Carbohydrate Metabolism in Yeast

  • Juana M. Gancedo


The unraveling of the pathways of carbohydrate metabolism has its origins in the early observations of Buchner on fermentation of sugar by a yeast extract and on the pioneering investigations of Harden and Young (for a review see Fruton, 1972). Through the years, yeasts have remained one of the favorite organisms for studying carbohydrate metabolism and its regulation. In fact, yeasts present a number of features that make them most convenient to study. They are unicellular organisms, easily handled, usually nonpathogenic, able to grow on a variety of carbon sources, and yielding the large amounts of homogeneous material that are often required for enzymological studies. In addition, yeasts are well amenable to classical genetic techniques and can also be used in the genetic engineering field. Finally, yeasts are eukaryotic cells and as such should be useful for studying biological problems that are peculiar to eukaryotic organisms.


Saccharomyces Cerevisiae Carbohydrate Metabolism Alcohol Dehydrogenase Pentose Phosphate Pathway Pyruvate Kinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achstetter, T., Ehmann, C., and Wolf, D. H., 1981, New proteolytic enzymes in yeast, Arch. Biochem. Biophys. 207:445–454.PubMedGoogle Scholar
  2. Atzpodien, W., Gancedo, J. M., Duntze, W., and Holzer, H., 1968, Isoenzymes of malate dehydrogenase in Saccharomyces cerevisiae,Eur. J. Biochem. 7:58–62.PubMedGoogle Scholar
  3. Azam, F., and Kotyk, A., 1969, Glucose-6-phosphate as regulator of monosaccharide transport in baker’s yeast, FEBS Leu. 2:333–335.Google Scholar
  4. Banuelos, M., and Fraenkel, D. G., 1982, Saccharomyces carlsbergensis fdp mutant and futile cycling of fructose-6-phosphate, Mol. Cell. Biol. 2:921–929.Google Scholar
  5. Banuelos, M., and Gancedo, C., 1978, In situ study of the glycolytic pathway in Saccharomyces cerevisiae,Arch. Microbiol. 117:197–201.PubMedGoogle Scholar
  6. Banuelos, M., Gancedo, C., and Gancedo, J. M., 1977, Activation by phosphate of yeast phosphofructokinase, J. Biol. Chem. 252:6394–6398.PubMedGoogle Scholar
  7. Barford, J. P., and Hall, R. J., 1979, An examination of the Crabtree effect in Saccharomyces cerevisiae: The role of respiratory adaptation, J. Gen. Microbiol. 114:267–275.Google Scholar
  8. Barnard, E. A., 1975, Hexokinases from yeast, Methods Enzymol. 42:6–20.PubMedGoogle Scholar
  9. Barnett, J. A., 1976, The utilization of sugars by yeasts, Adv. Carbohydr. Chem. Biochem. 32:125–234.PubMedGoogle Scholar
  10. Barnett, J. A., 1981, The utilization of disaccharides and some other sugars by yeasts, Adv. Carbohydr. Chem. Biochem. 39:347–404.Google Scholar
  11. Bartrons, R., Van Schaftingen, E., Vissers, S., and Hers, H. G., 1982, The stimulation of yeast phosphofructokinase by fructose-2, 6-bisphosphate, FEBS Leu. 143:137–140.Google Scholar
  12. Bechet, J., and Wiame, J. M., 1965, Indication of a specific regulatory binding protein for ornithinetranscarbamylase in Saccharomyces cerevisiae, Biochem. Biophys. Res. Commun. 21:226–234.PubMedGoogle Scholar
  13. Beier, D. R., and Young, E. T., 1982, Characterization of a regulatory region upstream of the ADR2 locus of S. cerevisiae, Nature 300:724–728.PubMedGoogle Scholar
  14. Bergmeyer, H. A. (ed.), 1974, Methods of Enzymatic Analysis,Verlag Chemie, Weinheim/ Academic Press, New York.Google Scholar
  15. Bisson, L. F., and Fraenkel, D. G., 1983, Involvement of kinases in glucose and fructose uptake by Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA 80:1730–1734.PubMedGoogle Scholar
  16. Boiteux, A., and Hess, B., 1970, Allosteric properties of yeast pyruvate decarboxylase, FEBS Lett. 9:293–296.PubMedGoogle Scholar
  17. Borst-Pauwels, G. W. F. H., and Dobbelmann, J., 1972, Determination of the yeast cell pH, Acta Bot. Neerl. 21:149–154.Google Scholar
  18. Botsford, J. L., 1981, Cyclic nucleotides in procaryotes, Microbiol. Rev. 45:620–632.PubMedGoogle Scholar
  19. Breitenbach-Schmitt, I., 1981, Genetische und physiologische Hinweise auf die Existenz eines zweiten Stoffwechselwegs neben der “klassischen” Phosphofructokinasereaktion beim Abbau von Glucose in Saccharomyces cerevisiae, Doctoral thesis, Technische Hochschule Darmstadt.Google Scholar
  20. Burke, R. L., Tekamp-Olson, P., and Najarian, R., 1983, The isolation, characterization and sequence of the pyruvate kinase gene of Saccharomyces cerevisiae, J. Biol. Chem. 258:2193–2201.PubMedGoogle Scholar
  21. Carrascosa, J. M., Viguera, M. D., Nunez de Castro, I., and Scheffers, W. A., 1981, Metabolism of acetaldehyde and Custers effect in the yeast Brettanomyces abstinens, Antonie van Leeuwenhoek 47:209–215.PubMedGoogle Scholar
  22. Chapman, C., and Bartley, W., 1968, The kinetics of enzyme changes in yeast under conditions that cause the loss of mitochondria, Biochem. J. 107:455–465.PubMedGoogle Scholar
  23. Chester, V. E., 1963, The dissimilation of the carbohydrate reserves of a strain of Saccharomyces cerevisiae, Biochem. J. 86:153–160.PubMedGoogle Scholar
  24. Chester, V. E., 1968, Heritable glycogen-storage deficiency in yeast and its induction by ultraviolet light, J. Gen. Microbiol. 51:49–56.PubMedGoogle Scholar
  25. Chin, C. C. Q., Brewer, J. M., and Wold, F., 1981, The aminoacid sequence of yeast enolase, J. Biol. Chem. 256:1377–1384.PubMedGoogle Scholar
  26. Ciriacy, M., 1975, Genetics of alcohol dehydrogenase in Saccharomyces cerevisiae, Mutat. Res. 29:315–326.Google Scholar
  27. Ciriacy, M., 1977, Isolation and characterization of yeast mutants defective in intermediary carbon metabolism and in carbon catabolite derepression. Mol. Gen. Genet. 154:213–220.PubMedGoogle Scholar
  28. Ciriacy, M., 1979, Isolation and characterization of further cis-and trans-acting regulatory elements involved in the synthesis of glucose-repressible alcohol dehydrogenase (ADHII) in Saccharomyces cerevisiae, Mol. Gen. Genet. 176:427–431.PubMedGoogle Scholar
  29. Ciriacy, M., and Breitenbach, I., 1979, Physiological effects of seven different blocks in glycolysis in Saccharomyces cerevisiae, J. Bacteriol. 139:152–160.PubMedGoogle Scholar
  30. Cirillo, V. P., 1961, Sugar transport in microorganisms, Annu. Rev. Microbiol. 15:197–218.Google Scholar
  31. Cirillo, V. P., 1968a, Relationship between sugar structure and competition for the sugar transport system in baker’s yeast, J. Bacteriol. 95:603–611.Google Scholar
  32. Cirillo, V. P., 1968b, Galactose transport in Saccharomyces cerevisiae, J. Bacteriol. 95:1727–1731.Google Scholar
  33. Clifton, D., and Fraenkel, D. G., 1981, The gcr (glycolysis regulation) mutation of Saccharomyces cerevisiae, J. Biol. Chem. 256:13074–13078.PubMedGoogle Scholar
  34. Clifton, D., and Fraenkel, D. G., 1982, Mutant studies of yeast phosphofructokinase, Biochemistry 21:1935–1942.PubMedGoogle Scholar
  35. Clifton, D., Weinstock, S. B., and Fraenkel, D. G., 1978, Glycolysis mutants in Saccharomyces cerevisiae, Genetics 88: 1–11.PubMedGoogle Scholar
  36. Colonna, W. J., and Magee, P. T., 1978, Glycogenolytic enzymes in sporulating yeast, J. Bacteriol. 134:844–853.PubMedGoogle Scholar
  37. Custers, M. T. J., 1940, Onderzoekingen over het Gistgeslacht Brettanomyces, Ph.D. thesis, De Technische Hoogeschool, Delft.Google Scholar
  38. De Deken, R. H., 1966, The Crabtree effect: A regulatory system in yeast, J. Gen. Microbiol. 44:149–156.Google Scholar
  39. De la Fuente, G., and Sols, A., 1962, Transport of sugars in yeasts, Biochim. Biophys. Acta 56:4962.Google Scholar
  40. den Hollander, J. A., Brown, T. R., Ugurbil, K., and Shulman, R. G., 1979, 13C nuclear magnetic resonance studies of anaerobic glycolysis in suspension of yeast cells, Proc. Natl. Acad. Sci. USA 76:6096–6100.Google Scholar
  41. den Hollander, J. A., Ugurbil, K., Brown, T. R., and Shulman, R. G., 1981, Phosphorus-31 nuclear magnetic resonance studies of the effect of oxygen upon glycolysis in yeast, Biochemistry 20:5871–5880.Google Scholar
  42. Denis, C., Young, E. T., and Ciriacy, M., 1981, A positive regulatory gene is required for accumulation of the functional messenger RNA for the glucose-repressible alcohol dehydrogenase from Saccharomyces cerevisiae, J. Mol. Biol. 148:355–368.PubMedGoogle Scholar
  43. De Torrôntegui, G., Palacian, E., and Losada, M., 1966, Phosphoenolpyruvate carboxykinase in gluconeogenesis and its repression by hexoses in yeast, Biochem. Biophys. Res. Commun. 22:227–231.PubMedGoogle Scholar
  44. Dickens, F., 1951, Aerobic glycolysis, respiration, and the Pasteur effect, in: The Enzymes (J. B. Sumner and K. Myrback, eds.), Vol. 2, Part 1, pp. 624–683, Academic Press, New York.Google Scholar
  45. Dickson, R. C., and Markin, J. S., 1980, Physiological studies of ß-galactosidase induction in Kluyveromyces lactis, J. Bacteriol. 142:777–785.PubMedGoogle Scholar
  46. Downie, J. A., and Garland, P. B., 1973, An antimycin A- and cyanide-resistant variant of Candida utilis arising during copper-limited growth, Biochem. J. 134:1051–1061.PubMedGoogle Scholar
  47. Duntze, W., Atzpodien, W., and Holzer, H., 1967, Glucose dependent enzyme activities in different yeast species, Arch. Mikrobiol. 58:296–301.PubMedGoogle Scholar
  48. Duntze, W., Neumann, D., Gancedo, J. M., Atzpodien, W., and Holzer, H., 1969, Studies on the regulation and localization of the glyoxylate cycle enzymes in Saccharomyces cerevisiae, Eur. J. Biochem. 10:83–89.PubMedGoogle Scholar
  49. Duro, A. F., and Serrano, R., 1981, Inhibition of succinate production during yeast fermentation by deenergization of the plasma membrane, Curr. Microbiol. 6:111–113.Google Scholar
  50. Elorza, M. V., Villanueva, J. R., and Sentandreu, R., 1977, The mechanism of catabolite inhibition of invertase by glucose in Saccharomyces cerevisiae, Biochim. Biophys. Acta 475:103–112.PubMedGoogle Scholar
  51. Entian, K. D., and Mecke, D., 1982, Genetic evidence for a role of hexokinase isozyme PII in carbon catabolite repression in Saccharomyces cerevisiae, J. Biol. Chem. 257:870–874.PubMedGoogle Scholar
  52. Entian, K. D., Zimmermann, F. K., and Scheel, I., 1977, A partial defect in carbon catabolite repression in mutants of Saccharomyces cerevisiae with reduced hexose phosphorylation, Mol. Gen. Genet. 156:99–105.PubMedGoogle Scholar
  53. Eraso, P., and Gancedo, J. M., 1984, Catabolite repression in yeasts is not associated with low levels of cAMP, Eur. J. Biochem. 141:195–198.PubMedGoogle Scholar
  54. Federoff, H. J., Eccleshall, T. R., and Marmur, J., 1983, Regulation of maltase synthesis in Saccharomyces carlsbergensis, J. Bacteriol. 154:1301–1308.PubMedGoogle Scholar
  55. Ferguson, J., Boll, M., and Holzer, H.,1967, Yeast malate dehydrogenase and enzyme inactivation in catabolite repression, Eur. J. Biochem. 1:21–25.PubMedGoogle Scholar
  56. Fosset, M., Muir, L. W., Nielsen, L. D., and Fischer, E. H.,1971, Purification and properties of yeast glycogen phosphorylase a and b, Biochemistry 10:4105–4113.PubMedGoogle Scholar
  57. Foy, J. J., and Bhattacharjee, J. K., 1978, Biosynthesis and regulation of fructose-1,6-bisphosphatase and phosphofructokinase in Saccharomyces cerevisiae grown in the presence of glucose and gluconeogenic carbon sources, J. Bacteriol. 136:647–656.PubMedGoogle Scholar
  58. Fraenkel, D. G., 1982, Carbohydrate metabolism, in: The Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression (J. N. Strathern, E. W. Jones, and J. R. Broach, eds.), pp. 1–37, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  59. Fraenkel, D. G., and Vinopal, R. T., 1973, Carbohydrate metabolism in bacteria, Annu. Rev. Microbiol. 27:69–100.Google Scholar
  60. Freitas-Valle, A. B., Menezes, R. R., Panek, A. D., and Mattoon, J. R., 1981, Relationship between succinate excretion and cytochrome levels in Saccharomyces cerevisiae, Cell. Mol. Biol. 27:467–471.Google Scholar
  61. Fröhlich, K. U., and Entian, K. D., 1982, Regulation of gluconeogenesis in the yeast Saccharomyces cerevisiae, FEBS Lett. 139:164–166.PubMedGoogle Scholar
  62. Fruton, J. S., 1972, Molecules and Life, Wiley-Interscience, New York.Google Scholar
  63. Fukasawa, T., Obonai, K., Segawa, T., and Nogi, Y., 1980, The enzymes of the galactose cluster in Saccharomyces cerevisiae: Purification and characterization of uridine diphosphoglucose-4epimerase, J. Biol. Chem. 255:2705–2707.PubMedGoogle Scholar
  64. Fulton, A. B., 1983, How crowded is the cytoplasm?, Cell 30:345–347.Google Scholar
  65. Funayama, S., Gancedo, J. M., and Gancedo, C., 1980, Turnover of yeast fructose-bisphosphatase in different metabolic conditions, Eur. J. Biochem. 109:61–66.PubMedGoogle Scholar
  66. Gancedo, C., 1971, Inactivation of fructose-1,6-diphosphatase by glucose in yeast, J. Bacteriol. 107:401–405.PubMedGoogle Scholar
  67. Gancedo, C., and Schwerzmann, K., 1976, Inactivation by glucose of phosphoenolpyruvate carboxykinase from Saccharomyces cerevisiae, Arch. Microbiol. 109:221–225.PubMedGoogle Scholar
  68. Gancedo, C., and Serrano, R., in press, Energy yielding metabolism in yeast, in: The Yeasts (A. H. Rose and J. S. Harrison, eds.), Vol. III, Academic Press, New York.Google Scholar
  69. Gancedo, C., Salas, M. L., Giner, A., and Sols, A., 1965, Reciprocal effects of carbon sources on the levels of an AMP-sensitive fructose-1,6-diphosphate and phosphofructokinase in yeast, Biochem. Biophys. Res. Commun. 20:15–20.PubMedGoogle Scholar
  70. Gancedo, C., Gancedo, J. M., and Sols, A., 1967, Metabolite repression of fructose-1,6-diphosphatase in yeast, Biochem. Biophys. Res. Commun. 26:528–531.PubMedGoogle Scholar
  71. Gancedo, C., Gancedo, J. M., and Sols, A., 1968, Glycerol metabolism in yeasts: Pathways of utilization and production, Eur. J. Biochem. 5:165–172.Google Scholar
  72. Gancedo, J. M., and Gancedo, C., 1971, Fructose-1,6-diphosphatase, phosphofructokinase and glucose-6-phosphate dehydrogenase from fermenting and non-fermenting yeasts, Arch. Mikrobiol. 76:132–138.PubMedGoogle Scholar
  73. Gancedo, J. M., and Gancedo, C., 1973, Concentrations of intermediary metabolites in yeast, Biochimie 55:205–211.PubMedGoogle Scholar
  74. Gancedo, J. M., and Lagunas, R., 1973, Contribution of the pentose-phosphate pathway to glucose metabolism in Saccharomyces cerevisiae: A critical analysis on the use of labelled glucose, Plant Sci. Lett. 1:193–200.Google Scholar
  75. Gancedo, J. M., and Mazôn, M. J., 1978, Transport of gluconate in Rhodotorula glutinis: Inactivation by glucose of the uptake system, Arch. Biochem. Biophys. 185:466–472.PubMedGoogle Scholar
  76. Gancedo, J. M., Gancedo, C., and Sols, A., 1967, Regulation of the concentration or activity of pyruvate kinase in yeasts and its relationship to gluconeogenesis, Biochem. J. 102:23C–25C.PubMedGoogle Scholar
  77. Gancedo, J. M., Clifton, D., and Fraenkel, D. G., 1977, Yeast hexokinase mutants, J. Biol. Chem. 252:4443–4444.PubMedGoogle Scholar
  78. Gancedo, J. M., Mazôn, M. J., and Gancedo, C., 1982, Kinetic differences between two interconvertible forms of fructose-1,6-bisphosphatase from Saccharomyces cerevisiae, Arch. Biochem. Biophys. 218:478–482.PubMedGoogle Scholar
  79. Gancedo, J. M., Mazôn, M. J., and Gancedo, C., 1983, Fructose 2,6-bisphosphate activates the cAMP-dependent phosphorylation of yeast fructose-1,6-bisphosphatase in vitro, J. Biol. Chem. 258:5998–5999.PubMedGoogle Scholar
  80. Glaser, L., and Brown, D. H., 1955, Purification and properties of D-glucose-6-phosphate dehydrogenase, J. Biol. Chem. 216:67–79.PubMedGoogle Scholar
  81. Grossmann, M. K., and Zimmermann, F. K., 1979, The structural genes of internal invertases in Saccharomyces cerevisiae, Mol. Gen. Genet. 175:223–229.PubMedGoogle Scholar
  82. Guarente, L., Yocum, R. R., and Gifford, P., 1982, A GAL-CYCI hybrid yeast promoter identifies the GAL 4 regulatory region as an upstream site, Proc. Natl. Acad. Sci. USA 79:7410–7414.PubMedGoogle Scholar
  83. Gunja-Smith, Z., Patil, N. B., and Smith, E. E., 1977, Two pools of glycogen in Saccharomyces, J. Bacteriol. 130:818–825.PubMedGoogle Scholar
  84. Haarasilta, S., and Oura, E., 1975, On the activity and regulation of anaplerotic and gluconeogenic enzymes during the growth process of baker’s yeast, Eur. J. Biochem. 52:1–7.PubMedGoogle Scholar
  85. Haarasilta, S., and Taskinen, L., 1977, Location of three key enzymes of gluconeogenesis in baker’s yeast, Arch. Microbiol. 113:159–161.PubMedGoogle Scholar
  86. Hackel, R. A., 1975, Genetic control of invertase formation. I. Isolation and characterization of mutants affecting sucrose utilization, Mol. Gen. Genet. 140:361–370.PubMedGoogle Scholar
  87. Harris, C. E., Kobes, R. D., Teller, D. C., and Rutter, W. J., 1969, The molecular characteristics of yeast aldolase, Biochemistry 8:2442–2454.PubMedGoogle Scholar
  88. Heerde, E., and Radler, F., 1978, Metabolism of the anaerobic formation of succinic acid by Saccharomyces cerevisiae, Arch. Microbiol. 117:269–276.Google Scholar
  89. Herbert, D., Elsworth, R., and Telling, R. C., 1956, The continuous culture of bacteria: A theoretical and experimental study, J. Gen. Microbiol. 14:601–622.PubMedGoogle Scholar
  90. Heredia, C. F., Sols, A., and De la Fuente, G., 1968, Specificity of the constitutive transport in yeast, Eur. J. Biochem. 5:321–329.PubMedGoogle Scholar
  91. Herrera, L. S., and Pascual, C., 1978, Genetical and biochemical studies of glucosephosphate isomerase deficient mutants in Saccharomyces cerevisiae, J. Gen. Microbiol. 108:305–310.Google Scholar
  92. Herrera, L. S., Pascual, C., and Alvarez, X., 1976, Genetic and biochemical studies of phosphomannose isomerase deficient mutants of Saccharomyces cerevisiae, Mol. Gen. Genet. 144:223–230.PubMedGoogle Scholar
  93. Hers, H. G., and Van Schaftingen, E., 1982, Fructose 2,6-bisphosphate 2 years after its discovery, Biochem. J. 206:1–12.PubMedGoogle Scholar
  94. Hess, B., Haeckel, R., and Brand, K., 1966, FDP-activation of yeast pyruvate kinase, Biochem. Biophys. Res. Commun. 24:824–831.PubMedGoogle Scholar
  95. Hess, B., Boiteux, A., and Krüger, J., 1969, Cooperation of glycolytic enzymes, Adv. Enzyme Regul. 7:149–167.PubMedGoogle Scholar
  96. Hitzeman, R. A., Clarke, L., and Carbon, J., 1980, Isolation and characterization of the yeast 3phosphoglycerokinase gene (PGK) by an immunological screening technique, J. Biol. Chem. 255:12073–12080.PubMedGoogle Scholar
  97. Höfer, M., and Kotyk, A., 1968, Tight coupling of monosaccharide transport and metabolism in Rhodotorula gracilis, Folia Microbiol. 13:197–204.Google Scholar
  98. Höfer, M., Brand, K., Deckner, K., and Becker, J. U., 1971, Importance of the pentose phosphate pathway for D-glucose catabolism in the obligatory aerobic yeast Rhodotorula gracilis, Biochem. J. 123:855–863.PubMedGoogle Scholar
  99. Holland, J. P., and Holland, M. J., 1979, The primary structure of a glyceraldehyde-3-phosphate dehydrogenase gene from Saccharomyces cerevisiae, J. Biol. Chem. 254:9839–9845.PubMedGoogle Scholar
  100. Holland, J. P., and Holland, M. J., 1980, Structural comparison of two nontandemly repeated yeast glyceraldehyde-3-phosphate dehydrogenase genes, J. Biol Chem 255:2596–2605.PubMedGoogle Scholar
  101. Holland, M. J., and Holland, J. P., 1979, Isolation and characterization of a gene coding for glyceraldehyde-3-phosphate dehydrogenase from Saccharomyces cerevisiae, J. Biol. Chem. 254:5466–5474.PubMedGoogle Scholar
  102. Holland, M. J., Holland, J. P., Thill, G. P., and Jackson, K. A., 1981, The primary structures of two yeast enolase genes, J. Biol. Chem. 256:1385–1395.PubMedGoogle Scholar
  103. Holzer, H., 1961, Regulation of carbohydrate metabolism by enzyme competition, Cold Spring Harbor Symp. Quant. Biol. 26:227–288.Google Scholar
  104. Holzer, H., 1976, Catabolite inactivation in yeast, Trends Biochem. Sci. 1:178–181.Google Scholar
  105. Holzer, H., and Goedde, H. W., 1957, Zwei Wege von Pyruvat zu Acetyl-Coenzym A in Hefe, Biochem. Z. 329:175–191.PubMedGoogle Scholar
  106. Hommes, F. A., 1966, Effect of glucose on the levels of glycolytic enzymes in yeast, Arch. Biochem. Biophys. 114:231–233.PubMedGoogle Scholar
  107. Indge, K. J., 1968, Phosphates of the yeast cell vacuole, J. Gen. Microbiol. 51:447–455.PubMedGoogle Scholar
  108. Inoue, H., and Shimoda, C., 1981, Induction of trehalase activity on a nitrogen-free medium: A sporulation-specific event in the fission yeast Schizosaccharomyces pombe, Mol. Gen. Genet. 183:32–36.PubMedGoogle Scholar
  109. Katz, J., and Wood, H. G., 1963, The use of C1402 yields from glucose-l-and -6-C14 for the evaluation of the pathways of glucose metabolism, J. Biol. Chem. 238:517–523.PubMedGoogle Scholar
  110. Katz, R., Kilpatrick, L., and Chance, B., 1971, Acquisition and loss of rotenone sensitivity in Torulopsis utilis, Eur. J. Biochem. 21:301–307.PubMedGoogle Scholar
  111. Kawasaki, G., and Fraenkel, D. G., 1982, Cloning of yeast glycolysis genes by complementation, Biochem. Biophys. Res. Commun. 108:1107–1112.PubMedGoogle Scholar
  112. Keller, F., Schellenberg, M., and Wiemken, A., 1982, Localization of trehalase in vacuoles and of trehalose in the cytosol of yeast (Saccharomyces cerevisiae), Arch. Microbiol. 131: 298–301.PubMedGoogle Scholar
  113. Kempe, T. D., Nakagawa, Y., and Noltmann, E. A., 1974, Physical and chemical properties of yeast phosphoglucose isomerase isoenzymes, J. Biol. Chem. 249:4617–4624.PubMedGoogle Scholar
  114. Khan, N. A., Zimmermann, F. K., and Eaton, N. R., 1973, Genetic and biochemical evidence of sucrose fermentation by maltase in yeast, Mol. Gen. Genet. 123:43–50.PubMedGoogle Scholar
  115. Klein, H. P., and Jahnke, L., 1979, Effects of aeration on formation and localization of the acetyl coenzyme A synthetases of Saccharomyces cerevisiae, J. Bacteriol. 137:179–184.PubMedGoogle Scholar
  116. Kopperschläger, G., and Hofmann, E., 1969, Uber multiple Formen der Hexokinase in Hefe, Eur. J. Biochem. 9:419–423.PubMedGoogle Scholar
  117. Kopperschläger, G., Bär, J., Nissler, K., and Hofmann, E., 1977, Physicochemical parameters and subunit composition of yeast phosphofructokinase, Eur. J. Biochem. 81:317–327.PubMedGoogle Scholar
  118. Kotyk, A., 1963, Intracellular pH of baker’s yeast, Folia Microbiol. 8:27–30.Google Scholar
  119. Kotyk, A., 1967, Properties of the sugar carrier in baker’s yeast. II. Specificity of transport, Folia Microbiol. 12:121–131.Google Scholar
  120. Kotyk, A., and Höfer, M., 1965, Uphill transport of sugars in the yeast Rhodotorula gracilis, Biochim. Biophys. Acta 102:410–422.PubMedGoogle Scholar
  121. Kotyk, A., and Michaljanicovä, D., 1979, Uptake of trehalose by Saccharomyces cerevisiae, J. Gen. Microbiol. 110:323–332.PubMedGoogle Scholar
  122. Krätkÿ, Z., and Biely, P., 1980, Inducible ß-xyloside permease as a constituent of the xylandegrading enzyme system of the yeast Cryptococcus albidus, Eur. J. Biochem. 112:367–373.PubMedGoogle Scholar
  123. Krebs, H. A., 1972, The Pasteur effect and the relations between respiration and fermentation, Essays Biochem. 8:1–35.PubMedGoogle Scholar
  124. Krietsch, W. K. G., Pentchev, P. G., Klingenbürg, H., Hofstätter, T., and Bücher, T., 1970, The isolation and crystallization of yeast and rabbit liver triosephosphate isomerase and a comparative characterization with the rabbit muscle enzyme, Eur. J. Biochem. 14:289–300.PubMedGoogle Scholar
  125. Küenzi, M. T., and Fiechter, A., 1969, Changes in carbohydrate composition and trehalase-activity during the budding cycle of Saccharomyces cerevisiae, Arch. Mikrobiol. 64:396–407.PubMedGoogle Scholar
  126. Lagunas, R., 1979, Energetic irrelevance of aerobiosis for S. cerevisiae growing on sugars, Mol. Cell. Biochem. 27:139–146.PubMedGoogle Scholar
  127. Lagunas, R., 1981, Is Saccharomyces cerevisiae a typical facultative anaerobe?, Trends Biochem. Sci. 6:201–202.Google Scholar
  128. Lagunas, R., and Gancedo, J. M., 1973, Reduced pyridine nucleotide balance in glucose-growing S. cerevisiae, Eur. J. Biochem. 37:90–94.PubMedGoogle Scholar
  129. Lagunas, R., and Gancedo, C., 1983, Role of phosphate in the regulation of the Pasteur effect in Saccharomyces cerevisiae, Eur. J. Biochem. 137:479–483.PubMedGoogle Scholar
  130. Lam, K. B., and Marmur, J., 1977, Isolation and characterization of Saccharomyces cerevisiae glycolytic pathway mutants, J. Bacteriol. 130:746–749.PubMedGoogle Scholar
  131. Lancashire, M., Payton, A., Webber, M. J., and Hartley, B. S., 1981, Petite-negative mutants of Saccharomyces cerevisiae, Mol. Gen. Genet. 181:409–410.PubMedGoogle Scholar
  132. Laurent, M., Chaffotte, A. F., Tenu, J. P., Roucous, C., and Seydoux, F. J., 1978, Binding of nucleotides AMP and ATP to yeast phosphofructokinase: Evidence for distinct catalytic and regulatory subunits, Biochem. Biophys. Res. Commun. 80:646–652.PubMedGoogle Scholar
  133. Laurent, M., Seydoux, F. J., and Dessen, P., 1979, Allosteric regulation of yeast phosphofructokinase: Correlation between equilibrium binding, spectroscopic and kinetic data, J. Biol. Chem. 254:7515–7520.PubMedGoogle Scholar
  134. Lederer, B., Vissers, S., Van Schaftingen, E., and Hers, H. G., 1981, Fructose-2,6-bisphosphate in yeast, Biochem. Biophys. Res. Commun. 103:1281–1287.PubMedGoogle Scholar
  135. Lenz, A. G., and Holzer, H., 1980, Rapid reversible inactivation of fructose-1,6-bisphosphatase in yeast, FEBS Lett. 109:271–274.PubMedGoogle Scholar
  136. Lerch, K., and Fischer, E. H., 1975, Amino acid sequence of two functional sites in yeast glycogen phosphorylase, Biochemistry 14:2009–2014.PubMedGoogle Scholar
  137. Light, P. A., Ragan, C. I., Clegg, R. A., and Garland, P. B., 1968, Iron-limited growth of Torulopsis utilis and the reversible loss of mitochondrial energy conservation at site 1 and of sensitivity to rotenone and piericidin A, FEBS Lett. 1:4–8.PubMedGoogle Scholar
  138. Lillie, S. H., and Pringle, J. R.,A980, Reserve carbohydrate metabolism in Saccharomyces cerevisiae: Responses to nutrient limitation, J. Bacteriol. 143:1384–1394.Google Scholar
  139. Llorente, N., and Nunez de Castro, I., 1977, Physiological role of yeast NAD(P)± and NADP+-linked aldehyde dehydrogenases, Rev. Esp. Fisiol. 33:135–142.PubMedGoogle Scholar
  140. Lobo, Z., and Maitra, P. K., 1977, Physiological role of glucose-phosphorylating enzymes in Saccharomyces cerevisiae, Arch. Biochem. Biophys. 182:639–645.PubMedGoogle Scholar
  141. Lobo, Z., and Maitra, P. K., 1982a, A particulate phosphofructokinase from yeast, FEBS Lett. 137:279–282.Google Scholar
  142. Lobo, Z., and Maitra, P. K., 1982b, Genetic evidence for distinct catalytic and regulatory subunits in yeast phosphofructokinase, FEBS Lett. 139:93–96.Google Scholar
  143. Lobo, Z., and Maitra, P. K., 1982c, Pentose phosphate pathway mutants of yeast, Mol. Gen. Genet. 185:367–368.Google Scholar
  144. Lowry, C. W., Weiss, J. L., Wathall, D. A., and Zitomer, R. S., 1983, Modulator sequences mediate oxygen regulation of CYCI and a neighboring gene in yeast, Proc. Natl. Acad. Sci. USA 80:151–155.PubMedGoogle Scholar
  145. Lutstorf, U., and Megnet, R., 1968, Multiple forms of alcohol dehydrogenase in Saccharomyces cerevisiae, Arch. Biochem. Biophys. 126:933–944.PubMedGoogle Scholar
  146. Machado, A., Nunez de Castro, I., and Mayor, F., 1975, Isocitrate dehydrogenases and oxoglutarate dehydrogenase activities of baker’s yeast grown in a variety of hypoxic conditions, Mol. Cell. Biochem. 6:93–100.PubMedGoogle Scholar
  147. Magasanik, B., 1961, Catabolite repression, Cold Spring Harbor Symp. Quant. Biol. 26:249–262.PubMedGoogle Scholar
  148. Mahler, H. R., Jaynes, P. K., McDonough, J. P., and Hanson, D. K., 1981, Catabolite repression in yeast: Mediation by cAMP, Curr. Top. Cell. Regul. 8:455–474.Google Scholar
  149. Maitra, P. K., 1970, A glucokinase from Saccharomyces cerevisiae, J. Biol. Chem. 245:2423–2431.PubMedGoogle Scholar
  150. Maitra, P. K., 1971, Glucose and fructose metabolism in a phosphoglucose-isomeraseless mutant of Saccharomyces cerevisiae, J. Bacteriol. 107:759–769.PubMedGoogle Scholar
  151. Maitra, P. K., and Lobo, Z., 1971, A kinetic study of glycolytic enzyme synthesis in yeast, J. Biol. Chem. 246:475–488.PubMedGoogle Scholar
  152. Maitra, P. K., and Lobo, Z., 1977a, Yeasts pyruvate kinase: A mutant form catalytically insensitive to fructose 1,6 bisphosphate, Eur. J. Biochem, 78 353–360.Google Scholar
  153. Maitra, P. K., and Lobo, Z., 1977b, Genetic studies with a phosphoglucose isomerase mutant of Saccharomyces cerevisiae, Mol. Gen. Genet. 156:55–60.Google Scholar
  154. Maitra, P. K., and Lobo, Z., I977c, Pyruvate kinase mutants of Saccharomyces cerevisiae: Biochemical and genetic characterization, Mol. Gen. Genet. 152:193–200.Google Scholar
  155. Matsumoto, K., Uno, I., Toh-E, A., Ishikawa, T., and Oshima, Y., 1982, Cyclic AMP may not be involved in catabolite repression in Saccharomyces cerevisiae: Evidence from mutants capable of utilizing it as an adenine source, J. Bacteriol. 150:277–285.PubMedGoogle Scholar
  156. Matsumoto, K., Yoshimatsu, T., and Oshima, Y., 1983, Recessive mutations conferring resistance to carbon catabolite repression of galactokinase synthesis in Saccharomyces cerevisiae, J. Bacteriol. 153:1405–1414.PubMedGoogle Scholar
  157. Magill, M. J., Gancedo, J. M., and Gancedo, C., 1974a, Glucose metabolism in Rhodotorula glutinis, in: Proceedings of the Fourth International Symposium on Yeasts (H. Klaushofer and U. B. Sleytr, eds.), Part I, p. 31, Hochschülerschaft an der Hochschule für Bodenkultur, Wien.Google Scholar
  158. Mazôn, M. J., Gancedo, J. M., and Gancedo, C., 1974b, Identification of an unusual phosphofructokinase in the red yeast Rhodotorula glutinis, Biochem. Biophys. Res. Commun. 61:1304–1309.Google Scholar
  159. Mazôn, M. J., Gancedo, J. M., and Gancedo, C., 1975, Hexose kinases from Rhodotorula glutinis, Arch. Biochem. Biophys. 167:452–457.PubMedGoogle Scholar
  160. Mazôn, M. J., Gancedo, J. M., and Gancedo, C., 1981, Inactivation and turnover of fructose-1,6-bisphosphatase from Saccharomyces cerevisiae, in: Metabolic Interconversion of Enzymes 1980 (H. Holzer, ed.), pp. 168–173, Springer-Verlag, Berlin.Google Scholar
  161. Mazn, M. J., Gancedo, J. M., and Gancedo, C., 1982a, Inactivation of yeast fructose-1,6- bisphosphatase: In vivo phosphorylation of the enzyme, J. Biol. Chem. 257:1128–1130.Google Scholar
  162. Mazn, M. J., Gancedo, J. M., and Gancedo, C., 1982b, Phosphorylation and inactivation of yeast fructose bisphosphatase in vivo by glucose and by protein ionophores: A possible role for cAMP, Eur. J. Biochem. 127:605–608.Google Scholar
  163. Megnet, R., 1965, Alkoholdehydrogenasemutanten von Schizosaccharomyces pombe, Pathol. Microbial. 28:50–57.Google Scholar
  164. Megnet, R., 1967, Mutants partially deficient in alcohol dehydrogenase in Schizosaccharomyces pombe, Arch. Biochem. Biophys. 121:194–201.PubMedGoogle Scholar
  165. Melling, J., 1977, Regulation of enzyme synthesis in continuous culture, in: Topics in Enzyme and Fermentation Biotechnology (A. Wiseman, ed.), pp. 10–42, Horwood, Chichester.Google Scholar
  166. Michels, C. A., and Romanowski, A., 1980, Pleiotropic glucose repression-resistant mutation in Saccharomyces carlsbergensis, J. Bacteriol. 143:674–679.Google Scholar
  167. Mitchell, P., and Moyle, J., 1969, Estimation of membrane potential and pH difference across the cristae membrane of rat liver mitochondria, Eur. J. Biochem. 7:471–484.PubMedGoogle Scholar
  168. Müller, D., and Holzer, H., 1981, Regulation of fructose-1,6-bisphosphatase in yeast by phosphorylation/dephosphorylation, Biochem. Biophys. Res. Commun. 103:926–933.PubMedGoogle Scholar
  169. Müller, M., Müller, H., and Holzer, H., 1981, Immunochemical studies on catabolite inactivation of phosphoenolpyruvate carboxykinase in Saccharomyces cerevisiae, J. Biol. Chem. 256:723–727.Google Scholar
  170. Nadkarni, M., Lobo, Z., and Maitra, P. K., 1982, Particulate phosphofructokinase of yeast: Physiological studies, FEBS Leu. 147:251–255.Google Scholar
  171. Navon, G., Shulman, R. G., Yamane, T., Eccleshall, T. R., Lam, K. B., Baronofsky, J. J., and Marmur, J., 1979, Phosphorus-31 nuclear magnetic resonance studies of wild-type and glycolytic pathway mutants of Saccharomyces cerevisiae, Biochemistry 18:4487–4499.Google Scholar
  172. Neeff, J., Hägele, E., Nauhaus, J., Heer, U., and Mecke, D., 1978, Evidence for catabolite degradation in the glucose dependent inactivation of yeast cytoplasmic malate dehydrogenase, Eur. J. Biochem. 87:489–495.PubMedGoogle Scholar
  173. Newsholme, E. A., Crabtree, B., Higgins, S. J., Thornton, S. D., and Start, C., 1972, The activities of fructose diphosphatase in flight muscles from the bumble-bee and the role of this enzyme in heat generation, Biochem. J. 128:84–97.Google Scholar
  174. Nickerson, W. J., and Carroll, W. R., 1945, On the metabolism of Zygosaccharomyces, Arch. Biochem. 7:257–271.Google Scholar
  175. Ohnishi, T., 1970, Induction of the site I phosphorylation in vivo in Saccharomyces carlsbergensis, Biochem. Biophys. Res. Commun. 41:344–352.Google Scholar
  176. Okada, H., and Halvorson, H. 0., 1964, Uptake of alpha-thioethyl D-glucopyranoside by Saccharomyces cerevisiae. I. The genetic control of facilitated diffusion and active transport, Biochim. Biophys. Acta 82:538–546.PubMedGoogle Scholar
  177. Okorokov, L. A., Lichko, L. P., and Kulaev, I. S., 1980, Vacuoles: Main compartments of potassium, magnesium and phosphate ions in Saccharomyces carlsbergensis cells, J. Bacteriol. 144:661–665.PubMedGoogle Scholar
  178. Operti, M. S., Oliveira, D. E., Freitas-Valle, A. B., Oestreicher, E. G., Mattoon, J. R., and Panek, A. D., 1982, Relationship between trehalose metabolism and maltose utilization in Saccharomyces cerevisiae: Evidence for alternative pathways of trehalose synthesis, Curr. Genet. 5:69–76.Google Scholar
  179. Ortiz, C. H., Maia, J. C. C., Tenan, M. N., Braz-Padrao, G. R., Mattoon, J. R., and Panek, A. D., 1983, Regulation of yeast trehalase by a monocyclic, cyclic AMP-dependent phosphorylationdephosphorylation cascade system, J. Bacteriol. 153:644–651.PubMedGoogle Scholar
  180. Oshima, Y., 1982, Regulatory circuits for gene expression: The metabolism of galactose and phosphate, in: The Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression (J. N. Strathem, E. W. Jones, and J. R. Broach, eds.), pp. 159–180, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  181. Oura, E., 1974, Effect of aeration intensity on the biochemical composition of baker’s yeast, Biotechnol. Bioeng. 16:1197–1225.PubMedGoogle Scholar
  182. Oura, E., 1977, Reaction products of yeast fermentations, Process Biochem. 12(3):19–22.Google Scholar
  183. Panek, A., 1962, Synthesis of trehalose by baker’s yeast (Saccharomyces cerevisiae), Arch. Biochem. Biophys. 98:349–355.PubMedGoogle Scholar
  184. Panek, A., and Mattoon, J. R., 1977, Regulation of energy metabolism in Saccharomyces cerevisiae: Relationships between catabolite repression, trehalose synthesis and mitochondrial development, Arch. Biochem. Biophys. 183:306–316.PubMedGoogle Scholar
  185. Pasteur, L., 1860, Mémoire sur la fermentation alcoholique, Ann. Chim. Phys. Ser. 358:323–426. Perea, J., and Gancedo, C., 1978, Glucose transport in a glucose-phosphate isomeraseless mutant of Saccharomyces cerevisiae, Curr. Microbiol. 1:209–211.Google Scholar
  186. Perlman, D., and Halvorson, H. A., 1981, Distinct repressible mRNAs for cytoplasmic and secreted yeast invertase are encoded by a single gene, Cell 25:525–536.PubMedGoogle Scholar
  187. Perlman, P. S., and Mahler, H. D., 1974, Derepression of mitochondria and their enzymes in yeast: Regulatory aspects, Arch. Biochem. Biophys. 162:248–271.PubMedGoogle Scholar
  188. Polakis, E. S., Bartley, W., and Meek, G. A., 1965, Changes in the activities of respiratory enzymes during aerobic growth of yeast on different carbon sources, Biochem. J. 97:298–302PubMedGoogle Scholar
  189. Pringle, J. R., 1975, Methods for avoiding proteolytic artifacts in studies of enzymes and other proteins from yeasts, Methods Cell Biol. 12:149–184.PubMedGoogle Scholar
  190. Racker, E., 1961, IUB Congress in Moskow, personal communication.Google Scholar
  191. Racker, E., 1974, History of the Pasteur effect and its pathobiology, Mol. Cell. Biochem. 5:17–23.PubMedGoogle Scholar
  192. Ramaiah, A., Hathaway, J. A., and Atkinson, D. E., 1964, Adenylate as a metabolic regulator: Effect on yeast phosphofructokinase kinetics, J. Biol. Chem. 239:3619–3622.PubMedGoogle Scholar
  193. Rigby, P. W. J., Burleigh, B. D., Jr., and Hartley, B. S., 1974, Gene duplication in experimental enzyme evolution, Nature 251:200–204.PubMedGoogle Scholar
  194. Rogers, P. J., and Stewart, P. R., 1974, Energetic efficiency and maintenance energy characteristics of Saccharomyces cerevisiae (wild type and petite) and Candida parapsilosis grown aerobically and microaerobically in continuous culture, Arch. Mikrobiol. 99:25–46.Google Scholar
  195. Romano, A. H., 1982, Facilitated diffusion of 6-deoxy-o-glucose in baker’s yeast: Evidence against phosphorylation-associated transport of glucose, J. Bacteriol. 152:1295–1297.PubMedGoogle Scholar
  196. Rothman-Denes, L. B., and Cabib, E., 1970, Two forms of yeast glycogen synthetase and their role in glycogen accumulation, Proc. Natl. Acad. Sci. USA 66:967–974.PubMedGoogle Scholar
  197. Rothman-Denes, L. B., and Cabib, E., 1971, Glucose-6-phosphate dependent and independent forms of yeast glycogen synthetase: Their properties and interconversions, Biochemistry 10:1236–1242.PubMedGoogle Scholar
  198. Rothstein, A., 1954, Enzyme systems of the cell surface involved in the uptake of sugars by yeast, Symp. Soc. Exp. Biol. 8:165–201.Google Scholar
  199. Ruiz-Amil, M., de Torrontegui, G., Palaciân, E., Catalina, L., and Losada, M., 1965, Properties and function of yeast pyruvate carboxylase, J. Biol. Chem. 240:3485–3492.PubMedGoogle Scholar
  200. Ruiz-Amil, M., Fernandez, M. J., Medrano, L., and Losada, M., 1966, Cellular distribution of yeast pyruvate decarboxylase and its induction by glucose, Arch. Mikrobiol. 55:46–53.PubMedGoogle Scholar
  201. Saez, M. J., and Lagunas, R., 1976, Determination of intermediary metabolites in yeast: A critical examination of the effect of sampling conditions and recommendations for obtaining true levels, Mol. Cell. Biochem. 13:73–78.PubMedGoogle Scholar
  202. Salhany, J. M., Yamane, T., Shulman, R. G., and Ogawa, S., 1975, High resolution 31p nuclear magnetic resonance studies of intact yeast cells, Proc. Natl. Acad. Sci. USA 72:4966–4970.PubMedGoogle Scholar
  203. Santa Maria, J., 1964, Utilizaci6n de sacarosa y maltosa por levaduras, Bol. Inst. Nac. Invest. Agron. (Spain) 50:1–64.Google Scholar
  204. Scheffers, W. A., 1961, On the inhibition of alcoholic fermentation in Brettanomyces yeasts under anaerobic conditions, Experientia 17:10–42.Google Scholar
  205. Schell, M. A., and Wilson, D. B., 1977, Purification and properties of galactose kinase from Saccharomyces cerevisiae, J. Biol. Chem. 252:1162–1166.Google Scholar
  206. Schimpfessel, L., 1968, Présence et régulation de la synthèse de deux alcool deshydrogènases chez la levure Saccharomyces cerevisiae, Biochim. Biophys. Acta 151:317–329.PubMedGoogle Scholar
  207. Schlanderer, G., and Dellweg, H., 1974, Cyclic AMP and catabolite repression in yeast, Eur. J. Biochem. 49:305–316.PubMedGoogle Scholar
  208. Schlenk, F., and Zyder-Cwick, C. R., 1970, Enzymatic activity of yeast cell ghosts produced by protein action on the membranes, Arch. Biochem. Biophys. 138:220–225.PubMedGoogle Scholar
  209. Schmitt, H. D., and Zimmermann, F. K., 1982, Genetic analysis of the pyruvate decarboxylase reaction in yeast glycolysis, J. Bacteriol. 151:1146–1152.PubMedGoogle Scholar
  210. Segawa, T., and Fukasawa, T., 1979, The enzymes of the galactose cluster in Saccharomyces cerevisiae: Purification and characterization of galactose-1 phosphate uridylyltransferase, J. Biol. Chem. 254:10707–10709.PubMedGoogle Scholar
  211. Serrano, R., and De la Fuente, G., 1974, Regulatory properties of the constitutive hexose transport in Saccharomyces cerevisiae, Mol. Cell. Biochem. 3:161–171.Google Scholar
  212. Serrano, R., Gancedo, J. M., and Gancedo, C., 1973, Assay of yeast enzymes in situ, Eur. J. Biochem. 34:479–482.PubMedGoogle Scholar
  213. Shabalin, Y. A., Vagabov, V. I., Tsiomenko, A. B., Zemlyanukhina, O. A., and Kulaev, I. S., 1977, Polyphosphate kinase activity in vacuoles of yeasts, Biokhimiya 42:1642–1645.Google Scholar
  214. Singh, B. R., and Datta, A., 1978, Glucose repression of the inducible catabolic pathway for N-acetylglucosamine in yeast, Biochem. Biophys. Res. Commun. 84:58–64.PubMedGoogle Scholar
  215. Sinha, P., and Maitra, P. K., 1977, Mutants of Saccharomyces cerevisiae having structurally altered pyruvate kinase, Mol. Gen. Genet. 158:171–177.Google Scholar
  216. Slavik, J., 1983, Intracellular pH topography: Determination by a fluorescent probe, FEBS Lett. 156:227–230.PubMedGoogle Scholar
  217. Sols, A., 1967, Regulation of carbohydrate transport and metabolism in yeast, in: Aspects of Yeast Metabolism (A. K. Mills and H. A. Krebs, eds.), pp. 47–66, Blackwell, Oxford.Google Scholar
  218. Sols, A., 1976, The Pasteur effect in the allosteric era, in Reflections on Biochemistry (A. Kornberg, B. L. Horecker, L. Cornudella, and J. Oro, eds.), pp. 199–206, Pergamon Press, Elmsford, N.Y.Google Scholar
  219. Sols, A., and Marco, R., 1970, Concentrations of metabolites and binding sites: Implications in metabolic regulation, Curr. Top. Cell. Regul. 2:227–273.Google Scholar
  220. Sols, A., and Salas, M. L., 1966, Phosphofructokinase. III. Yeast, Methods Enzymol. 9:436–442.Google Scholar
  221. Sols, A., Gancedo, C., and De la Fuente, G., 1971, Energy-yielding metabolism in yeast, in: The Yeasts (A. H. Rose and J. S. Harrison, eds.), Vol. 2, pp. 271–307, Academic Press, New York.Google Scholar
  222. Souza, N. O., and Panek, A. D., 1968, Location of trehalase and trehalose in yeast cells, Arch. Biochem. Biophys. 125:22–28.PubMedGoogle Scholar
  223. Spiegelman, S., and Reiner, J. M., 1947, The formation and stabilization of an adaptive enzyme in the absence of its substrate, J. Gen. Physiol. 31:175–193.PubMedGoogle Scholar
  224. Sprague, G. F., Jr., 1977, Isolation and characterization of a Saccharomyces cerevisiae mutant deficient in pyruvate kinase activity, J. Bacteriol. 130:232–241.PubMedGoogle Scholar
  225. Stein, R. B., and Blum, J. J., 1978, On the analysis of futile cycles in metabolism, J. Theor. Biol. 72:487–522.PubMedGoogle Scholar
  226. Steinman, C. R., and Jakoby, W. B., 1968, Yeast aldehyde dehydrogenase, J. Biol. Chem. 243:730–734.PubMedGoogle Scholar
  227. Thevelein, J. M., den Hollander, J. A., and Shulman, R. G., 1982, Changes in the activity and properties of trehalase during early germination of yeast ascospores: Correlation with trehalose breakdown as studied by in vivo 13C NMR, Proc. Natl. Acad. Sci. USA 79:3503–3507.PubMedGoogle Scholar
  228. Tijane, M. N., Chaffotte, A. F., Seydoux, F. J., Roucous, C., and Laurent, M., 1980, Sulfhydryl groups of yeast phosphofructokinase-specific localization on 13 subunits of fructose-6-phosphate binding sites as demonstrated by a differential chemical labeling study, J. Biol. Chem. 255:10188–10193.PubMedGoogle Scholar
  229. Toda, K., 1976, Invertase biosynthesis by Saccharomyces carlsbergensis in batch and continuous cultures, Biotechnol. Bioeng. 18:1103–1115.PubMedGoogle Scholar
  230. Toda, K., Yabe, I., and Yamagata, T., 1982, Invertase and phosphatase of yeast in a phosphate-limited continuous culture, Eur. J. Appl. Microbiol. Biotechnol. 16:17–22.Google Scholar
  231. Ullrich, J., and Wais, U., 1975, Pyruvate dehydrogenase complex from brewer’s yeast: Regulation by the carbon sources, Biochem. Soc. Trans. 3:920–924.Google Scholar
  232. Van de Poll, K. W., Kerkenaar, A., and Schamhart, D. H. J., 1974, Isolation of a regulatory mutant of fructose-l,6-diphosphatase in Saccharomyces carlsbergensis, J. Bacteriol. 117:965–970.Google Scholar
  233. Van der Plaat, J. B., 1974, Cyclic 3’,5’-adenosine monophosphate stimulates trehalose degradation in baker’s yeast, Biochem. Biophys. Res. Commun. 56:580–587.PubMedGoogle Scholar
  234. Van Solingen, P., and Van der Plaat, J. B., 1975, Partial purification of the protein system controlling the breakdown of trehalose in baker’s yeast, Biochem. Biophys. Res. Commun. 62:553–560.PubMedGoogle Scholar
  235. Van Steveninck, J., 1968, Competition of sugars for the hexose transport system in yeast, Biochim. Biophys. Acta. 150:424–434.PubMedGoogle Scholar
  236. Van Wijk, R., and Konijn, T. M., 1971, Cyclic 3’,5’-AMP in Saccharomyces carlsbergensis under various conditions of catabolite repression, FEBS Lett. 13:184–186.PubMedGoogle Scholar
  237. Vinuela, E., Salas, M. L., and Sols, A., 1963, End-product inhibition of yeast phosphofructokinase by ATP, Biochem. Biophys. Res. Commun. 12:140–145.PubMedGoogle Scholar
  238. Wales; D. S., Cartledge, T. G., and Lloyd, D., 1980, Effects of glucose repression and anaerobiosis on the activities and subcellular distribution of tricarboxylic acid cycle and associated enzymes in Saccharomyces carlsbergensis, J. Gen. Microbiol. 116:93–98.Google Scholar
  239. Walsh, R. B., Kawasaki, G., and Fraenkel, D. G., 1983, Cloning of genes that complement yeast hexokinase and glucokinase mutants, J. Bacteriol. 154:1002–1004.PubMedGoogle Scholar
  240. Warburg, 0., 1926, Uber die Wirkung von Blausäureäthylester (Athylcarbylamin) auf die Pasteursche Reaktion, Biochem. Z. 172:432–441.Google Scholar
  241. Weitzman, P. J. D., and Hewson, J. K., 1973, In situ regulation of yeast citrate synthase: Absence of ATP inhibition observed in vitro, FEBS Lett. 36:227–231.Google Scholar
  242. Wiemken, A., and Dun, M., 1974, Characterization of amino acid pools in the vacuolar compartment of S. cerevisiae, Arch. Microbiol. 101:45–57.Google Scholar
  243. Wiemken, A., and Schellenberg, M., 1982, Does a cyclic AMP-dependent phosphorylation initiate the transfer of trehalase from the cytosol into the vacuoles of Saccharomyces cerevisiae?, FEBS Lett. 150:329–331.Google Scholar
  244. Williamson, V. M., Bennetzen, J., Young, E. T., Nasmyth, K., and Hall, B. D., 1980, Isolation of the structural gene for alcohol dehydrogenase by genetic complementation in yeast, Nature 283:214–216.PubMedGoogle Scholar
  245. Wills, C., 1976, Production of yeast alcohol dehydrogenase isoenzymes by selection, Nature 261:26–29.PubMedGoogle Scholar
  246. Wills, C., and Phelps, J., 1975, A technique for the isolation of yeast alcohol dehydrogenase mutants with altered substrate specificity, Arch. Biochem. Biophys. 167:627–637.PubMedGoogle Scholar
  247. Wolf, D. H., and Ehmann, C., 1979, Studies on a proteinase B mutant of yeast, Eur. J. Biochem. 98:375–384.PubMedGoogle Scholar
  248. Zimmermann, F. K., 1982, Function of genetic material: Gene structure, gene function, and genetic regulation of metabolism in bacteria and fungi, in: Fortschritte der Botanik (H. Ellenberg, K. Esser, K. Kubitzki, E. Schnepf, and H. Ziegler, eds.), Vol. 44, pp. 267–285, Springer-Verlag, Berlin.Google Scholar
  249. Zimmermann, F. K., and Scheel, I., 1977, Mutants of Saccharomyces cerevisiae resistant to carbon catabolite repression, Mol. Gen. Genet. 154:75–82.PubMedGoogle Scholar
  250. Zitomer, R. S., Montgomery, D. L., Nichols, D. L., and Hall, B. D., 1979, Transcriptional regulation of the yeast cytochrome c gene, Proc. Natl. Acad. Sci. USA 76:3627–3631.PubMedGoogle Scholar
  251. Zubenko, G. S., and Jones, E. W., 1979, Catabolite inactivation of gluconeogenic enzymes in mutants of yeast deficient in proteinase B, Proc. Natl. Acad. Sci. USA 76:4581–4585.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Juana M. Gancedo
    • 1
  1. 1.Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones CientíficasFacultad de Medicina de la Universidad AutónomaMadridSpain

Personalised recommendations