Skip to main content

Abstract

The unraveling of the pathways of carbohydrate metabolism has its origins in the early observations of Buchner on fermentation of sugar by a yeast extract and on the pioneering investigations of Harden and Young (for a review see Fruton, 1972). Through the years, yeasts have remained one of the favorite organisms for studying carbohydrate metabolism and its regulation. In fact, yeasts present a number of features that make them most convenient to study. They are unicellular organisms, easily handled, usually nonpathogenic, able to grow on a variety of carbon sources, and yielding the large amounts of homogeneous material that are often required for enzymological studies. In addition, yeasts are well amenable to classical genetic techniques and can also be used in the genetic engineering field. Finally, yeasts are eukaryotic cells and as such should be useful for studying biological problems that are peculiar to eukaryotic organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achstetter, T., Ehmann, C., and Wolf, D. H., 1981, New proteolytic enzymes in yeast, Arch. Biochem. Biophys. 207:445–454.

    PubMed  CAS  Google Scholar 

  • Atzpodien, W., Gancedo, J. M., Duntze, W., and Holzer, H., 1968, Isoenzymes of malate dehydrogenase in Saccharomyces cerevisiae,Eur. J. Biochem. 7:58–62.

    PubMed  CAS  Google Scholar 

  • Azam, F., and Kotyk, A., 1969, Glucose-6-phosphate as regulator of monosaccharide transport in baker’s yeast, FEBS Leu. 2:333–335.

    CAS  Google Scholar 

  • Banuelos, M., and Fraenkel, D. G., 1982, Saccharomyces carlsbergensis fdp mutant and futile cycling of fructose-6-phosphate, Mol. Cell. Biol. 2:921–929.

    CAS  Google Scholar 

  • Banuelos, M., and Gancedo, C., 1978, In situ study of the glycolytic pathway in Saccharomyces cerevisiae,Arch. Microbiol. 117:197–201.

    PubMed  CAS  Google Scholar 

  • Banuelos, M., Gancedo, C., and Gancedo, J. M., 1977, Activation by phosphate of yeast phosphofructokinase, J. Biol. Chem. 252:6394–6398.

    PubMed  CAS  Google Scholar 

  • Barford, J. P., and Hall, R. J., 1979, An examination of the Crabtree effect in Saccharomyces cerevisiae: The role of respiratory adaptation, J. Gen. Microbiol. 114:267–275.

    CAS  Google Scholar 

  • Barnard, E. A., 1975, Hexokinases from yeast, Methods Enzymol. 42:6–20.

    PubMed  CAS  Google Scholar 

  • Barnett, J. A., 1976, The utilization of sugars by yeasts, Adv. Carbohydr. Chem. Biochem. 32:125–234.

    PubMed  CAS  Google Scholar 

  • Barnett, J. A., 1981, The utilization of disaccharides and some other sugars by yeasts, Adv. Carbohydr. Chem. Biochem. 39:347–404.

    CAS  Google Scholar 

  • Bartrons, R., Van Schaftingen, E., Vissers, S., and Hers, H. G., 1982, The stimulation of yeast phosphofructokinase by fructose-2, 6-bisphosphate, FEBS Leu. 143:137–140.

    CAS  Google Scholar 

  • Bechet, J., and Wiame, J. M., 1965, Indication of a specific regulatory binding protein for ornithinetranscarbamylase in Saccharomyces cerevisiae, Biochem. Biophys. Res. Commun. 21:226–234.

    PubMed  CAS  Google Scholar 

  • Beier, D. R., and Young, E. T., 1982, Characterization of a regulatory region upstream of the ADR2 locus of S. cerevisiae, Nature 300:724–728.

    PubMed  CAS  Google Scholar 

  • Bergmeyer, H. A. (ed.), 1974, Methods of Enzymatic Analysis,Verlag Chemie, Weinheim/ Academic Press, New York.

    Google Scholar 

  • Bisson, L. F., and Fraenkel, D. G., 1983, Involvement of kinases in glucose and fructose uptake by Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA 80:1730–1734.

    PubMed  CAS  Google Scholar 

  • Boiteux, A., and Hess, B., 1970, Allosteric properties of yeast pyruvate decarboxylase, FEBS Lett. 9:293–296.

    PubMed  CAS  Google Scholar 

  • Borst-Pauwels, G. W. F. H., and Dobbelmann, J., 1972, Determination of the yeast cell pH, Acta Bot. Neerl. 21:149–154.

    CAS  Google Scholar 

  • Botsford, J. L., 1981, Cyclic nucleotides in procaryotes, Microbiol. Rev. 45:620–632.

    PubMed  CAS  Google Scholar 

  • Breitenbach-Schmitt, I., 1981, Genetische und physiologische Hinweise auf die Existenz eines zweiten Stoffwechselwegs neben der “klassischen” Phosphofructokinasereaktion beim Abbau von Glucose in Saccharomyces cerevisiae, Doctoral thesis, Technische Hochschule Darmstadt.

    Google Scholar 

  • Burke, R. L., Tekamp-Olson, P., and Najarian, R., 1983, The isolation, characterization and sequence of the pyruvate kinase gene of Saccharomyces cerevisiae, J. Biol. Chem. 258:2193–2201.

    PubMed  CAS  Google Scholar 

  • Carrascosa, J. M., Viguera, M. D., Nunez de Castro, I., and Scheffers, W. A., 1981, Metabolism of acetaldehyde and Custers effect in the yeast Brettanomyces abstinens, Antonie van Leeuwenhoek 47:209–215.

    PubMed  CAS  Google Scholar 

  • Chapman, C., and Bartley, W., 1968, The kinetics of enzyme changes in yeast under conditions that cause the loss of mitochondria, Biochem. J. 107:455–465.

    PubMed  CAS  Google Scholar 

  • Chester, V. E., 1963, The dissimilation of the carbohydrate reserves of a strain of Saccharomyces cerevisiae, Biochem. J. 86:153–160.

    PubMed  CAS  Google Scholar 

  • Chester, V. E., 1968, Heritable glycogen-storage deficiency in yeast and its induction by ultraviolet light, J. Gen. Microbiol. 51:49–56.

    PubMed  CAS  Google Scholar 

  • Chin, C. C. Q., Brewer, J. M., and Wold, F., 1981, The aminoacid sequence of yeast enolase, J. Biol. Chem. 256:1377–1384.

    PubMed  CAS  Google Scholar 

  • Ciriacy, M., 1975, Genetics of alcohol dehydrogenase in Saccharomyces cerevisiae, Mutat. Res. 29:315–326.

    CAS  Google Scholar 

  • Ciriacy, M., 1977, Isolation and characterization of yeast mutants defective in intermediary carbon metabolism and in carbon catabolite derepression. Mol. Gen. Genet. 154:213–220.

    PubMed  CAS  Google Scholar 

  • Ciriacy, M., 1979, Isolation and characterization of further cis-and trans-acting regulatory elements involved in the synthesis of glucose-repressible alcohol dehydrogenase (ADHII) in Saccharomyces cerevisiae, Mol. Gen. Genet. 176:427–431.

    PubMed  CAS  Google Scholar 

  • Ciriacy, M., and Breitenbach, I., 1979, Physiological effects of seven different blocks in glycolysis in Saccharomyces cerevisiae, J. Bacteriol. 139:152–160.

    PubMed  CAS  Google Scholar 

  • Cirillo, V. P., 1961, Sugar transport in microorganisms, Annu. Rev. Microbiol. 15:197–218.

    CAS  Google Scholar 

  • Cirillo, V. P., 1968a, Relationship between sugar structure and competition for the sugar transport system in baker’s yeast, J. Bacteriol. 95:603–611.

    CAS  Google Scholar 

  • Cirillo, V. P., 1968b, Galactose transport in Saccharomyces cerevisiae, J. Bacteriol. 95:1727–1731.

    CAS  Google Scholar 

  • Clifton, D., and Fraenkel, D. G., 1981, The gcr (glycolysis regulation) mutation of Saccharomyces cerevisiae, J. Biol. Chem. 256:13074–13078.

    PubMed  CAS  Google Scholar 

  • Clifton, D., and Fraenkel, D. G., 1982, Mutant studies of yeast phosphofructokinase, Biochemistry 21:1935–1942.

    PubMed  CAS  Google Scholar 

  • Clifton, D., Weinstock, S. B., and Fraenkel, D. G., 1978, Glycolysis mutants in Saccharomyces cerevisiae, Genetics 88: 1–11.

    PubMed  CAS  Google Scholar 

  • Colonna, W. J., and Magee, P. T., 1978, Glycogenolytic enzymes in sporulating yeast, J. Bacteriol. 134:844–853.

    PubMed  CAS  Google Scholar 

  • Custers, M. T. J., 1940, Onderzoekingen over het Gistgeslacht Brettanomyces, Ph.D. thesis, De Technische Hoogeschool, Delft.

    Google Scholar 

  • De Deken, R. H., 1966, The Crabtree effect: A regulatory system in yeast, J. Gen. Microbiol. 44:149–156.

    Google Scholar 

  • De la Fuente, G., and Sols, A., 1962, Transport of sugars in yeasts, Biochim. Biophys. Acta 56:4962.

    Google Scholar 

  • den Hollander, J. A., Brown, T. R., Ugurbil, K., and Shulman, R. G., 1979, 13C nuclear magnetic resonance studies of anaerobic glycolysis in suspension of yeast cells, Proc. Natl. Acad. Sci. USA 76:6096–6100.

    Google Scholar 

  • den Hollander, J. A., Ugurbil, K., Brown, T. R., and Shulman, R. G., 1981, Phosphorus-31 nuclear magnetic resonance studies of the effect of oxygen upon glycolysis in yeast, Biochemistry 20:5871–5880.

    Google Scholar 

  • Denis, C., Young, E. T., and Ciriacy, M., 1981, A positive regulatory gene is required for accumulation of the functional messenger RNA for the glucose-repressible alcohol dehydrogenase from Saccharomyces cerevisiae, J. Mol. Biol. 148:355–368.

    PubMed  CAS  Google Scholar 

  • De Torrôntegui, G., Palacian, E., and Losada, M., 1966, Phosphoenolpyruvate carboxykinase in gluconeogenesis and its repression by hexoses in yeast, Biochem. Biophys. Res. Commun. 22:227–231.

    PubMed  Google Scholar 

  • Dickens, F., 1951, Aerobic glycolysis, respiration, and the Pasteur effect, in: The Enzymes (J. B. Sumner and K. Myrback, eds.), Vol. 2, Part 1, pp. 624–683, Academic Press, New York.

    Google Scholar 

  • Dickson, R. C., and Markin, J. S., 1980, Physiological studies of ß-galactosidase induction in Kluyveromyces lactis, J. Bacteriol. 142:777–785.

    PubMed  CAS  Google Scholar 

  • Downie, J. A., and Garland, P. B., 1973, An antimycin A- and cyanide-resistant variant of Candida utilis arising during copper-limited growth, Biochem. J. 134:1051–1061.

    PubMed  CAS  Google Scholar 

  • Duntze, W., Atzpodien, W., and Holzer, H., 1967, Glucose dependent enzyme activities in different yeast species, Arch. Mikrobiol. 58:296–301.

    PubMed  CAS  Google Scholar 

  • Duntze, W., Neumann, D., Gancedo, J. M., Atzpodien, W., and Holzer, H., 1969, Studies on the regulation and localization of the glyoxylate cycle enzymes in Saccharomyces cerevisiae, Eur. J. Biochem. 10:83–89.

    PubMed  CAS  Google Scholar 

  • Duro, A. F., and Serrano, R., 1981, Inhibition of succinate production during yeast fermentation by deenergization of the plasma membrane, Curr. Microbiol. 6:111–113.

    CAS  Google Scholar 

  • Elorza, M. V., Villanueva, J. R., and Sentandreu, R., 1977, The mechanism of catabolite inhibition of invertase by glucose in Saccharomyces cerevisiae, Biochim. Biophys. Acta 475:103–112.

    PubMed  CAS  Google Scholar 

  • Entian, K. D., and Mecke, D., 1982, Genetic evidence for a role of hexokinase isozyme PII in carbon catabolite repression in Saccharomyces cerevisiae, J. Biol. Chem. 257:870–874.

    PubMed  CAS  Google Scholar 

  • Entian, K. D., Zimmermann, F. K., and Scheel, I., 1977, A partial defect in carbon catabolite repression in mutants of Saccharomyces cerevisiae with reduced hexose phosphorylation, Mol. Gen. Genet. 156:99–105.

    PubMed  CAS  Google Scholar 

  • Eraso, P., and Gancedo, J. M., 1984, Catabolite repression in yeasts is not associated with low levels of cAMP, Eur. J. Biochem. 141:195–198.

    PubMed  CAS  Google Scholar 

  • Federoff, H. J., Eccleshall, T. R., and Marmur, J., 1983, Regulation of maltase synthesis in Saccharomyces carlsbergensis, J. Bacteriol. 154:1301–1308.

    PubMed  CAS  Google Scholar 

  • Ferguson, J., Boll, M., and Holzer, H.,1967, Yeast malate dehydrogenase and enzyme inactivation in catabolite repression, Eur. J. Biochem. 1:21–25.

    PubMed  CAS  Google Scholar 

  • Fosset, M., Muir, L. W., Nielsen, L. D., and Fischer, E. H.,1971, Purification and properties of yeast glycogen phosphorylase a and b, Biochemistry 10:4105–4113.

    PubMed  CAS  Google Scholar 

  • Foy, J. J., and Bhattacharjee, J. K., 1978, Biosynthesis and regulation of fructose-1,6-bisphosphatase and phosphofructokinase in Saccharomyces cerevisiae grown in the presence of glucose and gluconeogenic carbon sources, J. Bacteriol. 136:647–656.

    PubMed  CAS  Google Scholar 

  • Fraenkel, D. G., 1982, Carbohydrate metabolism, in: The Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression (J. N. Strathern, E. W. Jones, and J. R. Broach, eds.), pp. 1–37, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Fraenkel, D. G., and Vinopal, R. T., 1973, Carbohydrate metabolism in bacteria, Annu. Rev. Microbiol. 27:69–100.

    CAS  Google Scholar 

  • Freitas-Valle, A. B., Menezes, R. R., Panek, A. D., and Mattoon, J. R., 1981, Relationship between succinate excretion and cytochrome levels in Saccharomyces cerevisiae, Cell. Mol. Biol. 27:467–471.

    CAS  Google Scholar 

  • Fröhlich, K. U., and Entian, K. D., 1982, Regulation of gluconeogenesis in the yeast Saccharomyces cerevisiae, FEBS Lett. 139:164–166.

    PubMed  Google Scholar 

  • Fruton, J. S., 1972, Molecules and Life, Wiley-Interscience, New York.

    Google Scholar 

  • Fukasawa, T., Obonai, K., Segawa, T., and Nogi, Y., 1980, The enzymes of the galactose cluster in Saccharomyces cerevisiae: Purification and characterization of uridine diphosphoglucose-4epimerase, J. Biol. Chem. 255:2705–2707.

    PubMed  CAS  Google Scholar 

  • Fulton, A. B., 1983, How crowded is the cytoplasm?, Cell 30:345–347.

    Google Scholar 

  • Funayama, S., Gancedo, J. M., and Gancedo, C., 1980, Turnover of yeast fructose-bisphosphatase in different metabolic conditions, Eur. J. Biochem. 109:61–66.

    PubMed  CAS  Google Scholar 

  • Gancedo, C., 1971, Inactivation of fructose-1,6-diphosphatase by glucose in yeast, J. Bacteriol. 107:401–405.

    PubMed  CAS  Google Scholar 

  • Gancedo, C., and Schwerzmann, K., 1976, Inactivation by glucose of phosphoenolpyruvate carboxykinase from Saccharomyces cerevisiae, Arch. Microbiol. 109:221–225.

    PubMed  CAS  Google Scholar 

  • Gancedo, C., and Serrano, R., in press, Energy yielding metabolism in yeast, in: The Yeasts (A. H. Rose and J. S. Harrison, eds.), Vol. III, Academic Press, New York.

    Google Scholar 

  • Gancedo, C., Salas, M. L., Giner, A., and Sols, A., 1965, Reciprocal effects of carbon sources on the levels of an AMP-sensitive fructose-1,6-diphosphate and phosphofructokinase in yeast, Biochem. Biophys. Res. Commun. 20:15–20.

    PubMed  CAS  Google Scholar 

  • Gancedo, C., Gancedo, J. M., and Sols, A., 1967, Metabolite repression of fructose-1,6-diphosphatase in yeast, Biochem. Biophys. Res. Commun. 26:528–531.

    PubMed  CAS  Google Scholar 

  • Gancedo, C., Gancedo, J. M., and Sols, A., 1968, Glycerol metabolism in yeasts: Pathways of utilization and production, Eur. J. Biochem. 5:165–172.

    Google Scholar 

  • Gancedo, J. M., and Gancedo, C., 1971, Fructose-1,6-diphosphatase, phosphofructokinase and glucose-6-phosphate dehydrogenase from fermenting and non-fermenting yeasts, Arch. Mikrobiol. 76:132–138.

    PubMed  CAS  Google Scholar 

  • Gancedo, J. M., and Gancedo, C., 1973, Concentrations of intermediary metabolites in yeast, Biochimie 55:205–211.

    PubMed  CAS  Google Scholar 

  • Gancedo, J. M., and Lagunas, R., 1973, Contribution of the pentose-phosphate pathway to glucose metabolism in Saccharomyces cerevisiae: A critical analysis on the use of labelled glucose, Plant Sci. Lett. 1:193–200.

    CAS  Google Scholar 

  • Gancedo, J. M., and Mazôn, M. J., 1978, Transport of gluconate in Rhodotorula glutinis: Inactivation by glucose of the uptake system, Arch. Biochem. Biophys. 185:466–472.

    PubMed  CAS  Google Scholar 

  • Gancedo, J. M., Gancedo, C., and Sols, A., 1967, Regulation of the concentration or activity of pyruvate kinase in yeasts and its relationship to gluconeogenesis, Biochem. J. 102:23C–25C.

    PubMed  CAS  Google Scholar 

  • Gancedo, J. M., Clifton, D., and Fraenkel, D. G., 1977, Yeast hexokinase mutants, J. Biol. Chem. 252:4443–4444.

    PubMed  CAS  Google Scholar 

  • Gancedo, J. M., Mazôn, M. J., and Gancedo, C., 1982, Kinetic differences between two interconvertible forms of fructose-1,6-bisphosphatase from Saccharomyces cerevisiae, Arch. Biochem. Biophys. 218:478–482.

    PubMed  CAS  Google Scholar 

  • Gancedo, J. M., Mazôn, M. J., and Gancedo, C., 1983, Fructose 2,6-bisphosphate activates the cAMP-dependent phosphorylation of yeast fructose-1,6-bisphosphatase in vitro, J. Biol. Chem. 258:5998–5999.

    PubMed  CAS  Google Scholar 

  • Glaser, L., and Brown, D. H., 1955, Purification and properties of D-glucose-6-phosphate dehydrogenase, J. Biol. Chem. 216:67–79.

    PubMed  CAS  Google Scholar 

  • Grossmann, M. K., and Zimmermann, F. K., 1979, The structural genes of internal invertases in Saccharomyces cerevisiae, Mol. Gen. Genet. 175:223–229.

    PubMed  CAS  Google Scholar 

  • Guarente, L., Yocum, R. R., and Gifford, P., 1982, A GAL-CYCI hybrid yeast promoter identifies the GAL 4 regulatory region as an upstream site, Proc. Natl. Acad. Sci. USA 79:7410–7414.

    PubMed  CAS  Google Scholar 

  • Gunja-Smith, Z., Patil, N. B., and Smith, E. E., 1977, Two pools of glycogen in Saccharomyces, J. Bacteriol. 130:818–825.

    PubMed  CAS  Google Scholar 

  • Haarasilta, S., and Oura, E., 1975, On the activity and regulation of anaplerotic and gluconeogenic enzymes during the growth process of baker’s yeast, Eur. J. Biochem. 52:1–7.

    PubMed  CAS  Google Scholar 

  • Haarasilta, S., and Taskinen, L., 1977, Location of three key enzymes of gluconeogenesis in baker’s yeast, Arch. Microbiol. 113:159–161.

    PubMed  CAS  Google Scholar 

  • Hackel, R. A., 1975, Genetic control of invertase formation. I. Isolation and characterization of mutants affecting sucrose utilization, Mol. Gen. Genet. 140:361–370.

    PubMed  CAS  Google Scholar 

  • Harris, C. E., Kobes, R. D., Teller, D. C., and Rutter, W. J., 1969, The molecular characteristics of yeast aldolase, Biochemistry 8:2442–2454.

    PubMed  CAS  Google Scholar 

  • Heerde, E., and Radler, F., 1978, Metabolism of the anaerobic formation of succinic acid by Saccharomyces cerevisiae, Arch. Microbiol. 117:269–276.

    CAS  Google Scholar 

  • Herbert, D., Elsworth, R., and Telling, R. C., 1956, The continuous culture of bacteria: A theoretical and experimental study, J. Gen. Microbiol. 14:601–622.

    PubMed  CAS  Google Scholar 

  • Heredia, C. F., Sols, A., and De la Fuente, G., 1968, Specificity of the constitutive transport in yeast, Eur. J. Biochem. 5:321–329.

    PubMed  CAS  Google Scholar 

  • Herrera, L. S., and Pascual, C., 1978, Genetical and biochemical studies of glucosephosphate isomerase deficient mutants in Saccharomyces cerevisiae, J. Gen. Microbiol. 108:305–310.

    CAS  Google Scholar 

  • Herrera, L. S., Pascual, C., and Alvarez, X., 1976, Genetic and biochemical studies of phosphomannose isomerase deficient mutants of Saccharomyces cerevisiae, Mol. Gen. Genet. 144:223–230.

    PubMed  CAS  Google Scholar 

  • Hers, H. G., and Van Schaftingen, E., 1982, Fructose 2,6-bisphosphate 2 years after its discovery, Biochem. J. 206:1–12.

    PubMed  CAS  Google Scholar 

  • Hess, B., Haeckel, R., and Brand, K., 1966, FDP-activation of yeast pyruvate kinase, Biochem. Biophys. Res. Commun. 24:824–831.

    PubMed  CAS  Google Scholar 

  • Hess, B., Boiteux, A., and Krüger, J., 1969, Cooperation of glycolytic enzymes, Adv. Enzyme Regul. 7:149–167.

    PubMed  CAS  Google Scholar 

  • Hitzeman, R. A., Clarke, L., and Carbon, J., 1980, Isolation and characterization of the yeast 3phosphoglycerokinase gene (PGK) by an immunological screening technique, J. Biol. Chem. 255:12073–12080.

    PubMed  CAS  Google Scholar 

  • Höfer, M., and Kotyk, A., 1968, Tight coupling of monosaccharide transport and metabolism in Rhodotorula gracilis, Folia Microbiol. 13:197–204.

    Google Scholar 

  • Höfer, M., Brand, K., Deckner, K., and Becker, J. U., 1971, Importance of the pentose phosphate pathway for D-glucose catabolism in the obligatory aerobic yeast Rhodotorula gracilis, Biochem. J. 123:855–863.

    PubMed  Google Scholar 

  • Holland, J. P., and Holland, M. J., 1979, The primary structure of a glyceraldehyde-3-phosphate dehydrogenase gene from Saccharomyces cerevisiae, J. Biol. Chem. 254:9839–9845.

    PubMed  CAS  Google Scholar 

  • Holland, J. P., and Holland, M. J., 1980, Structural comparison of two nontandemly repeated yeast glyceraldehyde-3-phosphate dehydrogenase genes, J. Biol Chem 255:2596–2605.

    PubMed  CAS  Google Scholar 

  • Holland, M. J., and Holland, J. P., 1979, Isolation and characterization of a gene coding for glyceraldehyde-3-phosphate dehydrogenase from Saccharomyces cerevisiae, J. Biol. Chem. 254:5466–5474.

    PubMed  CAS  Google Scholar 

  • Holland, M. J., Holland, J. P., Thill, G. P., and Jackson, K. A., 1981, The primary structures of two yeast enolase genes, J. Biol. Chem. 256:1385–1395.

    PubMed  CAS  Google Scholar 

  • Holzer, H., 1961, Regulation of carbohydrate metabolism by enzyme competition, Cold Spring Harbor Symp. Quant. Biol. 26:227–288.

    Google Scholar 

  • Holzer, H., 1976, Catabolite inactivation in yeast, Trends Biochem. Sci. 1:178–181.

    CAS  Google Scholar 

  • Holzer, H., and Goedde, H. W., 1957, Zwei Wege von Pyruvat zu Acetyl-Coenzym A in Hefe, Biochem. Z. 329:175–191.

    PubMed  CAS  Google Scholar 

  • Hommes, F. A., 1966, Effect of glucose on the levels of glycolytic enzymes in yeast, Arch. Biochem. Biophys. 114:231–233.

    PubMed  CAS  Google Scholar 

  • Indge, K. J., 1968, Phosphates of the yeast cell vacuole, J. Gen. Microbiol. 51:447–455.

    PubMed  CAS  Google Scholar 

  • Inoue, H., and Shimoda, C., 1981, Induction of trehalase activity on a nitrogen-free medium: A sporulation-specific event in the fission yeast Schizosaccharomyces pombe, Mol. Gen. Genet. 183:32–36.

    PubMed  CAS  Google Scholar 

  • Katz, J., and Wood, H. G., 1963, The use of C1402 yields from glucose-l-and -6-C14 for the evaluation of the pathways of glucose metabolism, J. Biol. Chem. 238:517–523.

    PubMed  CAS  Google Scholar 

  • Katz, R., Kilpatrick, L., and Chance, B., 1971, Acquisition and loss of rotenone sensitivity in Torulopsis utilis, Eur. J. Biochem. 21:301–307.

    PubMed  CAS  Google Scholar 

  • Kawasaki, G., and Fraenkel, D. G., 1982, Cloning of yeast glycolysis genes by complementation, Biochem. Biophys. Res. Commun. 108:1107–1112.

    PubMed  CAS  Google Scholar 

  • Keller, F., Schellenberg, M., and Wiemken, A., 1982, Localization of trehalase in vacuoles and of trehalose in the cytosol of yeast (Saccharomyces cerevisiae), Arch. Microbiol. 131: 298–301.

    PubMed  CAS  Google Scholar 

  • Kempe, T. D., Nakagawa, Y., and Noltmann, E. A., 1974, Physical and chemical properties of yeast phosphoglucose isomerase isoenzymes, J. Biol. Chem. 249:4617–4624.

    PubMed  CAS  Google Scholar 

  • Khan, N. A., Zimmermann, F. K., and Eaton, N. R., 1973, Genetic and biochemical evidence of sucrose fermentation by maltase in yeast, Mol. Gen. Genet. 123:43–50.

    PubMed  CAS  Google Scholar 

  • Klein, H. P., and Jahnke, L., 1979, Effects of aeration on formation and localization of the acetyl coenzyme A synthetases of Saccharomyces cerevisiae, J. Bacteriol. 137:179–184.

    PubMed  CAS  Google Scholar 

  • Kopperschläger, G., and Hofmann, E., 1969, Uber multiple Formen der Hexokinase in Hefe, Eur. J. Biochem. 9:419–423.

    PubMed  Google Scholar 

  • Kopperschläger, G., Bär, J., Nissler, K., and Hofmann, E., 1977, Physicochemical parameters and subunit composition of yeast phosphofructokinase, Eur. J. Biochem. 81:317–327.

    PubMed  Google Scholar 

  • Kotyk, A., 1963, Intracellular pH of baker’s yeast, Folia Microbiol. 8:27–30.

    CAS  Google Scholar 

  • Kotyk, A., 1967, Properties of the sugar carrier in baker’s yeast. II. Specificity of transport, Folia Microbiol. 12:121–131.

    CAS  Google Scholar 

  • Kotyk, A., and Höfer, M., 1965, Uphill transport of sugars in the yeast Rhodotorula gracilis, Biochim. Biophys. Acta 102:410–422.

    PubMed  CAS  Google Scholar 

  • Kotyk, A., and Michaljanicovä, D., 1979, Uptake of trehalose by Saccharomyces cerevisiae, J. Gen. Microbiol. 110:323–332.

    PubMed  CAS  Google Scholar 

  • Krätkÿ, Z., and Biely, P., 1980, Inducible ß-xyloside permease as a constituent of the xylandegrading enzyme system of the yeast Cryptococcus albidus, Eur. J. Biochem. 112:367–373.

    PubMed  Google Scholar 

  • Krebs, H. A., 1972, The Pasteur effect and the relations between respiration and fermentation, Essays Biochem. 8:1–35.

    PubMed  CAS  Google Scholar 

  • Krietsch, W. K. G., Pentchev, P. G., Klingenbürg, H., Hofstätter, T., and Bücher, T., 1970, The isolation and crystallization of yeast and rabbit liver triosephosphate isomerase and a comparative characterization with the rabbit muscle enzyme, Eur. J. Biochem. 14:289–300.

    PubMed  CAS  Google Scholar 

  • Küenzi, M. T., and Fiechter, A., 1969, Changes in carbohydrate composition and trehalase-activity during the budding cycle of Saccharomyces cerevisiae, Arch. Mikrobiol. 64:396–407.

    PubMed  Google Scholar 

  • Lagunas, R., 1979, Energetic irrelevance of aerobiosis for S. cerevisiae growing on sugars, Mol. Cell. Biochem. 27:139–146.

    PubMed  CAS  Google Scholar 

  • Lagunas, R., 1981, Is Saccharomyces cerevisiae a typical facultative anaerobe?, Trends Biochem. Sci. 6:201–202.

    CAS  Google Scholar 

  • Lagunas, R., and Gancedo, J. M., 1973, Reduced pyridine nucleotide balance in glucose-growing S. cerevisiae, Eur. J. Biochem. 37:90–94.

    PubMed  CAS  Google Scholar 

  • Lagunas, R., and Gancedo, C., 1983, Role of phosphate in the regulation of the Pasteur effect in Saccharomyces cerevisiae, Eur. J. Biochem. 137:479–483.

    PubMed  CAS  Google Scholar 

  • Lam, K. B., and Marmur, J., 1977, Isolation and characterization of Saccharomyces cerevisiae glycolytic pathway mutants, J. Bacteriol. 130:746–749.

    PubMed  CAS  Google Scholar 

  • Lancashire, M., Payton, A., Webber, M. J., and Hartley, B. S., 1981, Petite-negative mutants of Saccharomyces cerevisiae, Mol. Gen. Genet. 181:409–410.

    PubMed  CAS  Google Scholar 

  • Laurent, M., Chaffotte, A. F., Tenu, J. P., Roucous, C., and Seydoux, F. J., 1978, Binding of nucleotides AMP and ATP to yeast phosphofructokinase: Evidence for distinct catalytic and regulatory subunits, Biochem. Biophys. Res. Commun. 80:646–652.

    PubMed  CAS  Google Scholar 

  • Laurent, M., Seydoux, F. J., and Dessen, P., 1979, Allosteric regulation of yeast phosphofructokinase: Correlation between equilibrium binding, spectroscopic and kinetic data, J. Biol. Chem. 254:7515–7520.

    PubMed  CAS  Google Scholar 

  • Lederer, B., Vissers, S., Van Schaftingen, E., and Hers, H. G., 1981, Fructose-2,6-bisphosphate in yeast, Biochem. Biophys. Res. Commun. 103:1281–1287.

    PubMed  CAS  Google Scholar 

  • Lenz, A. G., and Holzer, H., 1980, Rapid reversible inactivation of fructose-1,6-bisphosphatase in yeast, FEBS Lett. 109:271–274.

    PubMed  CAS  Google Scholar 

  • Lerch, K., and Fischer, E. H., 1975, Amino acid sequence of two functional sites in yeast glycogen phosphorylase, Biochemistry 14:2009–2014.

    PubMed  CAS  Google Scholar 

  • Light, P. A., Ragan, C. I., Clegg, R. A., and Garland, P. B., 1968, Iron-limited growth of Torulopsis utilis and the reversible loss of mitochondrial energy conservation at site 1 and of sensitivity to rotenone and piericidin A, FEBS Lett. 1:4–8.

    PubMed  CAS  Google Scholar 

  • Lillie, S. H., and Pringle, J. R.,A980, Reserve carbohydrate metabolism in Saccharomyces cerevisiae: Responses to nutrient limitation, J. Bacteriol. 143:1384–1394.

    Google Scholar 

  • Llorente, N., and Nunez de Castro, I., 1977, Physiological role of yeast NAD(P)± and NADP+-linked aldehyde dehydrogenases, Rev. Esp. Fisiol. 33:135–142.

    PubMed  CAS  Google Scholar 

  • Lobo, Z., and Maitra, P. K., 1977, Physiological role of glucose-phosphorylating enzymes in Saccharomyces cerevisiae, Arch. Biochem. Biophys. 182:639–645.

    PubMed  CAS  Google Scholar 

  • Lobo, Z., and Maitra, P. K., 1982a, A particulate phosphofructokinase from yeast, FEBS Lett. 137:279–282.

    CAS  Google Scholar 

  • Lobo, Z., and Maitra, P. K., 1982b, Genetic evidence for distinct catalytic and regulatory subunits in yeast phosphofructokinase, FEBS Lett. 139:93–96.

    CAS  Google Scholar 

  • Lobo, Z., and Maitra, P. K., 1982c, Pentose phosphate pathway mutants of yeast, Mol. Gen. Genet. 185:367–368.

    CAS  Google Scholar 

  • Lowry, C. W., Weiss, J. L., Wathall, D. A., and Zitomer, R. S., 1983, Modulator sequences mediate oxygen regulation of CYCI and a neighboring gene in yeast, Proc. Natl. Acad. Sci. USA 80:151–155.

    PubMed  CAS  Google Scholar 

  • Lutstorf, U., and Megnet, R., 1968, Multiple forms of alcohol dehydrogenase in Saccharomyces cerevisiae, Arch. Biochem. Biophys. 126:933–944.

    PubMed  CAS  Google Scholar 

  • Machado, A., Nunez de Castro, I., and Mayor, F., 1975, Isocitrate dehydrogenases and oxoglutarate dehydrogenase activities of baker’s yeast grown in a variety of hypoxic conditions, Mol. Cell. Biochem. 6:93–100.

    PubMed  CAS  Google Scholar 

  • Magasanik, B., 1961, Catabolite repression, Cold Spring Harbor Symp. Quant. Biol. 26:249–262.

    PubMed  CAS  Google Scholar 

  • Mahler, H. R., Jaynes, P. K., McDonough, J. P., and Hanson, D. K., 1981, Catabolite repression in yeast: Mediation by cAMP, Curr. Top. Cell. Regul. 8:455–474.

    Google Scholar 

  • Maitra, P. K., 1970, A glucokinase from Saccharomyces cerevisiae, J. Biol. Chem. 245:2423–2431.

    PubMed  CAS  Google Scholar 

  • Maitra, P. K., 1971, Glucose and fructose metabolism in a phosphoglucose-isomeraseless mutant of Saccharomyces cerevisiae, J. Bacteriol. 107:759–769.

    PubMed  CAS  Google Scholar 

  • Maitra, P. K., and Lobo, Z., 1971, A kinetic study of glycolytic enzyme synthesis in yeast, J. Biol. Chem. 246:475–488.

    PubMed  CAS  Google Scholar 

  • Maitra, P. K., and Lobo, Z., 1977a, Yeasts pyruvate kinase: A mutant form catalytically insensitive to fructose 1,6 bisphosphate, Eur. J. Biochem, 78 353–360.

    CAS  Google Scholar 

  • Maitra, P. K., and Lobo, Z., 1977b, Genetic studies with a phosphoglucose isomerase mutant of Saccharomyces cerevisiae, Mol. Gen. Genet. 156:55–60.

    CAS  Google Scholar 

  • Maitra, P. K., and Lobo, Z., I977c, Pyruvate kinase mutants of Saccharomyces cerevisiae: Biochemical and genetic characterization, Mol. Gen. Genet. 152:193–200.

    Google Scholar 

  • Matsumoto, K., Uno, I., Toh-E, A., Ishikawa, T., and Oshima, Y., 1982, Cyclic AMP may not be involved in catabolite repression in Saccharomyces cerevisiae: Evidence from mutants capable of utilizing it as an adenine source, J. Bacteriol. 150:277–285.

    PubMed  CAS  Google Scholar 

  • Matsumoto, K., Yoshimatsu, T., and Oshima, Y., 1983, Recessive mutations conferring resistance to carbon catabolite repression of galactokinase synthesis in Saccharomyces cerevisiae, J. Bacteriol. 153:1405–1414.

    PubMed  CAS  Google Scholar 

  • Magill, M. J., Gancedo, J. M., and Gancedo, C., 1974a, Glucose metabolism in Rhodotorula glutinis, in: Proceedings of the Fourth International Symposium on Yeasts (H. Klaushofer and U. B. Sleytr, eds.), Part I, p. 31, Hochschülerschaft an der Hochschule für Bodenkultur, Wien.

    Google Scholar 

  • Mazôn, M. J., Gancedo, J. M., and Gancedo, C., 1974b, Identification of an unusual phosphofructokinase in the red yeast Rhodotorula glutinis, Biochem. Biophys. Res. Commun. 61:1304–1309.

    Google Scholar 

  • Mazôn, M. J., Gancedo, J. M., and Gancedo, C., 1975, Hexose kinases from Rhodotorula glutinis, Arch. Biochem. Biophys. 167:452–457.

    PubMed  Google Scholar 

  • Mazôn, M. J., Gancedo, J. M., and Gancedo, C., 1981, Inactivation and turnover of fructose-1,6-bisphosphatase from Saccharomyces cerevisiae, in: Metabolic Interconversion of Enzymes 1980 (H. Holzer, ed.), pp. 168–173, Springer-Verlag, Berlin.

    Google Scholar 

  • Mazn, M. J., Gancedo, J. M., and Gancedo, C., 1982a, Inactivation of yeast fructose-1,6- bisphosphatase: In vivo phosphorylation of the enzyme, J. Biol. Chem. 257:1128–1130.

    Google Scholar 

  • Mazn, M. J., Gancedo, J. M., and Gancedo, C., 1982b, Phosphorylation and inactivation of yeast fructose bisphosphatase in vivo by glucose and by protein ionophores: A possible role for cAMP, Eur. J. Biochem. 127:605–608.

    Google Scholar 

  • Megnet, R., 1965, Alkoholdehydrogenasemutanten von Schizosaccharomyces pombe, Pathol. Microbial. 28:50–57.

    CAS  Google Scholar 

  • Megnet, R., 1967, Mutants partially deficient in alcohol dehydrogenase in Schizosaccharomyces pombe, Arch. Biochem. Biophys. 121:194–201.

    PubMed  CAS  Google Scholar 

  • Melling, J., 1977, Regulation of enzyme synthesis in continuous culture, in: Topics in Enzyme and Fermentation Biotechnology (A. Wiseman, ed.), pp. 10–42, Horwood, Chichester.

    Google Scholar 

  • Michels, C. A., and Romanowski, A., 1980, Pleiotropic glucose repression-resistant mutation in Saccharomyces carlsbergensis, J. Bacteriol. 143:674–679.

    CAS  Google Scholar 

  • Mitchell, P., and Moyle, J., 1969, Estimation of membrane potential and pH difference across the cristae membrane of rat liver mitochondria, Eur. J. Biochem. 7:471–484.

    PubMed  CAS  Google Scholar 

  • Müller, D., and Holzer, H., 1981, Regulation of fructose-1,6-bisphosphatase in yeast by phosphorylation/dephosphorylation, Biochem. Biophys. Res. Commun. 103:926–933.

    PubMed  Google Scholar 

  • Müller, M., Müller, H., and Holzer, H., 1981, Immunochemical studies on catabolite inactivation of phosphoenolpyruvate carboxykinase in Saccharomyces cerevisiae, J. Biol. Chem. 256:723–727.

    Google Scholar 

  • Nadkarni, M., Lobo, Z., and Maitra, P. K., 1982, Particulate phosphofructokinase of yeast: Physiological studies, FEBS Leu. 147:251–255.

    CAS  Google Scholar 

  • Navon, G., Shulman, R. G., Yamane, T., Eccleshall, T. R., Lam, K. B., Baronofsky, J. J., and Marmur, J., 1979, Phosphorus-31 nuclear magnetic resonance studies of wild-type and glycolytic pathway mutants of Saccharomyces cerevisiae, Biochemistry 18:4487–4499.

    CAS  Google Scholar 

  • Neeff, J., Hägele, E., Nauhaus, J., Heer, U., and Mecke, D., 1978, Evidence for catabolite degradation in the glucose dependent inactivation of yeast cytoplasmic malate dehydrogenase, Eur. J. Biochem. 87:489–495.

    PubMed  CAS  Google Scholar 

  • Newsholme, E. A., Crabtree, B., Higgins, S. J., Thornton, S. D., and Start, C., 1972, The activities of fructose diphosphatase in flight muscles from the bumble-bee and the role of this enzyme in heat generation, Biochem. J. 128:84–97.

    Google Scholar 

  • Nickerson, W. J., and Carroll, W. R., 1945, On the metabolism of Zygosaccharomyces, Arch. Biochem. 7:257–271.

    CAS  Google Scholar 

  • Ohnishi, T., 1970, Induction of the site I phosphorylation in vivo in Saccharomyces carlsbergensis, Biochem. Biophys. Res. Commun. 41:344–352.

    CAS  Google Scholar 

  • Okada, H., and Halvorson, H. 0., 1964, Uptake of alpha-thioethyl D-glucopyranoside by Saccharomyces cerevisiae. I. The genetic control of facilitated diffusion and active transport, Biochim. Biophys. Acta 82:538–546.

    PubMed  CAS  Google Scholar 

  • Okorokov, L. A., Lichko, L. P., and Kulaev, I. S., 1980, Vacuoles: Main compartments of potassium, magnesium and phosphate ions in Saccharomyces carlsbergensis cells, J. Bacteriol. 144:661–665.

    PubMed  CAS  Google Scholar 

  • Operti, M. S., Oliveira, D. E., Freitas-Valle, A. B., Oestreicher, E. G., Mattoon, J. R., and Panek, A. D., 1982, Relationship between trehalose metabolism and maltose utilization in Saccharomyces cerevisiae: Evidence for alternative pathways of trehalose synthesis, Curr. Genet. 5:69–76.

    CAS  Google Scholar 

  • Ortiz, C. H., Maia, J. C. C., Tenan, M. N., Braz-Padrao, G. R., Mattoon, J. R., and Panek, A. D., 1983, Regulation of yeast trehalase by a monocyclic, cyclic AMP-dependent phosphorylationdephosphorylation cascade system, J. Bacteriol. 153:644–651.

    PubMed  CAS  Google Scholar 

  • Oshima, Y., 1982, Regulatory circuits for gene expression: The metabolism of galactose and phosphate, in: The Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression (J. N. Strathem, E. W. Jones, and J. R. Broach, eds.), pp. 159–180, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Oura, E., 1974, Effect of aeration intensity on the biochemical composition of baker’s yeast, Biotechnol. Bioeng. 16:1197–1225.

    PubMed  CAS  Google Scholar 

  • Oura, E., 1977, Reaction products of yeast fermentations, Process Biochem. 12(3):19–22.

    CAS  Google Scholar 

  • Panek, A., 1962, Synthesis of trehalose by baker’s yeast (Saccharomyces cerevisiae), Arch. Biochem. Biophys. 98:349–355.

    PubMed  CAS  Google Scholar 

  • Panek, A., and Mattoon, J. R., 1977, Regulation of energy metabolism in Saccharomyces cerevisiae: Relationships between catabolite repression, trehalose synthesis and mitochondrial development, Arch. Biochem. Biophys. 183:306–316.

    PubMed  CAS  Google Scholar 

  • Pasteur, L., 1860, Mémoire sur la fermentation alcoholique, Ann. Chim. Phys. Ser. 358:323–426. Perea, J., and Gancedo, C., 1978, Glucose transport in a glucose-phosphate isomeraseless mutant of Saccharomyces cerevisiae, Curr. Microbiol. 1:209–211.

    Google Scholar 

  • Perlman, D., and Halvorson, H. A., 1981, Distinct repressible mRNAs for cytoplasmic and secreted yeast invertase are encoded by a single gene, Cell 25:525–536.

    PubMed  CAS  Google Scholar 

  • Perlman, P. S., and Mahler, H. D., 1974, Derepression of mitochondria and their enzymes in yeast: Regulatory aspects, Arch. Biochem. Biophys. 162:248–271.

    PubMed  CAS  Google Scholar 

  • Polakis, E. S., Bartley, W., and Meek, G. A., 1965, Changes in the activities of respiratory enzymes during aerobic growth of yeast on different carbon sources, Biochem. J. 97:298–302

    PubMed  CAS  Google Scholar 

  • Pringle, J. R., 1975, Methods for avoiding proteolytic artifacts in studies of enzymes and other proteins from yeasts, Methods Cell Biol. 12:149–184.

    PubMed  CAS  Google Scholar 

  • Racker, E., 1961, IUB Congress in Moskow, personal communication.

    Google Scholar 

  • Racker, E., 1974, History of the Pasteur effect and its pathobiology, Mol. Cell. Biochem. 5:17–23.

    PubMed  CAS  Google Scholar 

  • Ramaiah, A., Hathaway, J. A., and Atkinson, D. E., 1964, Adenylate as a metabolic regulator: Effect on yeast phosphofructokinase kinetics, J. Biol. Chem. 239:3619–3622.

    PubMed  CAS  Google Scholar 

  • Rigby, P. W. J., Burleigh, B. D., Jr., and Hartley, B. S., 1974, Gene duplication in experimental enzyme evolution, Nature 251:200–204.

    PubMed  CAS  Google Scholar 

  • Rogers, P. J., and Stewart, P. R., 1974, Energetic efficiency and maintenance energy characteristics of Saccharomyces cerevisiae (wild type and petite) and Candida parapsilosis grown aerobically and microaerobically in continuous culture, Arch. Mikrobiol. 99:25–46.

    Google Scholar 

  • Romano, A. H., 1982, Facilitated diffusion of 6-deoxy-o-glucose in baker’s yeast: Evidence against phosphorylation-associated transport of glucose, J. Bacteriol. 152:1295–1297.

    PubMed  CAS  Google Scholar 

  • Rothman-Denes, L. B., and Cabib, E., 1970, Two forms of yeast glycogen synthetase and their role in glycogen accumulation, Proc. Natl. Acad. Sci. USA 66:967–974.

    PubMed  CAS  Google Scholar 

  • Rothman-Denes, L. B., and Cabib, E., 1971, Glucose-6-phosphate dependent and independent forms of yeast glycogen synthetase: Their properties and interconversions, Biochemistry 10:1236–1242.

    PubMed  CAS  Google Scholar 

  • Rothstein, A., 1954, Enzyme systems of the cell surface involved in the uptake of sugars by yeast, Symp. Soc. Exp. Biol. 8:165–201.

    CAS  Google Scholar 

  • Ruiz-Amil, M., de Torrontegui, G., Palaciân, E., Catalina, L., and Losada, M., 1965, Properties and function of yeast pyruvate carboxylase, J. Biol. Chem. 240:3485–3492.

    PubMed  CAS  Google Scholar 

  • Ruiz-Amil, M., Fernandez, M. J., Medrano, L., and Losada, M., 1966, Cellular distribution of yeast pyruvate decarboxylase and its induction by glucose, Arch. Mikrobiol. 55:46–53.

    PubMed  CAS  Google Scholar 

  • Saez, M. J., and Lagunas, R., 1976, Determination of intermediary metabolites in yeast: A critical examination of the effect of sampling conditions and recommendations for obtaining true levels, Mol. Cell. Biochem. 13:73–78.

    PubMed  CAS  Google Scholar 

  • Salhany, J. M., Yamane, T., Shulman, R. G., and Ogawa, S., 1975, High resolution 31p nuclear magnetic resonance studies of intact yeast cells, Proc. Natl. Acad. Sci. USA 72:4966–4970.

    PubMed  CAS  Google Scholar 

  • Santa Maria, J., 1964, Utilizaci6n de sacarosa y maltosa por levaduras, Bol. Inst. Nac. Invest. Agron. (Spain) 50:1–64.

    Google Scholar 

  • Scheffers, W. A., 1961, On the inhibition of alcoholic fermentation in Brettanomyces yeasts under anaerobic conditions, Experientia 17:10–42.

    Google Scholar 

  • Schell, M. A., and Wilson, D. B., 1977, Purification and properties of galactose kinase from Saccharomyces cerevisiae, J. Biol. Chem. 252:1162–1166.

    CAS  Google Scholar 

  • Schimpfessel, L., 1968, Présence et régulation de la synthèse de deux alcool deshydrogènases chez la levure Saccharomyces cerevisiae, Biochim. Biophys. Acta 151:317–329.

    PubMed  CAS  Google Scholar 

  • Schlanderer, G., and Dellweg, H., 1974, Cyclic AMP and catabolite repression in yeast, Eur. J. Biochem. 49:305–316.

    PubMed  CAS  Google Scholar 

  • Schlenk, F., and Zyder-Cwick, C. R., 1970, Enzymatic activity of yeast cell ghosts produced by protein action on the membranes, Arch. Biochem. Biophys. 138:220–225.

    PubMed  CAS  Google Scholar 

  • Schmitt, H. D., and Zimmermann, F. K., 1982, Genetic analysis of the pyruvate decarboxylase reaction in yeast glycolysis, J. Bacteriol. 151:1146–1152.

    PubMed  CAS  Google Scholar 

  • Segawa, T., and Fukasawa, T., 1979, The enzymes of the galactose cluster in Saccharomyces cerevisiae: Purification and characterization of galactose-1 phosphate uridylyltransferase, J. Biol. Chem. 254:10707–10709.

    PubMed  CAS  Google Scholar 

  • Serrano, R., and De la Fuente, G., 1974, Regulatory properties of the constitutive hexose transport in Saccharomyces cerevisiae, Mol. Cell. Biochem. 3:161–171.

    Google Scholar 

  • Serrano, R., Gancedo, J. M., and Gancedo, C., 1973, Assay of yeast enzymes in situ, Eur. J. Biochem. 34:479–482.

    PubMed  CAS  Google Scholar 

  • Shabalin, Y. A., Vagabov, V. I., Tsiomenko, A. B., Zemlyanukhina, O. A., and Kulaev, I. S., 1977, Polyphosphate kinase activity in vacuoles of yeasts, Biokhimiya 42:1642–1645.

    CAS  Google Scholar 

  • Singh, B. R., and Datta, A., 1978, Glucose repression of the inducible catabolic pathway for N-acetylglucosamine in yeast, Biochem. Biophys. Res. Commun. 84:58–64.

    PubMed  CAS  Google Scholar 

  • Sinha, P., and Maitra, P. K., 1977, Mutants of Saccharomyces cerevisiae having structurally altered pyruvate kinase, Mol. Gen. Genet. 158:171–177.

    CAS  Google Scholar 

  • Slavik, J., 1983, Intracellular pH topography: Determination by a fluorescent probe, FEBS Lett. 156:227–230.

    PubMed  CAS  Google Scholar 

  • Sols, A., 1967, Regulation of carbohydrate transport and metabolism in yeast, in: Aspects of Yeast Metabolism (A. K. Mills and H. A. Krebs, eds.), pp. 47–66, Blackwell, Oxford.

    Google Scholar 

  • Sols, A., 1976, The Pasteur effect in the allosteric era, in Reflections on Biochemistry (A. Kornberg, B. L. Horecker, L. Cornudella, and J. Oro, eds.), pp. 199–206, Pergamon Press, Elmsford, N.Y.

    Google Scholar 

  • Sols, A., and Marco, R., 1970, Concentrations of metabolites and binding sites: Implications in metabolic regulation, Curr. Top. Cell. Regul. 2:227–273.

    CAS  Google Scholar 

  • Sols, A., and Salas, M. L., 1966, Phosphofructokinase. III. Yeast, Methods Enzymol. 9:436–442.

    CAS  Google Scholar 

  • Sols, A., Gancedo, C., and De la Fuente, G., 1971, Energy-yielding metabolism in yeast, in: The Yeasts (A. H. Rose and J. S. Harrison, eds.), Vol. 2, pp. 271–307, Academic Press, New York.

    Google Scholar 

  • Souza, N. O., and Panek, A. D., 1968, Location of trehalase and trehalose in yeast cells, Arch. Biochem. Biophys. 125:22–28.

    PubMed  CAS  Google Scholar 

  • Spiegelman, S., and Reiner, J. M., 1947, The formation and stabilization of an adaptive enzyme in the absence of its substrate, J. Gen. Physiol. 31:175–193.

    PubMed  CAS  Google Scholar 

  • Sprague, G. F., Jr., 1977, Isolation and characterization of a Saccharomyces cerevisiae mutant deficient in pyruvate kinase activity, J. Bacteriol. 130:232–241.

    PubMed  CAS  Google Scholar 

  • Stein, R. B., and Blum, J. J., 1978, On the analysis of futile cycles in metabolism, J. Theor. Biol. 72:487–522.

    PubMed  CAS  Google Scholar 

  • Steinman, C. R., and Jakoby, W. B., 1968, Yeast aldehyde dehydrogenase, J. Biol. Chem. 243:730–734.

    PubMed  CAS  Google Scholar 

  • Thevelein, J. M., den Hollander, J. A., and Shulman, R. G., 1982, Changes in the activity and properties of trehalase during early germination of yeast ascospores: Correlation with trehalose breakdown as studied by in vivo 13C NMR, Proc. Natl. Acad. Sci. USA 79:3503–3507.

    PubMed  CAS  Google Scholar 

  • Tijane, M. N., Chaffotte, A. F., Seydoux, F. J., Roucous, C., and Laurent, M., 1980, Sulfhydryl groups of yeast phosphofructokinase-specific localization on 13 subunits of fructose-6-phosphate binding sites as demonstrated by a differential chemical labeling study, J. Biol. Chem. 255:10188–10193.

    PubMed  CAS  Google Scholar 

  • Toda, K., 1976, Invertase biosynthesis by Saccharomyces carlsbergensis in batch and continuous cultures, Biotechnol. Bioeng. 18:1103–1115.

    PubMed  CAS  Google Scholar 

  • Toda, K., Yabe, I., and Yamagata, T., 1982, Invertase and phosphatase of yeast in a phosphate-limited continuous culture, Eur. J. Appl. Microbiol. Biotechnol. 16:17–22.

    CAS  Google Scholar 

  • Ullrich, J., and Wais, U., 1975, Pyruvate dehydrogenase complex from brewer’s yeast: Regulation by the carbon sources, Biochem. Soc. Trans. 3:920–924.

    CAS  Google Scholar 

  • Van de Poll, K. W., Kerkenaar, A., and Schamhart, D. H. J., 1974, Isolation of a regulatory mutant of fructose-l,6-diphosphatase in Saccharomyces carlsbergensis, J. Bacteriol. 117:965–970.

    Google Scholar 

  • Van der Plaat, J. B., 1974, Cyclic 3’,5’-adenosine monophosphate stimulates trehalose degradation in baker’s yeast, Biochem. Biophys. Res. Commun. 56:580–587.

    PubMed  Google Scholar 

  • Van Solingen, P., and Van der Plaat, J. B., 1975, Partial purification of the protein system controlling the breakdown of trehalose in baker’s yeast, Biochem. Biophys. Res. Commun. 62:553–560.

    PubMed  Google Scholar 

  • Van Steveninck, J., 1968, Competition of sugars for the hexose transport system in yeast, Biochim. Biophys. Acta. 150:424–434.

    PubMed  Google Scholar 

  • Van Wijk, R., and Konijn, T. M., 1971, Cyclic 3’,5’-AMP in Saccharomyces carlsbergensis under various conditions of catabolite repression, FEBS Lett. 13:184–186.

    PubMed  Google Scholar 

  • Vinuela, E., Salas, M. L., and Sols, A., 1963, End-product inhibition of yeast phosphofructokinase by ATP, Biochem. Biophys. Res. Commun. 12:140–145.

    PubMed  CAS  Google Scholar 

  • Wales; D. S., Cartledge, T. G., and Lloyd, D., 1980, Effects of glucose repression and anaerobiosis on the activities and subcellular distribution of tricarboxylic acid cycle and associated enzymes in Saccharomyces carlsbergensis, J. Gen. Microbiol. 116:93–98.

    Google Scholar 

  • Walsh, R. B., Kawasaki, G., and Fraenkel, D. G., 1983, Cloning of genes that complement yeast hexokinase and glucokinase mutants, J. Bacteriol. 154:1002–1004.

    PubMed  CAS  Google Scholar 

  • Warburg, 0., 1926, Uber die Wirkung von Blausäureäthylester (Athylcarbylamin) auf die Pasteursche Reaktion, Biochem. Z. 172:432–441.

    Google Scholar 

  • Weitzman, P. J. D., and Hewson, J. K., 1973, In situ regulation of yeast citrate synthase: Absence of ATP inhibition observed in vitro, FEBS Lett. 36:227–231.

    CAS  Google Scholar 

  • Wiemken, A., and Dun, M., 1974, Characterization of amino acid pools in the vacuolar compartment of S. cerevisiae, Arch. Microbiol. 101:45–57.

    CAS  Google Scholar 

  • Wiemken, A., and Schellenberg, M., 1982, Does a cyclic AMP-dependent phosphorylation initiate the transfer of trehalase from the cytosol into the vacuoles of Saccharomyces cerevisiae?, FEBS Lett. 150:329–331.

    CAS  Google Scholar 

  • Williamson, V. M., Bennetzen, J., Young, E. T., Nasmyth, K., and Hall, B. D., 1980, Isolation of the structural gene for alcohol dehydrogenase by genetic complementation in yeast, Nature 283:214–216.

    PubMed  CAS  Google Scholar 

  • Wills, C., 1976, Production of yeast alcohol dehydrogenase isoenzymes by selection, Nature 261:26–29.

    PubMed  CAS  Google Scholar 

  • Wills, C., and Phelps, J., 1975, A technique for the isolation of yeast alcohol dehydrogenase mutants with altered substrate specificity, Arch. Biochem. Biophys. 167:627–637.

    PubMed  CAS  Google Scholar 

  • Wolf, D. H., and Ehmann, C., 1979, Studies on a proteinase B mutant of yeast, Eur. J. Biochem. 98:375–384.

    PubMed  CAS  Google Scholar 

  • Zimmermann, F. K., 1982, Function of genetic material: Gene structure, gene function, and genetic regulation of metabolism in bacteria and fungi, in: Fortschritte der Botanik (H. Ellenberg, K. Esser, K. Kubitzki, E. Schnepf, and H. Ziegler, eds.), Vol. 44, pp. 267–285, Springer-Verlag, Berlin.

    Google Scholar 

  • Zimmermann, F. K., and Scheel, I., 1977, Mutants of Saccharomyces cerevisiae resistant to carbon catabolite repression, Mol. Gen. Genet. 154:75–82.

    PubMed  CAS  Google Scholar 

  • Zitomer, R. S., Montgomery, D. L., Nichols, D. L., and Hall, B. D., 1979, Transcriptional regulation of the yeast cytochrome c gene, Proc. Natl. Acad. Sci. USA 76:3627–3631.

    PubMed  CAS  Google Scholar 

  • Zubenko, G. S., and Jones, E. W., 1979, Catabolite inactivation of gluconeogenic enzymes in mutants of yeast deficient in proteinase B, Proc. Natl. Acad. Sci. USA 76:4581–4585.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Gancedo, J.M. (1986). Carbohydrate Metabolism in Yeast. In: Morgan, M.J. (eds) Carbohydrate Metabolism in Cultured Cells. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7679-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7679-8_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7681-1

  • Online ISBN: 978-1-4684-7679-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics