Carbohydrate Metabolism in African Trypanosomes, with Special Reference to the Glycosome

  • Alan H. Fairlamb
  • Fred R. Opperdoes


Over the last decade, our knowledge of the biochemistry and molecular biology of trypanosomes has expanded so much that the African trypanosome, Trypanosoma brucei, is now the equivalent of E. coli to the biochemical parasitologist. Trypanosomes are of interest to scientists not only because of their medical and veterinary importance, but also because of several unique features of their biochemistry and molecular biology. Two such features have been reviewed recently: the mitochondrial DNA network (the kinetoplast) and its role in the life cycle (Hajduk, 1978; Borst and Hoeijmakers, 1979; Barker, 1980; Englund et al., 1982), and the variant surface glycoprotein and its role in evading the immune response of the host (Englund et al., 1982; Turner, 1982).


Trypanosoma Brucei Glycerol Kinase Bloodstream Form Variant Surface Glycoprotein Salicylhydroxamic Acid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abolarin, M. O., Evans, D. A., Tovey, D. G.,and Ormerod, W. E., 1982, Cryptic stage of sleeping-sickness trypanosome developing in choroid plexus epithelial cells, Br. Med. J. 285: 1380–1382.Google Scholar
  2. Amole, B. O., and Clarkson, A. B., Jr., 1981, Trypanosoma brucei: Host parasite interaction in parasite destruction by salicylhydroxamic acid and glycerol in mice, Exp. Parasitol. 51: 133–140.PubMedGoogle Scholar
  3. Apted, F. I. C., 1970, Treatment of human trypanosomiasis, In: The African Trypanosomiases ( H. W. Mulligan, ed.), pp. 684–710, Allen & Unwin, London.Google Scholar
  4. Balber, A. E., 1983, Primary murine bone marrow cultures support continuous growth of infectious human trypanosomes, Science 220: 421–423.PubMedGoogle Scholar
  5. Barker, D. C., 1980, The ultrastructure of kinetoplast DNA with particular reference to the interpretation of dark field electron microscopy images of isolated, purified networks, Micron 11: 21–62.Google Scholar
  6. Bendall, D. S., and Bonner, W. D., Jr., 1971, Cyanide-insensitive respiration in plant mitochondria, Plant Physiol. 47: 236–245.PubMedGoogle Scholar
  7. Berens, R. L., Brun, R., and Krassner, S. M., 1976, A simple monophasic medium for axenic culture of hemoflagellates, J. Parasitol. 62: 360–365.PubMedGoogle Scholar
  8. Bienen, E. J., Hammadi, E., and Hill, G. C., 1981, Trypanosoma brucei: Biochemical and morphological changes during in vitro transformation of bloodstream-to procyclic-trypomastigotes, Exp. Parasitol. 51: 408–417.PubMedGoogle Scholar
  9. Bienen, E. J., Hill, G. C., and Shin, K.-O., 1983, Elaboration of mitochondrial function during Trypanosoma brucei differentiation, Mol. Biochem. Parasitol. 7: 75–86.PubMedGoogle Scholar
  10. Bohringer, S., and Hecker, H., 1974, Quantitative ultrastructural differences between strains of the Trypanosoma brucei subgroup during transformation in blood, J. Protozool. 21: 694–698.PubMedGoogle Scholar
  11. Bohringer, S., and Hecker, H., 1975, Quantitative ultrastructural investigations of the life cycle of Trypanosoma brucei: A morphometric analysis, J. Protozool. 22: 463–467.PubMedGoogle Scholar
  12. Bonner, W. D., Jr., and Rich, P. R., 1978, Molecular aspects of cyanide/antimycin resistant respiration, In: Plant Mitochondria (G. C. Ducet and C. Lance, eds.), pp. 241–247, Elsevier/North-Holland, Amsterdam.Google Scholar
  13. Borst, P., and Hoeijmakers, J. H. J., 1979, Kinetoplast DNA, Plasmid 2: 20–40.PubMedGoogle Scholar
  14. Bowman, I. B. R., 1974, Intermediary metabolism of pathogenic flagellates, In: Trypanosomiasis and Leishmaniasis with Special Reference to Chagas’ Disease, Ciba Foundation Symposium 20 (new series), pp. 255–271, Associated Scientific Publishers, Amsterdam.Google Scholar
  15. Bowman, I. B. R., and Fairlamb, A. H., 1976, Glycerol-3-phosphate oxidase in Trypanosoma brucei and the effect of suramin, In: Biochemistry of Parasites and Host-Parasite Relationships (H. Van den Bossche, ed.), pp. 501–507, Elsevier/North-Holland, Amsterdam.Google Scholar
  16. Bowman, I. B. R., and Flynn, I. W., 1976, Oxidative metabolism of trypanosomes, In: Biology of the Kinetoplastida ( W. H. R. Lumsden and D. A. Evans, eds.), Vol. 1, pp. 435–476, Academic Press, New York.Google Scholar
  17. Bowman, I. B. R., Tobie, E. J., and von Brand, T., 1963, CO2 fixation studies with the culture form of Trypanosoma cruzi, Comp. Biochem. Physiol. 9: 105–114.Google Scholar
  18. Bowman, I. B. R., Srivastava, H. K., and Flynn, I. W., 1972, Adaptations in oxidative metabolism during the transformation of Trypanosoma rhodesiense from bloodstream into culture form, In: Comparative Biochemistry of Parasites ( H. Van den Bossche, ed.), pp. 329–342, Academic Press, New York.Google Scholar
  19. Brohn, F. H., and Clarkson, A. B., Jr., 1978, Quantitative effects of salicylhydroxamic acid and glycerol on Trypanosoma brucei glycolysis in vitro and in vivo, Acta Trop. 35: 23–33.PubMedGoogle Scholar
  20. Brohn, F. H., and Clarkson, A. B., Jr., 1980, Trypanosoma brucei brucei: Patterns of glycolysis at 37°C in vitro, Mol. Biochem. Parasitol. 1: 291–305.PubMedGoogle Scholar
  21. Broman, K., Ropars, M., and Deshusses, J., 1982, Subcellular location of glycolytic enzymes in Trypanosoma brucei culture form, Experientia 38: 533–534.Google Scholar
  22. Broman, K., Knupfer, A.-L., Ropars, M., and Deshusses, J., 1983, Occurrence and role of phosphoenolpyruvate carboxykinase in procyclic Trypanosoma brucei brucei glycosomes, Mol. Biochem. Parasitol. 8: 79–87.PubMedGoogle Scholar
  23. Brown, R. C., Evans, D. A., and Vickerman, K., 1973, Changes in oxidative metabolism and ultrastructure accompanying differentiation of the mitochondrion in Trypanosoma brucei, Int. J. Parasitol. 3: 691–704.PubMedGoogle Scholar
  24. Brun, R., and Jenni, L., 1977, A new semi-defined medium for Trypanosoma brucei sspp., Acta Trop. 34: 21–33.PubMedGoogle Scholar
  25. Brun, R., and Schonenberger, M., 1979, Cultivation and in vitro cloning of procyclic culture forms of Trypanosoma brucei in a semi-defined medium, Acta Trop. 36: 289–292.PubMedGoogle Scholar
  26. Brun, R., and Schonenberger, M., 1981, Stimulating effect of citrate and cis-aconitate on the transformation of Trypanosoma brucei bloodstream forms to procyclic forms in vitro, Z. Parasitenkd. 66: 17–24.PubMedGoogle Scholar
  27. Brun, R., Jenni, L., Tanner, M., Schonenberger, M., and Schell, K.-F., 1979, Cultivation of vertebrate infective forms derived from metacyclic forms of pleomorphic Trypanosoma brucei stocks, Acta Trop. 36: 387–390.PubMedGoogle Scholar
  28. Brun, R., Jenni, L., Schonenberger, M., and Schell, K.-F., 1981, In vitro cultivation of bloodstream forms of Trypanosoma brucei, T. rhodesiense, and T. gambiense, J. Protozool. 28: 470–479.PubMedGoogle Scholar
  29. Bursell, E., 1978, Quantitative aspects of proline utilization during flight in tsetse flies, Physiol. Entomol. 3: 265–272.Google Scholar
  30. Bursell, E., 1981, The role of proline in energy metabolism, In: Energy Metabolism in Insects (R. G. H. Downer, ed.), pp. 135–154, Plenum Press, New York.Google Scholar
  31. Caughey, B., Hill, G. C., and Rich, P., 1979, Alternate electron donors to the a-glycerophosphate oxidase in Trypanosoma brucei, J. Protozool. 26: 8A.Google Scholar
  32. Clarkson, A. B., Jr., and Amole, B. O., 1982, Role of calcium in trypanocidal drug action, Science 216: 1321–1323.PubMedGoogle Scholar
  33. Clarkson, A. B., Jr., and Brohn, F. H., 1976, Trypanosomiasis: An approach to chemotherapy by inhibition of carbohydrate metabolism, Science 194: 204–206.PubMedGoogle Scholar
  34. Clarkson, A. B., Jr., Grady, R. W., Grossman, S. A., McCallum, R. J., and Brohn, F. H., 1981, Trypanosoma brucei brucei: A systematic screening for alternatives to the salicylhydroxamic acid-glycerol combination, Mol. Biochem. Parasitol. 3: 271–291.PubMedGoogle Scholar
  35. Cohen, S. S., 1979, Comparative biochemistry and drug design for infectious disease, Science 205: 964–971.PubMedGoogle Scholar
  36. Cross, G. A. M., and Manning, J. C., 1973, Cultivation of Trypanosoma brucei sspp. in semi-defined and defined media, Parasitology 67: 315–331.PubMedGoogle Scholar
  37. Cross, G. A. M., Klein, R. A., and Linstead, D. J., 1975, Utilization of amino acids by Trypanosoma brucei in culture: L-Threonine as a precursor for acetate, Parasitology 71: 311–326.PubMedGoogle Scholar
  38. Cunningham, I., 1973, Quantitative studies on trypanosomes in tsetse tissue culture, Exp. Parasitol. 33: 34–45.PubMedGoogle Scholar
  39. Cunningham, I., 1977, New culture medium for maintenance of tsetse tissues and growth of trypanosomatids, J. Protozool. 24: 325–329.PubMedGoogle Scholar
  40. Cunningham, I., and Honigberg, B. M., 1977, Infectivity reacquisition of Trypanosoma brucei brucei cultivated with tsetse salivary glands, Science 197: 1279–1282.PubMedGoogle Scholar
  41. Cunningham, I., Honigberg, B. M., and Taylor, A. M., 1981, Infectivity of monomorphic and pleomorphic Trypanosoma brucei stocks cultivated at 28°C with various tsetse fly tissues, J. Protozool. 67: 391–397.Google Scholar
  42. Dawson, A. P., and Thorne, C. J. R., 1969, Preparation and properties of L-3-glycerophosphate dehydrogenase from pig brain mitochondria, Biochem. J. 111: 27–34.PubMedGoogle Scholar
  43. De Raadt, P., 1976, African sleeping sickness today, Trans. R. Soc. Trop. Med. Hyg. 70: 114–116.PubMedGoogle Scholar
  44. Dixon, H., 1966, Blood platelets as a source of enzyme activity in washed trypanosome suspensions, Nature 210: 428.PubMedGoogle Scholar
  45. Docampo, R., Deboiso, J. F., Boveris, A., and Stoppani, A. O. M., 1976, Localization of peroxidase activity in Trypanosoma cruzi microbodies, Experientia 32: 972–975.PubMedGoogle Scholar
  46. Englund, P. T., Hajduk, S. L., and Marini, J. C., 1982, The molecular biology of trypanosomes, Annu. Rev. Biochem. 51: 695–726.PubMedGoogle Scholar
  47. Evans, D. A., and Brightman, C. A. J., 1980, Pleomorphism and the problem of recrudescent parasitaemia following treatment with salicylhydroxamic acid (SHAM) in African trypanosomiasis, Trans. R. Soc. Trop. Med. Hyg. 74: 601–604.PubMedGoogle Scholar
  48. Evans, D. A., and Brown, R. C., 1971, Cyanide insensitive culture form of Trypanosoma brucei, Nature 230: 251–252.PubMedGoogle Scholar
  49. Evans, D. A., and Brown, R. C., 1972a, The utilization of glucose and proline by culture forms of Trypanosoma brucei, J. Protozool. 19: 686–690.PubMedGoogle Scholar
  50. Evans, D. A., and Brown, R. C., 1972b, The effect of diphenylamine on terminal respiration in bloodstream and culture forms of Trypanosoma brucei, J. Protozool. 19: 365–369.Google Scholar
  51. Evans, D. A., and Brown, R. C., 1973, M-Chlorobenzhydroxamic acid-An inhibitor of cyanideinsensitive respiration in Trypanosoma brucei, J. Protozool. 20: 157–160.PubMedGoogle Scholar
  52. Evans, D. A., and Holland, M. F., 1978, Effective treatment of Trypanosoma vivax infections with salicylhydroxamic acid (SHAM), Trans. R. Soc. Trop. Med. Hyg. 72: 203–204.PubMedGoogle Scholar
  53. Evans, D. A., Brightman, C. J., and Holland, M. F., 1977, Salicylhydroxamic acid/glycerol in experimental trypanosomiasis, Lancet 2: 769.PubMedGoogle Scholar
  54. Fairlamb, A. H., 1981, Alternate metabolic pathways in protozoan metabolism, Parasitology 82: 130.Google Scholar
  55. Fairlamb, A. H., 1982, Biochemistry of trypanosomiasis and rational approaches to chemotherapy, Trends Biochem. Sci. 7: 249–253.Google Scholar
  56. Fairlamb, A. H., and Bowman, I. B. R., 1977a, The isolation and characterization of particulate snglycerol-3-phosphate oxidase from Trypanosoma brucei, Int. J. Biochem. 8: 659–668.Google Scholar
  57. Fairlamb, A. H., and Bowman, I. B. R., 1977b, Inhibitor studies on particulate sn-glycerol-3-phosphate oxidase from Trypanosoma brucei, Int. J. Biochem. 8: 669–675.Google Scholar
  58. Fairlamb, A. H., and Bowman, I. B. R., 1977c, Trypanosoma brucei: Suramin and other trypanocidal compounds effects on sn-glycerol-3-phosphate oxidase, Exp. Parasitol. 43: 353–361.PubMedGoogle Scholar
  59. Fairlamb, A. H., and Bowman, I. B. R., 1980a, Uptake of the trypanocidal drug suramin by bloodstream forms of Trypanosoma brucei and its effect on respiration and growth rate in vivo, Mol. Biochem. Parasitol. 1: 315–318.PubMedGoogle Scholar
  60. Fairlamb, A. H., and Bowman, I. B. R., 1980b, Trypanosoma brucei: Maintenance of concentrated suspensions of bloodstream trypomastigotes in vitro using continuous dialysis for measurement of endocytosis, Exp. Parasitol. 49: 366–380.PubMedGoogle Scholar
  61. Fairlamb, A. H., Opperdoes, F. R., and Borst, P., 1977, New approach to screening drugs for activity against African trypanosomes, Nature 265: 270–271.PubMedGoogle Scholar
  62. Fairlamb, A. H., Oduro, K. K., and Bowman, I. B. R., 1979, Action of the trypanocidal drug suramin on the enzymes of aerobic glycolysis of Trypanosoma brucei in vivo, In: FEBS Special Meeting on Enzymes, Dubrovnik, Abstr. S4–10.Google Scholar
  63. Flynn, I. W., and Bowman, I. B. R., 1973, The metabolism of carbohydrate by pleomorphic African trypanosomes, Comp. Biochem. Physiol. 45B: 25–42.Google Scholar
  64. Flynn, I. W., and Bowman, I. B. R., 1974, The action of trypanocidal arsenical drugs on Trypanosoma brucei and Trypanosoma rhodesiense, Comp. Biochem. Physiol. 48B: 261–273.Google Scholar
  65. Flynn, I. W., and Bowman, I. B. R., 1980, Purification and characterization of pyruvate kinase from Trypanosoma brucei, Arch. Biochem. Biophys. 200: 401–409.PubMedGoogle Scholar
  66. Ford, W. C. L., and Bowman, I. B. R., 1973, Metabolism of proline by the culture midgut form of Trypanosoma rhodesiense, Trans. R. Soc. Trop. Med. Hyg. 67: 257.PubMedGoogle Scholar
  67. Gardiner, P. R., Lamont, L. C., Jones, T. W., and Cunningham, I., 1980, The separation and structure of infective trypanosomes from cultures of Trypanosoma brucei grown in association with tsetse fly salivary glands, J. Protozool. 27: 182–185.PubMedGoogle Scholar
  68. Gashumba, J., 1981, Sleeping sickness in Uganda, New Sci. 89: 164.Google Scholar
  69. Ghiotto, V., Brun, R., Jenni, L., and Hecker, H., 1979, Trypanosoma brucei: Morphometric changes and loss of infectivity during transformation of bloodstream forms to procyclic culture forms in vitro, Exp. Parasitol. 48: 447–456.PubMedGoogle Scholar
  70. Grant, P. T., and Fulton, J. D., 1957, The catabolism of glucose by strains of Trypanosoma rhodesiense, Biochem. J. 66: 242–250.PubMedGoogle Scholar
  71. Grant, P. T., and Sargent, J. R., 1960, Properties of t,-a-glycerophosphate oxidase and its role in the respiration of Trypanosoma rhodesiense, Biochem. J. 76: 229–237.PubMedGoogle Scholar
  72. Gruenberg, J., Sharma, P. R., and Deshusses, J., 1978, D-Glucose transport in Trypanosoma brucei: D-Glucose transport is the rate limiting step of its metabolism, Eur. J. Biochem. 89: 461–469.PubMedGoogle Scholar
  73. Gruenberg, J., Schwendimann, B., Sharma, P. R., and Deshusses, J., 1980, Role of glycerol permeation in the bloodstream form of Trypanosoma brucei, J. Protozool. 27: 484–491.PubMedGoogle Scholar
  74. Gutteridge, W. E., and Rogerson, G. W., 1979, Biochemical aspects of the biology of Trypanosoma cruzi, In: Biology of the Kinetoplastida ( W. H. R. Lumsden and D. A. Evans, eds.), Vol. 2, pp. 619–652, Academic Press, New York.Google Scholar
  75. Hajduk, S. L., 1978, Influence of DNA complexing compounds on the kinetoplast of trypanosomatids, Prog. Mol. Subcell. Biol. 6: 158–200.Google Scholar
  76. Hammond, D. J., and Bowman, I. B. R., 1980a, Trypanosoma brucei: The effect of glycerol on the anaerobic metabolism of glucose, Mol. Biochem. Parasitol. 2: 63–75.PubMedGoogle Scholar
  77. Hammond, D. J., and Bowman, I. B. R., 1980b, Studies oh glycerol kinase and its role in ATP synthesis in Trypanosoma brucei, Mol. Biochem. Parasitol. 2: 77–91.PubMedGoogle Scholar
  78. Hammond, D. J., and Gutteridge, W. E., 1983, Studies on the glycosomal orotate phosphoribosyl transferase of Trypanosoma cruzi, Mol. Biochem. Parasitol. 7: 319–330.Google Scholar
  79. Hammond, D. J., Gutteridge, W. E., and Opperdoes, F. R., 1981, A novel location for two enzymes of de novo pyrimidine biosynthesis in trypanosomes and Leishmania, FEBS Lett. 128: 22–30.Google Scholar
  80. Hart, D. T., and Coombs, G. H., 1980, The importance and subcellular localization of 0-oxidation, glycolysis and amino acid oxidation in Leishmania mexicana mexicana amastigotes and promastigotes, In: Proceedings of the 3rd European Multicolloquium on Parasitology, Cambridge, Abstr. 16.Google Scholar
  81. Hart, D. T., and Opperdoes, F. R., 1984, The occurrence of glycosomes (microbodies) in the promastigote stage of four major Leishmania species of Mol. Biochem. Parasitol. 13: 159–172.PubMedGoogle Scholar
  82. Hart, D. T., Misset, O., Edwards, S. W., and Opperdoes, F. R., 1984, A comparison of the glycosomes (microbodies) isolated from Trypanosoma brucei bloodstream form and cultured procyclic trypomastigotes, Mol. Biochem. Parasitol. 12: 25–35.PubMedGoogle Scholar
  83. Hawking, F., 1973, The differentiation of Trypanosoma rhodesiense from T. brucei by means of human serum, Trans. R. Soc. Trop. Med. Hyg. 67: 517–527.PubMedGoogle Scholar
  84. Henry, M.-F., and Nyns, E.-J., 1975, Cyanide insensitive respiration: An alternative mitochondrial pathway, Sub-Cell. Biochem. 4: 1–65.Google Scholar
  85. Hill, G. C., 1976a. Electron transport systems in Kinetoplastida, Biochim. Biophys. Acta 456: 149–193.PubMedGoogle Scholar
  86. Hill, G. C., 1976b, Characterization of the electron transport systems present during the life cycle of African trypanosomes, In: Biochemistry of Parasites and Host-Parasite Relationships ( H. Van den Bossche, ed.), pp. 31–50, Elsevier/North-Holland, Amsterdam.Google Scholar
  87. Hill, G. C., Gutteridge, W. E., and Matthewson, N. W., 1971a, Purification and properties of cytochromes c from trypanosomatids, Biochim. Biophys. Acta 243: 225–229.PubMedGoogle Scholar
  88. Hill, G. C., Chan, S. K., and Smith, L., 1971b, Purification and properties of cytochrome c555 from a protozoan, Crithidia fasciculata, Biochim. Biophys. Acta 253: 78–87.PubMedGoogle Scholar
  89. Hill, G. C., Shimer, S. P., Caughey, B., and Sauer, L. S., 1978a, Growth of infective forms of Trypanosoma rhodesiense in vitro, the causative agent of African trypanosomiasis, Science 202: 763–765.PubMedGoogle Scholar
  90. Hill, G. C., Shimer, S., Caughey, B., and Sauer, L. S., 1978b, Growth of infective forms of Trypanosoma (T.) brucei on buffalo lung and Chinese hamster lung tissue culture cells, Acta Trop. 35: 201–207.PubMedGoogle Scholar
  91. Hirumi, H., Doyle, J. J., and Hirumi, K., 1977a, African trypanosomes: Cultivation of animal-infective Trypanosoma brucei in vitro, Science 196: 992–994.PubMedGoogle Scholar
  92. Hirumi, H., Doyle, J. J., and Hirumi, K., 1977b, Cultivation of bloodstream Trypanosoma brucei, Bull. WHO 55: 405–409.PubMedGoogle Scholar
  93. Hoare, C. A., 1972, The Trypanosomes of Mammals: A Zoological Monograph, Blackwell, Oxford.Google Scholar
  94. Jennings, F. W., Whitelaw, D. D., and Urquhart, G. M., 1977, The relationship between duration of infection with Trypanosoma brucei in mice and the efficacy of chemotherapy, Parasitology 75: 143–153.PubMedGoogle Scholar
  95. Kilgour, V., and Godfrey, D. G., 1973, Species-characteristic isoenzymes of two aminotransferases in trypanosomes, Nature New Biol. 244: 69–70.PubMedGoogle Scholar
  96. Klein, R. A., Linstead, D. J., and Wheeler, M. V., 1975, Carbon dioxide fixation in trypanosomatids, Parasitology 71: 93–107.PubMedGoogle Scholar
  97. Lanham, S. M., 1968, Separation of trypanosomes from the blood of infected rats and mice by anion exchangers, Nature 218: 1273–1274.PubMedGoogle Scholar
  98. Lanham, S. M., and Godfrey, D. G., 1970, Isolation of salivarian trypanosomes from man and other mammals using DEAE cellulose, Exp. Parasitol. 28: 521–534.PubMedGoogle Scholar
  99. McGhee, R. B., and Cosgrove, W. B., 1980, Biology and physiology of the lower Trypanosomatidae, Microbiol. Rev. 44: 140–173.PubMedGoogle Scholar
  100. Mackenzie, N. E., Hall, J. E., Flynn, I. W., and Scott, A. I., 1983, 13C nuclear magnetic resonance studies of anaerobic glycolysis in Trypanosoma brucei spp., Biosci. Rep. 3: 141–151.Google Scholar
  101. McLaughlin, J., 1981, Association of adenylate kinase with the glycosome of Trypanosoma rhodesiense, Biochem. Int. 2: 345–353.Google Scholar
  102. Mendez, Y., and Honigberg, B. M., 1972, Infectivity of Trypanosoma brucei-subgroup flagellates maintained in culture, J. Parasitol. 58: 1122–1136.PubMedGoogle Scholar
  103. Meshnick, S. R., 1984, The chemotherapy of African trypanosomiasis, In: Parasitic Diseases (J. M. Mansfield, ed.), Vol. 2, pp. 165–199, Dekker, New York.Google Scholar
  104. Meshnick, S. R., Blobstein, S. H., Grady, R. W., and Cerami, A., 1978, An approach to the development of new drugs for African trypanosomiasis, J. Exp. Med. 148: 569–579.PubMedGoogle Scholar
  105. Muse, K. E., and Roberts, J. F., 1973, Microbodies in Crithidia fasciculata, Protoplasma 78: 343–348.Google Scholar
  106. Njogu, R. M., and Nyindo, M., 1981, Presence of a peculiar pathway of glucose metabolism in infective forms of Trypanosoma brucei cultured from salivary glands of tsetse flies, J. Parasitol. 67: 847–851.PubMedGoogle Scholar
  107. Njogu, R. M., Whittaker, C. J., and Hill, G. C., 1980, Evidence for a branched electron transport chain in Trypanosoma brucei, Mol. Biochem. Parasitol. 1: 13–29.PubMedGoogle Scholar
  108. Nwagwu, M., and Opperdoes, F. R., 1982, Regulation of glycolysis in Trypanosoma brucei: Hexokinase and phosphofructokinase activity, Acta Trop. 39: 61–72.PubMedGoogle Scholar
  109. Oduro, K. K., Flynn, I. W., and Bowman, I. B. R., 1980a, Trypanosoma brucei: Activities and subcellular distribution of glycolytic enzymes from differently disrupted cells, Exp. Parasitol. 50: 123–135.PubMedGoogle Scholar
  110. Oduro, K. K., Bowman, I. B. R., and Flynn, I. W., 1980b, Trypanosoma brucei: Preparation and some properties of a multienzyme complex catalysing part of the glycolytic pathway, Exp. Parasitol. 50: 240–250.PubMedGoogle Scholar
  111. Ojeda, P. V., and Flynn, I. W., 1982, Some aspects of resistance to arsenical drugs in Trypanosoma brucei, In: Abstracts of Vth International Congress of Parasitology, Toronto, p. 724.Google Scholar
  112. Opperdoes, F. R., 1980, Miconazole: An inhibitor of cyanide-insensitive respiration in Trypanosoma brucei, Trans. R. Soc. Trop. Med. Hyg. 74: 423–424.PubMedGoogle Scholar
  113. Opperdoes, F. R., 198la, A rapid method for the isolation of intact glycosomes from Trypanosoma brucei by Percoll-gradient centrifugation in a vertical rotor, Mol. Biochem. Parasitol. 3: 181–186.Google Scholar
  114. Opperdoes, F. R., 1981b, Alternate metabolic pathways in protozoan energy metabolism, Parasitology 82: 1–30.Google Scholar
  115. Opperdoes, F. R., 1982, The glycosome, Ann. N.Y. Acad. Sci. 386: 543–545.Google Scholar
  116. Opperdoes, F. R., 1983a, Toward the development of new drugs for parasitic diseases, In: Parasitology: A Global Perspective ( K. S. Warren and J. Z. Bowers, eds.), pp. 191–202, Springer-Verlag, Berlin.Google Scholar
  117. Opperdoes, F. R., 1983b, Glycolysis as target for the development of new trypanocidal drugs, In: Mechanism of Drug Action ( T. P. Singer, T. E. Mansour, and R. N. Undarza, eds.), pp. 121–131, Academic Press, New York.Google Scholar
  118. Opperdoes, F. R., 1984, Localization of the initial steps in alkoxyphospholipid biosynthesis in glycosomes (microbodies) of Trypanosoma brucei, FEBS Lett. 169: 35–39.PubMedGoogle Scholar
  119. Opperdoes, F. R., and Borst, P., 1977, Localization of nine glycolytic enzymes in a microbody-like organelle in Trypanosoma brucei: The glycosome, FEBS Lett. 80: 360–364.PubMedGoogle Scholar
  120. Opperdoes, F. R., and Cottem, D., 1982, Involvement of the glycosome of Trypanosoma brucei in carbon dioxide fixation, FEBS Lett. 143: 60–64.PubMedGoogle Scholar
  121. Opperdoes, F. R., and Nwagwu, M., 1980, Suborganellular localization of glycolytic enzymes in the glycosome of Trypanosoma brucei, In: The Host Invader Interplay (H. Van den Bossche, ed.), pp. 683–686, Elsevier/North-Holland, Amsterdam.Google Scholar
  122. Opperdoes, F. R., Borst, P., and Fonck, K., 1976, The potential use of inhibitoes of glycerol3-phosphate oxidase for chemotherapy of African trypanosomiasis, FEBS Lett. 62: 169–172.PubMedGoogle Scholar
  123. Opperdoes, F. R., Borst, P., Bakker, S., and Leene, W., 1977a, Localization of glycerol-3-phosphate oxidase in the mitochondrion and particulate NAD -linked glycerol-3-phosphate dehydrogenase in the microbodies of the bloodstream form of Trypanosoma brucei, Eur. J. Biochem. 76: 29–39.PubMedGoogle Scholar
  124. Opperdoes, F. R., Borst, P., and Spits, H., 1977b, Particle-bound enzymes in the bloodstream form of Trypanosoma brucei, Eur. J. Biochem. 76: 21–28.PubMedGoogle Scholar
  125. Opperdoes, F. R., Markos, A., and Steiger, R. F., 1981, Localization of malate dehydrogenase, adenylate kinase and glycolytic enzymes in glycosomes and the threonine pathway in the mitochondrion of cultured procyclic trypomastigotes of Trypanosoma brucei, Mol. Biochem. Parasitol. 4: 291–309.PubMedGoogle Scholar
  126. Opperdoes, F. R., Baudhuin, P., Coppens, I., De Roe, C., Edwards, S. W., Weijers, P. J., and Misset, O., 1984, Purification, morphometric analysis and characterization of the glycosomes (microbodies) of the protozoan hemoflagellate Trypanosoma brucei, J. Cell Biol. 98: 1178–1184.PubMedGoogle Scholar
  127. Pettigrew, G. W., 1972, The amino acid sequence of a cytochrome c from a protozoan, Crithidia oncopelti, FEBS Lett. 22: 64–66.PubMedGoogle Scholar
  128. Pettigrew, G. W., and Smith, G. M., 1977, Novel N-terminal protein blocking group identified as dimethylproline, Nature 265: 661–662.PubMedGoogle Scholar
  129. Pittam, M. D., 1970, Medium for in vitro culture of Trypanosoma rhodesiense and T. brucei, appendix to: Dixon, H., and Williamson, J., The lipid composition of blood and culture forms of Trypanosoma lewisi and Trypanosoma rhodesiense compared to that of their environment, Comp. Biochem. Physiol. 33: 111–128.Google Scholar
  130. Rickmann, L. R., and Robson, J., 1970, The testing of proven Trypanosoma brucei and T. rhodesiense strains by the blood incubation infectivity test, Bull. WHO 42: 911–916.Google Scholar
  131. Rifkin, M. R., 1978, Identification of the trypanocidal factor in normal human serum: High density lipoprotein, Proc. Natl. Acad. Sci. USA 75: 3450–3454.PubMedGoogle Scholar
  132. Ringler, R. L., 1961, Studies on the mitochondrial a-glycerophosphate dehydrogenase. II. Extraction and partial purification of the dehydrogenase from pig brain, J. Biol. Chem. 236: 1192–1198.PubMedGoogle Scholar
  133. Robertson, D. H. H., Pickens, S., Lawson, J. H., and Lennox, B., 1980, An accidental laboratory infection with African trypanosomes of a defined stock. I. The clinical course of infection, J. Infect. 2: 105–112.PubMedGoogle Scholar
  134. Rustin, P., Dupont, J., and Lance, C., 1983, A role for fatty acid peroxy radicals in the cyanideinsensitive pathway of plant mitochondria?, Trends Biochem. Sci. 8: 155–157.Google Scholar
  135. Ryley, J. F., 1956, Studies on the metabolism of the protozoa. 7. Comparative carbohydrate metabolism of eleven species of trypanosome, Biochem. J. 62: 215–222.PubMedGoogle Scholar
  136. Ryley, J. F., 1962, Studies on the metabolism of protozoa. 9. Comparative metabolism of bloodstream and culture forms of Trypanosoma rhodesiense, Biochem. J. 85: 211–223.PubMedGoogle Scholar
  137. Saz, H. J., 1972, Comparative biochemistry of carbohydrates in nematodes and cestodes, In: Comparative Biochemistry of Parasites ( H. Van den Bossche, ed.), pp. 33–47, Academic Press, New York.Google Scholar
  138. Simpson, L., Simpson, A. M., Kidane, G., Livingston, L., and Spithill, T. W., 1980, The kinetoplast DNA of the hemoflagellate protozoa, Am. J. Trop. Med. Hyg. 29: 1053–1063.PubMedGoogle Scholar
  139. Smith, G. M., and Pettigrew, G. W., 1980, Identification of N,N-dimethylproline as the N-terminal blocking group of Crithidia oncopelti cytochrome c557, Eur. J. Biochem. 110: 123–130.PubMedGoogle Scholar
  140. Srivastava, H. K., and Bowman, I. B. R., 1971, Adaptation in oxidative metabolism of Trypanosoma rhodesiense during transformation in culture, Comp. Biochem. Physiol. 40B: 973–981.Google Scholar
  141. Srivastava, H. K., and Bowman, I. B. R., 1972, Metabolic transformation of Trypanosoma rhodesiense in culture, Nature New Biol. 57: 152–153.Google Scholar
  142. Stuart, K., 1980, Cultivation of dyskinetoplastic Trypanosoma brucei, J. Parasitol. 66: 1060–1961.PubMedGoogle Scholar
  143. Tanner, M., 1980, Studies on the mechanisms supporting the growth of Trypanosoma (Trypanozoon) brucei as bloodstream-like forms in vitro, Acta Trop. 37: 203–220.PubMedGoogle Scholar
  144. Taylor, M. B., Berghausen, P., Heyworth, P., Messenger, N., Rees, L. J., and Gutteridge, W., 1980, Subcellular localization of some glycolytic enzymes in parasitic flagellated protozoa, Int. J. Biochem. 11: 117–120.PubMedGoogle Scholar
  145. Threlfall, D. R., Williams, B. L., and Goodwin, T. W., 1965, Terpenoid quinones and sterols in parasitic and culture forms of Trypanosoma rhodesiense, In: Progress in Protozoology: 2 nd International Congress of Protozoology, p. 141, Excerpta Medica, Series 91, Amsterdam.Google Scholar
  146. Tobie, E. J., von Brand, T., and Mehlman, B., 1950, Cultural and physiological observations on Trypanosoma rhodesiense and Trypanosoma gambiense, J. Parasitol. 36: 48–54.PubMedGoogle Scholar
  147. Trigg, P. I., 1979, Research and training in tropical diseases, Trends Biochem. Sci. 4: 29–30.Google Scholar
  148. Turner, M. J., 1982, Biochemistry of the variant surface glycoproteins of salivarian trypanosomes, Adv. Parasitol. 21: 69–151.PubMedGoogle Scholar
  149. Van der Meer, C., and Zwart, D., 1980, Pitfalls of salicylhydroxamic acid plus glycerol treatment of T. vivax infected goats, In: The Host Invader Interplay ( H. Van den Bossche, ed.), pp. 687–690, Elsevier/North-Holland, Amsterdam.Google Scholar
  150. Van der Meer, C., Versluijs-Broers, J. A. M., and Opperdoes, F. R., 1979, Trypanosoma brucei: Trypanocidal effect of salicylhydroxamic acid plus glycerol in infected rats, Exp. Parasitol. 48: 126–134.Google Scholar
  151. Vickerman, K., 1965, Polymorphism and mitochondrial activity in sleeping sickness trypanosomes, Nature 208: 762–766.PubMedGoogle Scholar
  152. Vickerman, K., 1970, Morphological and physiological considerations of extracellular blood protozoa, In: Ecology and Physiology of Parasites ( A. M. Fallis, ed.), pp. 58–91, University of Toronto Press, Toronto.Google Scholar
  153. Vickerman, K., and Preston, T. M., 1976, Comparative cell biology of the kinetoplastic flagellates, In: Biology of the Kinetoplastida ( W. H. R. Lumsden and D. A. Evans, eds.), Vol. 1, pp. 35–130, Academic Press, New York.Google Scholar
  154. Visser, N., and Opperdoes, F. R., 1980, Glycolysis in Trypanosoma brucei, Eur. J. Biochem. 103: 623–632.PubMedGoogle Scholar
  155. Visser, N., Opperdoes, F. R., and Borst, P., 1981, Subcellular compartmentation of glycolytic intermediates in Trypanosoma brucei, Eur. J. Biochem. 118: 521–526.Google Scholar
  156. Weinman, D., 1960, Cultivation of the African sleeping sickness trypanosomes from the blood and cerebrospinal fluid of patients and suspects, Trans. R. Soc. Trop. Med. Hyg. 54: 180–190.Google Scholar
  157. WHO, 1979, The African trypanosomiases, Technical Report No. 635, World Health Organization, Geneva.Google Scholar
  158. Zweygarth, E., Ahmed, J. S., and Rehbein, G., 1983, Cultivation of infective forms of Trypanosoma (T.) brucei evansi in a continuous culture system, Z. Parasitenkd. 69: 131–133.PubMedGoogle Scholar

References to Addendum

  1. 1.
    Baltz, T., Baltz, D., Giroud, C. and Crockett, J., 1985. Cultivation in a semi-defined medium of animal infective forms of Trypanosoma brucei, T. equiperdum, T. evansi, T. rhodesiense and T. gambiense, EMBO (Eur. Mol. Biol. Org.) J., 4: 1273–1277.Google Scholar
  2. 2.
    Dusenko, M., Ferguson, M. A., Lamont, G. S., Rifkin, M. R., and Cross, G. A. M. Cysteine eliminated the feeder cell requirement for cultivation of Trypanosoma brucei bloodstream forms in vitro, J. Exp. Med. 162: 1256–1263.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Alan H. Fairlamb
    • 1
  • Fred R. Opperdoes
    • 2
  1. 1.Laboratory of Medical BiochemistryThe Rockefeller UniversityNew YorkUSA
  2. 2.Research Institute for Tropical DiseasesInternational Institute for Cellular and Molecular PathologyBrusselsBelgium

Personalised recommendations