Advertisement

Sugar Transport Systems of Baker’s Yeast and Filamentous Fungi

  • Antonio H. Romano

Abstract

In spite of the enormous volume of work that has been done on the metabolism of sugars by Saccharomyces cerevisiae, the nature of the monosaccharide uptake systems has been a subject of controversy over the past three decades. The controversy has centered on the question of the role of sugar phosphorylation during transport: are sugars phosphorylated during transport via a group translocation system, or are they transported as free sugars via a carrier-mediated facilitated diffusion system and phosphorylated by the action of hexokinase or glucokinase subsequent to entry? A variation of the question is: even if a facilitated diffusion system represents the primary mode of entry of free sugars, is there some sort of intimate relationship between the sugar carriers and the phosphorylating enzymes such that the activity of the sugar carriers is affected?

Keywords

Neurospora Crassa Aspergillus Nidulans Sugar Transport Sugar Uptake Free Sugar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biely, P., and Bauer, S., 1966, The formation of uridine diphosphate-2-deoxy-D-glucose in yeast, Biochim. Biophys. Acta 121: 213–214.PubMedCrossRefGoogle Scholar
  2. Biely, P., and Bauer, S., 1968, The formation of guanosine diphosphate-2-deoxy-D-glucose in yeast, Biochim. Biophys. Acta 156: 432–434.PubMedCrossRefGoogle Scholar
  3. Bisson, L. F., and Fraenkel, D. G., 1983a, Involvement of kinases in glucose and fructose uptake by Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA 80: 1730–1734.PubMedCrossRefGoogle Scholar
  4. Bisson, L. F., and Fraenkel, D. G., 1983b, Transport of 6-deoxyglucose in Saccharomyces cerevisiae, J. Bacteriol. 155: 995–1000.PubMedGoogle Scholar
  5. Bowman, B. J., Blasco, F., Allen, K. E., and Slayman, C. W., 1980, Plasma-membrane ATPase of Neurospora: Purification and properties, In: Plant Membrane Transport: Current Conceptual Issues (R. M. Spanswick, W. J. Lucas, and J. Dainty, eds.), pp. 195–209, Elsevier/NorthHolland, Amsterdam.Google Scholar
  6. Brocklehurst, R., Gardner, D., and Eddy, A. A., 1977, The absorption of protons with a-methyl glucoside and a-thioethyl glucoside by the yeast N.C.Y.C. 240, Biochem. J. 162: 591–599.PubMedGoogle Scholar
  7. Brown, C. E., and Romano, A. H., 1969, Evidence against necessary phosphorylation during hexose transport in Aspergillus nidulans, J. Bacteriol. 100: 1198–1203.PubMedGoogle Scholar
  8. Burger, M., Hejmova, L., and Kleinzeller, A., 1959, Transport of some monosaccharides into yeast cells, Biochem. J. 71: 233–242.PubMedGoogle Scholar
  9. Cirillo, V. P., 1961a, The transport of non-fermentable sugars across the yeast cell membrane, In: Membrane Transport and Metabolism ( A. Kleinzeller and A. Kotyk, eds.), pp. 343–351, Academic Press, New York.Google Scholar
  10. Cirillo, V. P., 196lb, The mechanism of sugar transport into the yeast cell, Trans. N.Y. Acad. Sci. Ser. ll 23: 725–734.Google Scholar
  11. Cirillo, V. P., 1961c, Sugar transport in microorganisms, Annu. Rev. Microbiol. 15: 197–218.CrossRefGoogle Scholar
  12. Cirillo, V. P., 1962, Mechanism of glucose transport across the yeast cell membrane, J. Bacteriol. 84: 485–491.PubMedGoogle Scholar
  13. Cirillo, V. P., 1968a, Relationship between sugar structure and competition for the sugar transport system in bakers’ yeast, J. Bacteriol. 95: 603–611.PubMedGoogle Scholar
  14. Cirillo, V. P., 1968b, Galactose transport in Saccharomyces cerevisiae. I. Nonmetabolized sugars as substrates and inducers of the galactose transport system, J. Bacteriol. 95: 1727–1731.PubMedGoogle Scholar
  15. Eddy, A. A., 1982, Mechanisms of solute transport in selected eukaryotic microorganisms, In: Advances in Microbial Physiology, Vol. 23 (A. H. Rose and J. G. Moms, eds.), pp. 1–78, Academic Press, New York.Google Scholar
  16. Farkas, V., Bauer, S., and Zemek, J., 1969, Metabolism of 2-deoxy-D-glucose in baker’s yeast. III. Formation of 2,2’-dideoxy-a,a’-trehalose, Biochim. Biophys. Acta 184: 77–82.PubMedCrossRefGoogle Scholar
  17. Franzusoff, A. J., and Cirillo, V. P., 1982, Uptake and phosphorylation of 2-deoxy-D-glucose by wild-type and single-kinase strains of Saccharomyces cerevisiae, Biochim. Biophys. Acta 688: 295–304.PubMedCrossRefGoogle Scholar
  18. Franzusoff, A. J., and Cirillo, V. P., 1983a, Glucose transport activity in isolated plasma membrane vesicles from Saccharomyces cerevisiae, J. Biol. Chem. 258: 3608–3614.PubMedGoogle Scholar
  19. Franzusoff, A. J., and Cirillo, V. P., 1983b, Solubilization and reconstitution of the glucose transport system from Saccharomyces cerevisiae, Biochim. Biophys. Acta 734: 153–159.CrossRefGoogle Scholar
  20. Fuhrmann, G. F., and Rothstein, A., 1968a, The transport of Zn2+, Co2+, and Ni2+ into yeast cells, Biochim. Biophys. Acta 163: 325–330.PubMedCrossRefGoogle Scholar
  21. Fuhrmann, G. F., and Rothstein, A., 1968b, The mechanism of the partial inhibition of fermentation in yeast by nickel ions, Biochim. Biophys. Acta 163: 331–338.PubMedCrossRefGoogle Scholar
  22. Gill, C. O., and Ratledge, C., 1973, Inhibition of glucose assimilation and transport by n-decane and other n-alkanes in Candida 107, J. Gen. Microbiol. 75: 11–22.PubMedGoogle Scholar
  23. Goffeau, A., and Slayman, C. W., 1981, The proton-translocating ATPase of the fungal plasma membrane, Biochim. Biophys. Acta 639: 197–223.PubMedGoogle Scholar
  24. Harris, G., and Thompson, C. C., 1961, The uptake of nutrients by yeasts. II. The maltose permease of a brewing yeast, Biochim. Biophys. Acta 52: 176–183.PubMedCrossRefGoogle Scholar
  25. Heredia, C. F., Sols, A., and De La Fuente, G., 1968, Specificity of the constitutive hexose transport in yeast, Eur. J. Biochem. 5: 321–329.PubMedCrossRefGoogle Scholar
  26. Holligan, P. M., and Jennings, D. H., 1973, Carbohydrate metabolism in the fungus Dendryphiella salina. IV. Acetate assimilation, New Phytol. 72: 315–319.CrossRefGoogle Scholar
  27. Jaspers, H. T. A., and Van Steveninck, J., 1975, Transport-associated phosphorylation of 2-deoxy-D -glucose in Saccharomyces fragilis, Biochim. Biophys. Acta 406: 370–385.PubMedCrossRefGoogle Scholar
  28. Jennings, D. H., 1974, Sugar transport into fungi: An essay, Trans. Br. Mycol. Soc. 62: 1–24.CrossRefGoogle Scholar
  29. Jennings, D. H., and Austin, S., 1973, The stimulatory effect of the non-metabolized sugar 3–0methyl-glucose on the conversion of mannitol and arabitol to polysaccharide and other insoluble compounds in the fungus Dendryphiella salina, J. Gen. Microbiol. 75: 287–294.Google Scholar
  30. Klingmüller, W., 1967a, Aktive Aufnahme von Zuckern durch Zellen von Neurospora crassa unter Beteiligung eines enzymatischen Systems mit Permeaseeigenschaften. I, Z. Naturforsch. 22B: 181–187.Google Scholar
  31. Klingmüller, W., 1967b, Aktive Aufnahme von Zuckern von Neurospora crassa unter Beteiligung eines enzymatischen Systems mit Permease-Eigenschaften. II, Z. Naturforsch. 22B: 188–195.Google Scholar
  32. Klingmüller, W., and Huh, H., 1972, Sugar transport in Neurospora crassa, Eur. J. Biochem. 25: 141–146.PubMedCrossRefGoogle Scholar
  33. Kotyk, A., 1961, The effect of oxygen on transport phenomena in a respiration-deficient mutant of baker’s yeast, In: Membrane Transport and Metabolism ( A. Kleinzeller and A. Kotyk, eds.), pp. 352–360, Academic Press, New York.Google Scholar
  34. Kotyk, A., 1967, Properties of the sugar carrier in baker’s yeast. II. Specificity of transport, Folia Microbiol. 12: 121–131.CrossRefGoogle Scholar
  35. Kotyk, A., and Michaljaniovâ, D., 1974, Nature of the uptake of D-galactose, D-glucose and a-methyl-D-glucoside by Saccharomyces cerevisiae, Biochim. Biophys. Acta 332: 104–113.CrossRefGoogle Scholar
  36. Kotyk, A., Michaljaniiovd, D., Veres, K., and Soukupova, V., 1975, Transport of 4-deoxy-and 6-deoxy-D-glucose in baker’s yeast, Folia Microbiol. 20: 496–503.CrossRefGoogle Scholar
  37. Kuo, S. C., and Cirillo, V. P., 1970, Galactose transport in Saccharomyces cerevisiae. III. Characteristics of galactose uptake in transferaseless cells: Evidence against transport-associated phosphorylation, J. Bacteriol. 103: 679–685.PubMedGoogle Scholar
  38. Kuo, S. C., Christensen, M. S., and Cirillo, V. P., 1970, Galactose transport in Saccharomyces cerevisiae. II. Characteristics of galactose uptake and exchange in galactokinaseless cells, J. Bacteriol. 103: 671–678.Google Scholar
  39. LeFevre, P. G., 1961, Sugar transport in the red blood cell: Structure activity relationships in substrate and antagonists, Pharmacol. Rev. 13: 39–70.PubMedGoogle Scholar
  40. Lobo, Z., and Maitra, P. K., 1977a, Genetics of yeast hexokinase, Genetics 86: 727–744.PubMedGoogle Scholar
  41. Lobo, Z., and Maitra, P. K., 1977b, Resistance to 2-deoxyglucose in yeast: A direct selection of mutants lacking glucose-phosphorylating enzymes, Mol. Gen. Genet. 157: 297–300.PubMedCrossRefGoogle Scholar
  42. Lobo, Z., and Maitra, P. K., 1977c, Physiological role of glucose-phosphorylating enzymes in Saccharomyces cerevisiae, Arch. Biochem. Biophys. 182: 639–645.PubMedCrossRefGoogle Scholar
  43. Mark, C. G., and Romano, A. H., 1971, Properties of the hexose transport systems of Aspergillus nidulans, Biochim. Biophys. Acta 249: 216–226.PubMedCrossRefGoogle Scholar
  44. Meredith, S. A., and Romano, A. H., 1977, Uptake and phosphorylation of 2-deoxy-D-glucose by wild type and respiration-deficient bakers’ yeast, Biochim. Biophys. Acta 497: 745–759.PubMedCrossRefGoogle Scholar
  45. Mitchell, P., 1963, Molecule, group and electron translocation through natural membranes, Biochem. Soc. Symp. 22: 142–168.Google Scholar
  46. Morgan, M. J., and Kornberg, H. L., 1969, Regulation of sugar accumulation in Escherichia coli, FEBS Lett. 3: 53–56.PubMedCrossRefGoogle Scholar
  47. Neville, M. M., Suskind, S. R., and Roseman, S., 1971, A derepressible active transport system for glucose in Neurospora crassa, J. Biol. Chem. 246: 1294–1301.PubMedGoogle Scholar
  48. Okada, H., and Halvorson, H. O., 1964a, Uptake of a-thioethyl D-glucopyranoside by Saccharomyces cerevisiae. I. The genetic control of facilitated diffusion and active transport, Biochim. Biophys. Acta 82: 538–546.PubMedCrossRefGoogle Scholar
  49. Okada, H., and Halvorson, H. O., 1964b, Uptake of a-thioethyl D-glucopyranoside by Saccharomyces cerevisiae. II. General characteristics of an active transport system, Biochim. Biophys. Acta 82: 547–555.PubMedCrossRefGoogle Scholar
  50. Robertson, J. J., and Halvorson, H. O., 1957, The components of maltozymase in yeast, and their behavior during deadaptation, J. Bacteriol. 73: 186–198.PubMedGoogle Scholar
  51. Romano, A. H., 1973, Properties of the sugar transport systems in Aspergillus nidulans and their regulation, In: Genetics of Industrial Microorganisms: Actinomycetes and Fungi ( Z. Vanek, Z. Hostalek, and J. Cudlin, eds.), pp. 195–212, Acdemia, Prague.Google Scholar
  52. Romano, A. H., 1982, Facilitated diffusion of 6-deoxy-o-glucose in bakers’ yeast: Evidence against phosphorylation-associated transport of glucose, J. Bacteriol. 152: 1295–1297.PubMedGoogle Scholar
  53. Romano, A. H., and Kornberg, H. L., 1968, Regulation of sugar uptake in Aspergillus nidulans, Proc. R. Soc. (London) Ser. B 173: 475–490.CrossRefGoogle Scholar
  54. Rothstein, A., 1954, Enzyme systems of the cell surface involved in the uptake of sugars by yeast, Symp. Soc. Exp. Biol. 8: 165–201.Google Scholar
  55. Scarborough, G. A., 1970a, Sugar transport in Neurospora crassa, J. Biol. Chem. 245: 1694–1698.PubMedGoogle Scholar
  56. Scarborough, G. A., 1970b, Sugar transport in Neurospora crassa. II. A second glucose transport system, J. Biol. Chem. 245: 3985–3987.PubMedGoogle Scholar
  57. Scarborough, G. A., 1976, The Neurospora plasma membrane ATPase is an electrogenic pump, Proc. Natl. Acad. Sci. USA 73: 1485–1488.PubMedCrossRefGoogle Scholar
  58. Scarborough, G. A., 1980, Proton translocation catalyzed by the electrogenic ATPase in the plasma membrane of Neurospora, Biochemistry 19: 2925–2931.PubMedCrossRefGoogle Scholar
  59. Schneider, R. P., and Wiley, W. R., 1971a, Kinetic characteristics of the two glucose transport systems in Neurospora crassa, J. Bacteriol. 106: 479–486.PubMedGoogle Scholar
  60. Schneider, R. P., and Wiley, W. R., 197lb, Regulation of sugar transport in Neurospora crassa, J. Bacteriol. 106: 487–492.Google Scholar
  61. Schneider, R. P., and Wiley, W. R., 1971c, Transcription and degradation of messenger ribonucleic acid for a glucose transport system in Neurospora, J. Biol. Chem. 246: 4784–4789.PubMedGoogle Scholar
  62. Seaston, A., Inkson, C., and Eddy, A. A., 1973, The absorption of protons with specific amino acids and carbohydrates by yeast, Biochem. J. 134: 1031–1043.PubMedGoogle Scholar
  63. Serrano, R., 1977, Energy requirements for maltose transport in yeast, Eur. J. Biochem. 80:97–102.PubMedCrossRefGoogle Scholar
  64. Serrano, R., and DelaFuente, G., 1974, Regulatory properties of the constitutive hexose transport in Saccharomyces cerevisiae, Mol. Cell Biochem. 5: 161–171.PubMedCrossRefGoogle Scholar
  65. Slayman, C. L., and Slayman, C. W., 1974, Depolarization of the plasma membrane of Neurospora during active transport of glucose: Evidence for a proton-dependent cotransport system, Proc. Natl. Acad. Sci. USA 71: 1935–1939.PubMedCrossRefGoogle Scholar
  66. Slayman, C. W., and Slayman, C. L., 1975, Energy coupling in the plasma membrane of Neurospora: ATP-dependent proton transport and proton-dependent sugar cotransport, In: Molecular Aspects of Membrane Phenomena ( H. R. Kaback, H. Neurath, G. K. Radda, R. Schwyzer, and W. R. Wiley, eds.), pp. 233–248, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  67. Sols, A., 1967, Regulation of carbohydrate transport and metabolism in yeast, In: Aspects of Yeast Metabolism ( A. K. Mills and H. Krebs, eds.), pp. 47–66, Blackwell, Oxford.Google Scholar
  68. Van Den Broek, P. A., and Van Steveninck, J., 1982, Kinetic analysis of H+/methyl-ß-D-thiogalactoside symport in Saccharomyces fragilis, Biochim. Biophys. Acta 693: 213–220.PubMedCrossRefGoogle Scholar
  69. Van Steveninck, J., 1968, Transport and transport-associated phosphorylation of 2-deoxy-D-glucose in yeast, Biochim. Biophys. Acta 163: 386–394.PubMedCrossRefGoogle Scholar
  70. Van Steveninck, J., 1970, The transport mechanism of a-methylglucoside in yeast: Evidence for transport-associated phosphorylation, Biochim. Biophys. Acta 203: 376–384.PubMedCrossRefGoogle Scholar
  71. Van Steveninck, J., 1972, Transport and transport-associated phosphorylation of galactose in Saccharomyces cerevisiae, Biochim. Biophys. Acta 274: 575–583.PubMedCrossRefGoogle Scholar
  72. Van Steveninck, J., and Rothstein, A., 1965, Sugar transport and metal binding in yeast, J. Gen. Physiol. 49: 235–246.PubMedCrossRefGoogle Scholar
  73. Wilkins, P. O., and Cirillo, V. P., 1965, Sorbose counterflow as a measure of intracellular glucose in baker’s yeast, J. Bacteriol. 90: 1605–1610.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Antonio H. Romano
    • 1
  1. 1.Microbiology SectionThe University of ConnecticutStorrsUSA

Personalised recommendations