. Rohr, M., Kubicek, C. P., and Kominek, J., 1983, Gluconic acid, in: Biotechnology ( H. J. Rehm and G. Reed, eds.), Vol. 3, pp. 456–465, Verlag Chemie, Weinheim.Google Scholar
  246. Romano, A. H., and Kornberg, H. L., 1968, Regulation of sugar utilization by Aspergillus nidulans, Biochim. Biophys. Acta 158: 491–493.CrossRefGoogle Scholar
  247. Romano, A. H., and Kornberg, H. L., 1969, Regulation of sugar uptake in Aspergillus nidulans, Proc. R. Soc. London Ser. B 173: 475–490.CrossRefGoogle Scholar
  248. Romano, A. H., Bright, M. M., and Scott, W. E., 1967, Mechanism of fumaric acid accumulation by Rhizopus nigricans, J. Bacteriol. 93: 600–604.Google Scholar
  249. Rosenberg, G., and Pall, M. L., 1979, Properties of two cyclic nucleotide-deficient mutants of Neurospora crassa, J. Bacteriol. 137: 1140–1144.Google Scholar
  250. Rougemont, A., and Kobr, M. J., 1973, Isocitrate lyase-2 from Neurospora crassa, Neurospora Newsl. 20: 28–29.Google Scholar
  251. Sanwal, B. D., and Stachow, C. S., 1965, Allosteric activation of nicotinamide adenine dinucleotide specific isocitrate dehydrogenase in Neurospora, Biochim. Biophys. Acta 96: 28–44.Google Scholar
  252. Schellart, J. A., van Arem, E. J. F., van Boekel, M. A. J. S., and Middlehoren, W. J., 1976, Starch degradation by the mould Trichoderma viride. II. Regulation of enzyme synthesis, Antonie van Leeuwenhoek 42: 239–244.PubMedCrossRefGoogle Scholar
  253. Schormuller, J., and Stan, H. J., 1970, Stoffwechsel-untersuchungen an lebenismitteltechnologische wiehtigen mikroorganismen pyruvatcarboxylase aus Penicillium camemberti var candidum 3, Z. Lebensm. Unters. Forsch. 142: 321–330.CrossRefGoogle Scholar
  254. Schwalb, M. N., 1974, Changes in activity of enzymes metabolizing glucose 6-phosphate during development of the basidiomycete Schizophyllum commune, Dev. Biol. 40: 84–89.CrossRefGoogle Scholar
  255. Schwitzguebel, J. P., and Palmer, J. M., 1981, Properties of mitochondria isolated from Neurospora crassa grown with acetate, FEMS Microbiol. Lett. 11: 273–277.CrossRefGoogle Scholar
  256. Schwitzguebel, J. P., Moller, I. M., and Palmer, J. M., 1981a, Changes in density of mitochondria and glyoxysomes from Neurospora crassa: A re-evaluation using silica sol gradient centrifugation, J. Gen. Microbiol. 126: 289–295.Google Scholar
  257. Scott, W. A., 1976, Adenosine 3’: 5’-cyclic monophosphate deficiency in Neurospora crassa, Proc. Natl. Acad. Sci. USA 73: 2995–2999.CrossRefGoogle Scholar
  258. Scott, W. A., and Mahoney, E., 1976, Defects of glucose-6-phosphate and 6-phosphogluconate and their pleiotropic effects, Curr. Top. Cell. Regul. 10: 205–236.PubMedGoogle Scholar
  259. Scott, W. A., and Solomon, B., 1975, Adenosine 3’,5’-cyclic monophosphate and morphology in Neurospora crassa: Drug-induced alterations, J. Bacteriol. 122: 454–463.PubMedGoogle Scholar
  260. Scott, W. A., and Tatum, E. L., 1970, Glucose-6-phosphate dehydrogenase and Neurospora morphology, Proc. Natl Acad. Sci. USA 66: 515–522.PubMedCrossRefGoogle Scholar
  261. Scrutton, M. C., and White, M. D., 1974, Pyruvate carboxylase: Inhibition of mammalian and avian liver enzymes by a-ketoglutarate and L-glutamate, J. Biol. Chem. 249: 5405–5414.PubMedGoogle Scholar
  262. Selby, K., and Maitland, C. C., 1967, The cellulase of Trichoderma viride: Separation of the components involved in the solubilization of cotton, Biochem. J. 104: 716–724.PubMedGoogle Scholar
  263. Seubert, W., and Schoner, W., 1971, Regulation of pyruvate kinase, Curr. Top. Cell. Regul. 3: 237–267.Google Scholar
  264. Shimi, I. R., and Nour El Dein, M. S., 1962, Biosynthesis of itaconic acid by Aspergillus terreus, Arch. Mikrobiol. 44: 181–188.CrossRefGoogle Scholar
  265. Sihtola, H., and Neimo, L., 1975, The structure and properties of cellulose, in: Proceedings, Symposium on Enzymatic Hydrolysos of Cellulose Anlanko, Finland ( Sihtola, H., and Neimo, L., eds.), pp. 9–21, Sitra.Google Scholar
  266. Sjogren, R. E., and Romano, A. H., 1967, Evidence of multiple forms of isocitrate lyase in Neurospora crassa, J. Bacteriol. 93: 1638–1643.Google Scholar
  267. Skinner, V. A., and Armitt, S., 1972, Mutants of Aspergillus nidulans lacking pyruvate carboxylase, FEBS Lett. 20: 16–18.PubMedCrossRefGoogle Scholar
  268. Smith, C. M., and Plant, G. W. E., 1979, Activities of NAD-specific and NADP-specific isocitrate dehydrogenases in rat-liver mitochondria: Studies with D-threo-a-methylisocitrate, Eur. J. Biochem. 97: 283–295.PubMedCrossRefGoogle Scholar
  269. Smith, D., Muscatine, L., and Lewis, D„ 1969, Carbohydrate movement from autotrophs to heterotrophs in parasitic and mutualistic symbiosis, Biol. Rev. 44: 17–90.PubMedCrossRefGoogle Scholar
  270. Smith, J. E., and Berry, D. R. (eds.), 1976, The Filamentous Fungi, Vol. 2, Arnold, London. Smith, J. E., and Hacking, A., 1983, Fungal toxicity, in: The Filamentous Fungi, Vol. 4 (J. E. Smith, D. R. Berry, and A. Kristiansen, eds.), pp. 238–265, Arnold, London.Google Scholar
  271. Song, E., Briggs, J., and Courtright, J. B., 1978, Alterations in the pyruvate dehydrogenase complex during adaptation to glucose by Neurospora, Biochim. Biophys. Acta 544: 453–461.CrossRefGoogle Scholar
  272. Sternberg, D., and Mandels, G. R., 1979, Induction of cellulolytic enzymes in Trichoderma reesei by sophorose, J. Bacteriol. 139: 761–769.PubMedGoogle Scholar
  273. Sternberg, D., and Mandels, G. R., 1980, Regulation of the cellulolytic system in Trichoderma reesei by sophorose: Induction of cellulase and repression of 3-glucosidase, J. Bacteriol. 144: 1197–1199.PubMedGoogle Scholar
  274. Stewart, G. R., and Moore, D., 1971, Factors affecting the level and activity of pyruvate kinase from Coprinus lagopus sensu Buller, J. Gen. Microbiol. 66: 361–370.PubMedGoogle Scholar
  275. Sugden, P. H., and Newsholme, E. A., 1975, The effects of ammonium, inorganic phosphate and potassium ions on the activity of phosphofructokinases from muscle and nervous tissues of vertebrates and invertebrates, Biochem. J. 150: 113–122.PubMedGoogle Scholar
  276. Takenishi, S., and Tsujisaka, Y., 1973, On the modes of three xylanases produced by a strain of Aspergillus niger van Tiegham, Agric. Biol. Chem. 39: 2315–2323.CrossRefGoogle Scholar
  277. Takenishi, S., Tsujisaka, Y., and Fukumoto, J., 1973, Studies on hemicelluloses. IV. Purification and properties of the 13-xylosidase produced by Aspergillus niger van Tiegham, J. Biochem. 73: 335–343.PubMedGoogle Scholar
  278. Tellez-Inon, M. T., and Torres, H. N., 1970, Interconvertible forms of glycogen phosphorylase in Neurospora crassa, Proc. Natl. Acad. Sci. USA 66: 459–463.CrossRefGoogle Scholar
  279. Tellez-Inon, M. T., Terenzi, H., and Tones, H. N., 1969, Interconvertible forms of glycogen synthetase in Neurospora crassa, Biochim. Biophys. Acta 191: 765–768.Google Scholar
  280. Terenzi, H. F., Flawia, M. M., and Tones, H. N., 1974, A Neurospora crassa morphological mutant showing reduced adenylate cyclase activity, Biochem. Biophys. Res. Commun. 58: 990996.Google Scholar
  281. Terenzi, H. F., Flawia, M. M., Tellez-Inon, M. T., and Tones, H. N., 1976, Control of Neurospora crassa morphology by cyclic adenosine3,5’-monophosphate and dibutyryl cyclic adenosine 3’,5’-monophosphate, J. Bacteriol. 126: 91–99.PubMedGoogle Scholar
  282. Theirmer, R. R., 1982, Discussion, Ann. N.Y. Acad. Sci. 386: 283.Google Scholar
  283. Tolbert, B., 1970, Purification and regulatory properties of yeast pyruvate carboxylase, Ph.D. thesis, Case Western Reserve University.Google Scholar
  284. Tom, G. D., Viswanath-Reddy, M., and Howe, H. B., 1978, Effect of carbon source on enzymes involved in glycerol metabolism in Neurospora crassa, Arch. Microbiol. 117: 259–264.CrossRefGoogle Scholar
  285. Tracy, J. W., and Kohlaw, G. B., 1975, Reversible co-enzyme-A-mediated inactivation of biosynthetic condensing enzymes in yeast: A possible regulatory mechanism, Proc. Natl. Acad. Sci. USA 72: 1802–1806.PubMedCrossRefGoogle Scholar
  286. Tsao, M. U., and Madley, T. J, 1972, Kinetic properties of phosphofructokinase of Neurospora crassa, Biochim. Biophys. Acta 258: 99–105.Google Scholar
  287. Tsao, M. U., Smith, M. W., and Borondy, P. E., 1969, Metabolic response of Neurospora crassa to environmental change, Microbios 1: 37–43.Google Scholar
  288. Tsujisaka, Y., Takenishi, S., and Fukumoto, J, 1971, Studies on the hemicellulases. II. The mode of action of three hemicellulases produced from Aspergillus niger, Nippon Nogei Kagaku Kaishi 45: 253–260.Google Scholar
  289. Turian, G., 1963, Sur le mecanisme de l’induction isocitratasique chez Allomyces et Neurospora, Pathol. Microbiol. 26: 553–563.Google Scholar
  290. Turner, W. B., 1971, Fungal Metabolites, Academic Press, New York.Google Scholar
  291. Turner, W. B., 1976, Polyketides and related metabolites, in: The Filamentous Fungi, Vol. 2 ( J. E. Smith and D. R. Berry, eds.), pp. 445–459, Arnold, London.Google Scholar
  292. Uitzetter, J. H. A. A., 1982, Studies on carbon metabolism in wild type and mutants of Aspergillus nidulans, Ph.D. thesis, University of Wageningen.Google Scholar
  293. Uno, I., and Ishikawa, T., 1976, Effect of cyclic AMP on glycogen phosphorylase in Coprinus macrorhizus, Biochim. Biophys. Acta 452: 112–120.Google Scholar
  294. Uno, I., and Ishikawa, T., 1978, Effect of cyclic AMP on glycogen synthetase in Coprinus macrorhizus, J. Gen. Appl. Microbiol. 24: 193–197.CrossRefGoogle Scholar
  295. Uwajima, T., Akita, H., Ito, K., Mihara, A., Aisaka, K., and Terada, 0., 1980, Formation and purification of a new enzyme, glycerol oxidase and stoichiometry of the enzyme reaction, Agric. Biol. Chem. 44: 399–406.CrossRefGoogle Scholar
  296. Valentine, B. P., and Bainbridge, B. W., 1978, The relevance of a study of a temperature-sensitive ballooning mutant of Aspergillus nidulans defective in mannose metabolism to our understanding of mannose as a wall component and carbon/energy source, J. Gen. Microbiol. 109: 155–168.Google Scholar
  297. Verhoff, F. H., and Spradlin, J. F., 1976, Mass and energy balance analysis of metabolic pathways applied to citric acid production by Aspergillus niger, Biotechnol. Bioeng. 18: 425–433.CrossRefGoogle Scholar
  298. Viswanath-Reddy, M., Bennett, S. N., and Howe, H. B., 1977, Characterization of glycerol nonutilizing protoperithecial mutants of Neurospora, Mol. Gen. Genet. 153: 29–38.CrossRefGoogle Scholar
  299. Vogel, H. J., 1964, Distribution of lysine pathways among fungi: Evolutionary implications, Am. Nat. 98: 435–446.CrossRefGoogle Scholar
  300. Voitkova-Lepshikova, A., and Kotskova-Kratokhvilova, A., 1966, Glucamylases of the Aspergilli, Microbiology (USSR) 35: 653–659.Google Scholar
  301. Wanner, G., and Theirmer, R. R., 1982, Two types of mitochondria in Neurospora crassa, Ann. N.Y. Acad. Sci. 386: 269–284.CrossRefGoogle Scholar
  302. Watanabe, K., and Fukimbara, T., 1967, Saccharogenic amylase produced by Aspergillus awamori. V3. Inhibition by acid-stable and less acid-stable saccharogenic amylase, J. Ferment. Technol. 45: 226–232.Google Scholar
  303. Watanabe, K., and Fukimbara, T., 1973, The composition of saccharogenic amylase from Rhizopus javanicus and the isolation of glycopeptides, Agric. Biol. Chem. 37: 2755–2761.CrossRefGoogle Scholar
  304. Watson, K., 1976, The biochemistry and biogenesis of mitochondria, in: The Filamentous Fungi, Vol. 2 ( J. E. Smith and D. R. Berry, eds.), pp. 92–120, Arnold, London.Google Scholar
  305. Watson, K., and Smith, J. E., 1967a, Oxidative phosphorylation and respiratory control in mitochondria from Aspergillus niger, Biochem. J. 104: 332–339.Google Scholar
  306. Watson, K., and Smith, J. E., 1967b, Rotenone and amytal insensitive coupled oxidation of NADH by mitochondria from Aspergillus niger, J. Biochem. 61: 527–530.Google Scholar
  307. Watson, K., Paton, W. P., and Smith, J. E., 1969, Oxidative phosphorylation and respiratory control in mitochondria from Aspergillus oryzae, Can. J. Microbiol. 15: 975–981.CrossRefGoogle Scholar
  308. Weiss, H., von Jagow, G., Klingenberg, M., and Bucher, T., 1970, Characterization of Neurospora crassa mitochondria prepared with a grind-mill, Eur. J. Biochem. 14: 75–82.PubMedCrossRefGoogle Scholar
  309. Weitzman, P. D. J., and Danson, M. J., 1976, Citrate synthase, Curr. Top. Cell. Regul. 10: 161–204.PubMedGoogle Scholar
  310. Wergin, W. P., 1972, Ultrastructural comparison of microbodies in pathogenic and saprophytic hyphae of Fusarium oxysporum sp. lycopersici, Phytopathology 62:1045–1051.Google Scholar
  311. Whistler, R. L., and Richards, E. L., 1970, Hemicelluloses, in: The Carbohydrates IIA ( A. J. Pigman and D. Horton, eds.), pp. 447–462, Academic Press, New York.Google Scholar
  312. Wieland, O. H., Hartmann, U., and Siess, E. A., 1972, Neurospora crassa pyruvate dehydrogenase: Interconversion by phosphorylation and dephosphorylation, FEBS Lett. 27: 240–244.Google Scholar
  313. Winskill, N., 1983, Tricarboxylic acid cycle activity in relation to itaconic acid biosynthesis by Aspergillus terreus, J. Gen. Microbiol. 129: 2877–2883.Google Scholar
  314. Wold, W. S. M., and Suzuki, I., 1973, Cyclic AMP and citric acid accumulation by Aspergillus niger, Biochem. Biophys. Res. Commun. 50: 237–244.CrossRefGoogle Scholar
  315. Wood, H. G., Katz, J., and Landau, B. R., 1963, Estimation of the pathways of carbohydrate metabolism, Biochem. Z. 338: 809–847.PubMedGoogle Scholar
  316. Wood, T. M., 1971, The cellulase of Fusarium solani: Purification and specificity of the 3-(1—*4)glucanase and the 3-o-glucosidase components, Biochem. J. 121: 353–362.PubMedGoogle Scholar
  317. Wood, T. M., and McCrae, S. I., 1972, The purification and properties of the Cl component of Trichoderma koningii cellulase, Biochem. J. 128: 1183–1192.PubMedGoogle Scholar
  318. Wood, T. M., and McCrae, S. I., 1977a, Cellulase from Fusarium solani: Purification and properties of the CI component, Carbohydr. Res. 57: 117–133.Google Scholar
  319. Wood, T. M., and McCrae, S. I., 1977b, The mechanism of cellulase action with particular reference to the Cl component, in: Proceedings of Bioconversion Symposium IIT, Delhi ( T. K. Ghose, ed.), pp. 111–141, Thompson Press, India.Google Scholar
  320. Wood, T. M., and McCrae, S. I., 1982, Purification and some properties of the extracellular 13-oglucosidase of the cellulolytic fungus Trichoderma koningii, J. Gen. Microbiol. 128: 2973 2982.Google Scholar
  321. Wood, T. M., McCrae, S. I., and MacFarlane, C. C., 1980, The isolation, purification and properties of the cellobiohydrolase component of Penicillium funiculosum cellulase, Biochem. J. 189: 51–65.PubMedGoogle Scholar
  322. Yamada, H., Okamoto, K., Kodama, K., and Tanaka, S., 1959, Mannitol formation by Piricularia oryzae, Biochim. Biophys. Acta 33: 271–273.CrossRefGoogle Scholar
  323. Yamasaki, Y., Suzuki, Y., and Ozawa, J., 1977a, Three forms of a-glucosidase and a glucoamylase from Aspergillus awamori, Agric. Biol. Chem. 41: 2149–2161.CrossRefGoogle Scholar
  324. Yamasaki, Y., Suzuki, Y., and Ozawa, J., 1977b, Properties of two forms of glucoamylase from Penicillium oxalicum, Agric. Biol. Chem. 41: 1443–1449.CrossRefGoogle Scholar
  325. Yamasaki, Y., Tsuboi, A., and Suzuki, Y., 1977c, Two forms of glucoamylase from Mucor rouxianus. II. Properties of the two flucoamylases, Agric. Biol. Chem. 41: 2139–2148.CrossRefGoogle Scholar
  326. Zehentgruber, O., Kubicek, C. P., and Rohr, M., 1980, Alternative respiration of Aspergillus niger, FEMS Microbiol. Lett. 8: 71–74.CrossRefGoogle Scholar
  327. Zink, M. W., 1967, Regulation of the “malic” enzyme in Neurospora crassa, Can. J. Microbiol. 13: 1211–1221.CrossRefGoogle Scholar
  328. Zink, M. W., 1972, Regulation of the two “malic” enzymes in Neurospora crassa, Can. J. Microbiol. 18: 611–617.CrossRefGoogle Scholar
  329. Zink, M. W., and Katz, J. S., 1973, Malic enzyme of Fusarium oxysporum, Can. J. Microbiol. 19: 1187–1196.CrossRefGoogle Scholar
  330. Zink, M. W., and Shaw, D. A., 1968, Regulation of “malic” isozymes and malic dehydrogenase in Neurospora crassa, Can. J. Microbiol. 14: 907–912.CrossRefGoogle Scholar
  331. Zonneveld, B. J. M., 1977, Biochemistry and ultrastructure of sexual development in Aspergillus, in: Genetics and Physiology of Aspergillus ( J. E. Smith and J. A. Pateman, eds.), pp. 59–80, Academic Press, New York.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • William McCullough
    • 1
  • Clive F. Roberts
    • 2
  • Stephen A. Osmani
    • 3
  • Michael C. Scrutton
    • 3
  1. 1.Department of BiologyUniversity of Ulster, NewtownabbeyCo. AntrimNorthern Ireland
  2. 2.Department of GeneticsUniversity of LeicesterLeicesterUK
  3. 3.Department of BiochemistryKing’s College LondonLondonUK

Personalised recommendations