Skip to main content

Carbohydrate Metabolism in African Trypanosomes, with Special Reference to the Glycosome

  • Chapter
Book cover Carbohydrate Metabolism in Cultured Cells

Abstract

Over the last decade, our knowledge of the biochemistry and molecular biology of trypanosomes has expanded so much that the African trypanosome, Trypanosoma brucei, is now the equivalent of E. coli to the biochemical parasitologist. Trypanosomes are of interest to scientists not only because of their medical and veterinary importance, but also because of several unique features of their biochemistry and molecular biology. Two such features have been reviewed recently: the mitochondrial DNA network (the kinetoplast) and its role in the life cycle (Hajduk, 1978; Borst and Hoeijmakers, 1979; Barker, 1980; Englund et al., 1982), and the variant surface glycoprotein and its role in evading the immune response of the host (Englund et al., 1982; Turner, 1982).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abolarin, M. O., Evans, D. A., Tovey, D. G.,and Ormerod, W. E., 1982, Cryptic stage of sleeping-sickness trypanosome developing in choroid plexus epithelial cells, Br. Med. J. 285: 1380–1382.

    CAS  Google Scholar 

  • Amole, B. O., and Clarkson, A. B., Jr., 1981, Trypanosoma brucei: Host parasite interaction in parasite destruction by salicylhydroxamic acid and glycerol in mice, Exp. Parasitol. 51: 133–140.

    PubMed  CAS  Google Scholar 

  • Apted, F. I. C., 1970, Treatment of human trypanosomiasis, In: The African Trypanosomiases ( H. W. Mulligan, ed.), pp. 684–710, Allen & Unwin, London.

    Google Scholar 

  • Balber, A. E., 1983, Primary murine bone marrow cultures support continuous growth of infectious human trypanosomes, Science 220: 421–423.

    PubMed  CAS  Google Scholar 

  • Barker, D. C., 1980, The ultrastructure of kinetoplast DNA with particular reference to the interpretation of dark field electron microscopy images of isolated, purified networks, Micron 11: 21–62.

    Google Scholar 

  • Bendall, D. S., and Bonner, W. D., Jr., 1971, Cyanide-insensitive respiration in plant mitochondria, Plant Physiol. 47: 236–245.

    PubMed  CAS  Google Scholar 

  • Berens, R. L., Brun, R., and Krassner, S. M., 1976, A simple monophasic medium for axenic culture of hemoflagellates, J. Parasitol. 62: 360–365.

    PubMed  CAS  Google Scholar 

  • Bienen, E. J., Hammadi, E., and Hill, G. C., 1981, Trypanosoma brucei: Biochemical and morphological changes during in vitro transformation of bloodstream-to procyclic-trypomastigotes, Exp. Parasitol. 51: 408–417.

    PubMed  CAS  Google Scholar 

  • Bienen, E. J., Hill, G. C., and Shin, K.-O., 1983, Elaboration of mitochondrial function during Trypanosoma brucei differentiation, Mol. Biochem. Parasitol. 7: 75–86.

    PubMed  CAS  Google Scholar 

  • Bohringer, S., and Hecker, H., 1974, Quantitative ultrastructural differences between strains of the Trypanosoma brucei subgroup during transformation in blood, J. Protozool. 21: 694–698.

    PubMed  CAS  Google Scholar 

  • Bohringer, S., and Hecker, H., 1975, Quantitative ultrastructural investigations of the life cycle of Trypanosoma brucei: A morphometric analysis, J. Protozool. 22: 463–467.

    PubMed  CAS  Google Scholar 

  • Bonner, W. D., Jr., and Rich, P. R., 1978, Molecular aspects of cyanide/antimycin resistant respiration, In: Plant Mitochondria (G. C. Ducet and C. Lance, eds.), pp. 241–247, Elsevier/North-Holland, Amsterdam.

    Google Scholar 

  • Borst, P., and Hoeijmakers, J. H. J., 1979, Kinetoplast DNA, Plasmid 2: 20–40.

    PubMed  CAS  Google Scholar 

  • Bowman, I. B. R., 1974, Intermediary metabolism of pathogenic flagellates, In: Trypanosomiasis and Leishmaniasis with Special Reference to Chagas’ Disease, Ciba Foundation Symposium 20 (new series), pp. 255–271, Associated Scientific Publishers, Amsterdam.

    Google Scholar 

  • Bowman, I. B. R., and Fairlamb, A. H., 1976, Glycerol-3-phosphate oxidase in Trypanosoma brucei and the effect of suramin, In: Biochemistry of Parasites and Host-Parasite Relationships (H. Van den Bossche, ed.), pp. 501–507, Elsevier/North-Holland, Amsterdam.

    Google Scholar 

  • Bowman, I. B. R., and Flynn, I. W., 1976, Oxidative metabolism of trypanosomes, In: Biology of the Kinetoplastida ( W. H. R. Lumsden and D. A. Evans, eds.), Vol. 1, pp. 435–476, Academic Press, New York.

    Google Scholar 

  • Bowman, I. B. R., Tobie, E. J., and von Brand, T., 1963, CO2 fixation studies with the culture form of Trypanosoma cruzi, Comp. Biochem. Physiol. 9: 105–114.

    CAS  Google Scholar 

  • Bowman, I. B. R., Srivastava, H. K., and Flynn, I. W., 1972, Adaptations in oxidative metabolism during the transformation of Trypanosoma rhodesiense from bloodstream into culture form, In: Comparative Biochemistry of Parasites ( H. Van den Bossche, ed.), pp. 329–342, Academic Press, New York.

    Google Scholar 

  • Brohn, F. H., and Clarkson, A. B., Jr., 1978, Quantitative effects of salicylhydroxamic acid and glycerol on Trypanosoma brucei glycolysis in vitro and in vivo, Acta Trop. 35: 23–33.

    PubMed  CAS  Google Scholar 

  • Brohn, F. H., and Clarkson, A. B., Jr., 1980, Trypanosoma brucei brucei: Patterns of glycolysis at 37°C in vitro, Mol. Biochem. Parasitol. 1: 291–305.

    PubMed  CAS  Google Scholar 

  • Broman, K., Ropars, M., and Deshusses, J., 1982, Subcellular location of glycolytic enzymes in Trypanosoma brucei culture form, Experientia 38: 533–534.

    CAS  Google Scholar 

  • Broman, K., Knupfer, A.-L., Ropars, M., and Deshusses, J., 1983, Occurrence and role of phosphoenolpyruvate carboxykinase in procyclic Trypanosoma brucei brucei glycosomes, Mol. Biochem. Parasitol. 8: 79–87.

    PubMed  CAS  Google Scholar 

  • Brown, R. C., Evans, D. A., and Vickerman, K., 1973, Changes in oxidative metabolism and ultrastructure accompanying differentiation of the mitochondrion in Trypanosoma brucei, Int. J. Parasitol. 3: 691–704.

    PubMed  CAS  Google Scholar 

  • Brun, R., and Jenni, L., 1977, A new semi-defined medium for Trypanosoma brucei sspp., Acta Trop. 34: 21–33.

    PubMed  CAS  Google Scholar 

  • Brun, R., and Schonenberger, M., 1979, Cultivation and in vitro cloning of procyclic culture forms of Trypanosoma brucei in a semi-defined medium, Acta Trop. 36: 289–292.

    PubMed  CAS  Google Scholar 

  • Brun, R., and Schonenberger, M., 1981, Stimulating effect of citrate and cis-aconitate on the transformation of Trypanosoma brucei bloodstream forms to procyclic forms in vitro, Z. Parasitenkd. 66: 17–24.

    PubMed  CAS  Google Scholar 

  • Brun, R., Jenni, L., Tanner, M., Schonenberger, M., and Schell, K.-F., 1979, Cultivation of vertebrate infective forms derived from metacyclic forms of pleomorphic Trypanosoma brucei stocks, Acta Trop. 36: 387–390.

    PubMed  CAS  Google Scholar 

  • Brun, R., Jenni, L., Schonenberger, M., and Schell, K.-F., 1981, In vitro cultivation of bloodstream forms of Trypanosoma brucei, T. rhodesiense, and T. gambiense, J. Protozool. 28: 470–479.

    PubMed  CAS  Google Scholar 

  • Bursell, E., 1978, Quantitative aspects of proline utilization during flight in tsetse flies, Physiol. Entomol. 3: 265–272.

    CAS  Google Scholar 

  • Bursell, E., 1981, The role of proline in energy metabolism, In: Energy Metabolism in Insects (R. G. H. Downer, ed.), pp. 135–154, Plenum Press, New York.

    Google Scholar 

  • Caughey, B., Hill, G. C., and Rich, P., 1979, Alternate electron donors to the a-glycerophosphate oxidase in Trypanosoma brucei, J. Protozool. 26: 8A.

    Google Scholar 

  • Clarkson, A. B., Jr., and Amole, B. O., 1982, Role of calcium in trypanocidal drug action, Science 216: 1321–1323.

    PubMed  CAS  Google Scholar 

  • Clarkson, A. B., Jr., and Brohn, F. H., 1976, Trypanosomiasis: An approach to chemotherapy by inhibition of carbohydrate metabolism, Science 194: 204–206.

    PubMed  CAS  Google Scholar 

  • Clarkson, A. B., Jr., Grady, R. W., Grossman, S. A., McCallum, R. J., and Brohn, F. H., 1981, Trypanosoma brucei brucei: A systematic screening for alternatives to the salicylhydroxamic acid-glycerol combination, Mol. Biochem. Parasitol. 3: 271–291.

    PubMed  CAS  Google Scholar 

  • Cohen, S. S., 1979, Comparative biochemistry and drug design for infectious disease, Science 205: 964–971.

    PubMed  CAS  Google Scholar 

  • Cross, G. A. M., and Manning, J. C., 1973, Cultivation of Trypanosoma brucei sspp. in semi-defined and defined media, Parasitology 67: 315–331.

    PubMed  CAS  Google Scholar 

  • Cross, G. A. M., Klein, R. A., and Linstead, D. J., 1975, Utilization of amino acids by Trypanosoma brucei in culture: L-Threonine as a precursor for acetate, Parasitology 71: 311–326.

    PubMed  CAS  Google Scholar 

  • Cunningham, I., 1973, Quantitative studies on trypanosomes in tsetse tissue culture, Exp. Parasitol. 33: 34–45.

    PubMed  CAS  Google Scholar 

  • Cunningham, I., 1977, New culture medium for maintenance of tsetse tissues and growth of trypanosomatids, J. Protozool. 24: 325–329.

    PubMed  CAS  Google Scholar 

  • Cunningham, I., and Honigberg, B. M., 1977, Infectivity reacquisition of Trypanosoma brucei brucei cultivated with tsetse salivary glands, Science 197: 1279–1282.

    PubMed  CAS  Google Scholar 

  • Cunningham, I., Honigberg, B. M., and Taylor, A. M., 1981, Infectivity of monomorphic and pleomorphic Trypanosoma brucei stocks cultivated at 28°C with various tsetse fly tissues, J. Protozool. 67: 391–397.

    CAS  Google Scholar 

  • Dawson, A. P., and Thorne, C. J. R., 1969, Preparation and properties of L-3-glycerophosphate dehydrogenase from pig brain mitochondria, Biochem. J. 111: 27–34.

    PubMed  CAS  Google Scholar 

  • De Raadt, P., 1976, African sleeping sickness today, Trans. R. Soc. Trop. Med. Hyg. 70: 114–116.

    PubMed  Google Scholar 

  • Dixon, H., 1966, Blood platelets as a source of enzyme activity in washed trypanosome suspensions, Nature 210: 428.

    PubMed  CAS  Google Scholar 

  • Docampo, R., Deboiso, J. F., Boveris, A., and Stoppani, A. O. M., 1976, Localization of peroxidase activity in Trypanosoma cruzi microbodies, Experientia 32: 972–975.

    PubMed  CAS  Google Scholar 

  • Englund, P. T., Hajduk, S. L., and Marini, J. C., 1982, The molecular biology of trypanosomes, Annu. Rev. Biochem. 51: 695–726.

    PubMed  CAS  Google Scholar 

  • Evans, D. A., and Brightman, C. A. J., 1980, Pleomorphism and the problem of recrudescent parasitaemia following treatment with salicylhydroxamic acid (SHAM) in African trypanosomiasis, Trans. R. Soc. Trop. Med. Hyg. 74: 601–604.

    PubMed  CAS  Google Scholar 

  • Evans, D. A., and Brown, R. C., 1971, Cyanide insensitive culture form of Trypanosoma brucei, Nature 230: 251–252.

    PubMed  CAS  Google Scholar 

  • Evans, D. A., and Brown, R. C., 1972a, The utilization of glucose and proline by culture forms of Trypanosoma brucei, J. Protozool. 19: 686–690.

    PubMed  CAS  Google Scholar 

  • Evans, D. A., and Brown, R. C., 1972b, The effect of diphenylamine on terminal respiration in bloodstream and culture forms of Trypanosoma brucei, J. Protozool. 19: 365–369.

    CAS  Google Scholar 

  • Evans, D. A., and Brown, R. C., 1973, M-Chlorobenzhydroxamic acid-An inhibitor of cyanideinsensitive respiration in Trypanosoma brucei, J. Protozool. 20: 157–160.

    PubMed  CAS  Google Scholar 

  • Evans, D. A., and Holland, M. F., 1978, Effective treatment of Trypanosoma vivax infections with salicylhydroxamic acid (SHAM), Trans. R. Soc. Trop. Med. Hyg. 72: 203–204.

    PubMed  CAS  Google Scholar 

  • Evans, D. A., Brightman, C. J., and Holland, M. F., 1977, Salicylhydroxamic acid/glycerol in experimental trypanosomiasis, Lancet 2: 769.

    PubMed  CAS  Google Scholar 

  • Fairlamb, A. H., 1981, Alternate metabolic pathways in protozoan metabolism, Parasitology 82: 130.

    Google Scholar 

  • Fairlamb, A. H., 1982, Biochemistry of trypanosomiasis and rational approaches to chemotherapy, Trends Biochem. Sci. 7: 249–253.

    CAS  Google Scholar 

  • Fairlamb, A. H., and Bowman, I. B. R., 1977a, The isolation and characterization of particulate snglycerol-3-phosphate oxidase from Trypanosoma brucei, Int. J. Biochem. 8: 659–668.

    CAS  Google Scholar 

  • Fairlamb, A. H., and Bowman, I. B. R., 1977b, Inhibitor studies on particulate sn-glycerol-3-phosphate oxidase from Trypanosoma brucei, Int. J. Biochem. 8: 669–675.

    CAS  Google Scholar 

  • Fairlamb, A. H., and Bowman, I. B. R., 1977c, Trypanosoma brucei: Suramin and other trypanocidal compounds effects on sn-glycerol-3-phosphate oxidase, Exp. Parasitol. 43: 353–361.

    PubMed  CAS  Google Scholar 

  • Fairlamb, A. H., and Bowman, I. B. R., 1980a, Uptake of the trypanocidal drug suramin by bloodstream forms of Trypanosoma brucei and its effect on respiration and growth rate in vivo, Mol. Biochem. Parasitol. 1: 315–318.

    PubMed  CAS  Google Scholar 

  • Fairlamb, A. H., and Bowman, I. B. R., 1980b, Trypanosoma brucei: Maintenance of concentrated suspensions of bloodstream trypomastigotes in vitro using continuous dialysis for measurement of endocytosis, Exp. Parasitol. 49: 366–380.

    PubMed  CAS  Google Scholar 

  • Fairlamb, A. H., Opperdoes, F. R., and Borst, P., 1977, New approach to screening drugs for activity against African trypanosomes, Nature 265: 270–271.

    PubMed  CAS  Google Scholar 

  • Fairlamb, A. H., Oduro, K. K., and Bowman, I. B. R., 1979, Action of the trypanocidal drug suramin on the enzymes of aerobic glycolysis of Trypanosoma brucei in vivo, In: FEBS Special Meeting on Enzymes, Dubrovnik, Abstr. S4–10.

    Google Scholar 

  • Flynn, I. W., and Bowman, I. B. R., 1973, The metabolism of carbohydrate by pleomorphic African trypanosomes, Comp. Biochem. Physiol. 45B: 25–42.

    CAS  Google Scholar 

  • Flynn, I. W., and Bowman, I. B. R., 1974, The action of trypanocidal arsenical drugs on Trypanosoma brucei and Trypanosoma rhodesiense, Comp. Biochem. Physiol. 48B: 261–273.

    CAS  Google Scholar 

  • Flynn, I. W., and Bowman, I. B. R., 1980, Purification and characterization of pyruvate kinase from Trypanosoma brucei, Arch. Biochem. Biophys. 200: 401–409.

    PubMed  CAS  Google Scholar 

  • Ford, W. C. L., and Bowman, I. B. R., 1973, Metabolism of proline by the culture midgut form of Trypanosoma rhodesiense, Trans. R. Soc. Trop. Med. Hyg. 67: 257.

    PubMed  CAS  Google Scholar 

  • Gardiner, P. R., Lamont, L. C., Jones, T. W., and Cunningham, I., 1980, The separation and structure of infective trypanosomes from cultures of Trypanosoma brucei grown in association with tsetse fly salivary glands, J. Protozool. 27: 182–185.

    PubMed  CAS  Google Scholar 

  • Gashumba, J., 1981, Sleeping sickness in Uganda, New Sci. 89: 164.

    Google Scholar 

  • Ghiotto, V., Brun, R., Jenni, L., and Hecker, H., 1979, Trypanosoma brucei: Morphometric changes and loss of infectivity during transformation of bloodstream forms to procyclic culture forms in vitro, Exp. Parasitol. 48: 447–456.

    PubMed  CAS  Google Scholar 

  • Grant, P. T., and Fulton, J. D., 1957, The catabolism of glucose by strains of Trypanosoma rhodesiense, Biochem. J. 66: 242–250.

    PubMed  CAS  Google Scholar 

  • Grant, P. T., and Sargent, J. R., 1960, Properties of t,-a-glycerophosphate oxidase and its role in the respiration of Trypanosoma rhodesiense, Biochem. J. 76: 229–237.

    PubMed  CAS  Google Scholar 

  • Gruenberg, J., Sharma, P. R., and Deshusses, J., 1978, D-Glucose transport in Trypanosoma brucei: D-Glucose transport is the rate limiting step of its metabolism, Eur. J. Biochem. 89: 461–469.

    PubMed  CAS  Google Scholar 

  • Gruenberg, J., Schwendimann, B., Sharma, P. R., and Deshusses, J., 1980, Role of glycerol permeation in the bloodstream form of Trypanosoma brucei, J. Protozool. 27: 484–491.

    PubMed  CAS  Google Scholar 

  • Gutteridge, W. E., and Rogerson, G. W., 1979, Biochemical aspects of the biology of Trypanosoma cruzi, In: Biology of the Kinetoplastida ( W. H. R. Lumsden and D. A. Evans, eds.), Vol. 2, pp. 619–652, Academic Press, New York.

    Google Scholar 

  • Hajduk, S. L., 1978, Influence of DNA complexing compounds on the kinetoplast of trypanosomatids, Prog. Mol. Subcell. Biol. 6: 158–200.

    CAS  Google Scholar 

  • Hammond, D. J., and Bowman, I. B. R., 1980a, Trypanosoma brucei: The effect of glycerol on the anaerobic metabolism of glucose, Mol. Biochem. Parasitol. 2: 63–75.

    PubMed  CAS  Google Scholar 

  • Hammond, D. J., and Bowman, I. B. R., 1980b, Studies oh glycerol kinase and its role in ATP synthesis in Trypanosoma brucei, Mol. Biochem. Parasitol. 2: 77–91.

    PubMed  CAS  Google Scholar 

  • Hammond, D. J., and Gutteridge, W. E., 1983, Studies on the glycosomal orotate phosphoribosyl transferase of Trypanosoma cruzi, Mol. Biochem. Parasitol. 7: 319–330.

    CAS  Google Scholar 

  • Hammond, D. J., Gutteridge, W. E., and Opperdoes, F. R., 1981, A novel location for two enzymes of de novo pyrimidine biosynthesis in trypanosomes and Leishmania, FEBS Lett. 128: 22–30.

    Google Scholar 

  • Hart, D. T., and Coombs, G. H., 1980, The importance and subcellular localization of 0-oxidation, glycolysis and amino acid oxidation in Leishmania mexicana mexicana amastigotes and promastigotes, In: Proceedings of the 3rd European Multicolloquium on Parasitology, Cambridge, Abstr. 16.

    Google Scholar 

  • Hart, D. T., and Opperdoes, F. R., 1984, The occurrence of glycosomes (microbodies) in the promastigote stage of four major Leishmania species of Mol. Biochem. Parasitol. 13: 159–172.

    PubMed  CAS  Google Scholar 

  • Hart, D. T., Misset, O., Edwards, S. W., and Opperdoes, F. R., 1984, A comparison of the glycosomes (microbodies) isolated from Trypanosoma brucei bloodstream form and cultured procyclic trypomastigotes, Mol. Biochem. Parasitol. 12: 25–35.

    PubMed  CAS  Google Scholar 

  • Hawking, F., 1973, The differentiation of Trypanosoma rhodesiense from T. brucei by means of human serum, Trans. R. Soc. Trop. Med. Hyg. 67: 517–527.

    PubMed  CAS  Google Scholar 

  • Henry, M.-F., and Nyns, E.-J., 1975, Cyanide insensitive respiration: An alternative mitochondrial pathway, Sub-Cell. Biochem. 4: 1–65.

    CAS  Google Scholar 

  • Hill, G. C., 1976a. Electron transport systems in Kinetoplastida, Biochim. Biophys. Acta 456: 149–193.

    PubMed  CAS  Google Scholar 

  • Hill, G. C., 1976b, Characterization of the electron transport systems present during the life cycle of African trypanosomes, In: Biochemistry of Parasites and Host-Parasite Relationships ( H. Van den Bossche, ed.), pp. 31–50, Elsevier/North-Holland, Amsterdam.

    Google Scholar 

  • Hill, G. C., Gutteridge, W. E., and Matthewson, N. W., 1971a, Purification and properties of cytochromes c from trypanosomatids, Biochim. Biophys. Acta 243: 225–229.

    PubMed  CAS  Google Scholar 

  • Hill, G. C., Chan, S. K., and Smith, L., 1971b, Purification and properties of cytochrome c555 from a protozoan, Crithidia fasciculata, Biochim. Biophys. Acta 253: 78–87.

    PubMed  CAS  Google Scholar 

  • Hill, G. C., Shimer, S. P., Caughey, B., and Sauer, L. S., 1978a, Growth of infective forms of Trypanosoma rhodesiense in vitro, the causative agent of African trypanosomiasis, Science 202: 763–765.

    PubMed  CAS  Google Scholar 

  • Hill, G. C., Shimer, S., Caughey, B., and Sauer, L. S., 1978b, Growth of infective forms of Trypanosoma (T.) brucei on buffalo lung and Chinese hamster lung tissue culture cells, Acta Trop. 35: 201–207.

    PubMed  CAS  Google Scholar 

  • Hirumi, H., Doyle, J. J., and Hirumi, K., 1977a, African trypanosomes: Cultivation of animal-infective Trypanosoma brucei in vitro, Science 196: 992–994.

    PubMed  CAS  Google Scholar 

  • Hirumi, H., Doyle, J. J., and Hirumi, K., 1977b, Cultivation of bloodstream Trypanosoma brucei, Bull. WHO 55: 405–409.

    PubMed  CAS  Google Scholar 

  • Hoare, C. A., 1972, The Trypanosomes of Mammals: A Zoological Monograph, Blackwell, Oxford.

    Google Scholar 

  • Jennings, F. W., Whitelaw, D. D., and Urquhart, G. M., 1977, The relationship between duration of infection with Trypanosoma brucei in mice and the efficacy of chemotherapy, Parasitology 75: 143–153.

    PubMed  CAS  Google Scholar 

  • Kilgour, V., and Godfrey, D. G., 1973, Species-characteristic isoenzymes of two aminotransferases in trypanosomes, Nature New Biol. 244: 69–70.

    PubMed  CAS  Google Scholar 

  • Klein, R. A., Linstead, D. J., and Wheeler, M. V., 1975, Carbon dioxide fixation in trypanosomatids, Parasitology 71: 93–107.

    PubMed  CAS  Google Scholar 

  • Lanham, S. M., 1968, Separation of trypanosomes from the blood of infected rats and mice by anion exchangers, Nature 218: 1273–1274.

    PubMed  CAS  Google Scholar 

  • Lanham, S. M., and Godfrey, D. G., 1970, Isolation of salivarian trypanosomes from man and other mammals using DEAE cellulose, Exp. Parasitol. 28: 521–534.

    PubMed  CAS  Google Scholar 

  • McGhee, R. B., and Cosgrove, W. B., 1980, Biology and physiology of the lower Trypanosomatidae, Microbiol. Rev. 44: 140–173.

    PubMed  CAS  Google Scholar 

  • Mackenzie, N. E., Hall, J. E., Flynn, I. W., and Scott, A. I., 1983, 13C nuclear magnetic resonance studies of anaerobic glycolysis in Trypanosoma brucei spp., Biosci. Rep. 3: 141–151.

    CAS  Google Scholar 

  • McLaughlin, J., 1981, Association of adenylate kinase with the glycosome of Trypanosoma rhodesiense, Biochem. Int. 2: 345–353.

    CAS  Google Scholar 

  • Mendez, Y., and Honigberg, B. M., 1972, Infectivity of Trypanosoma brucei-subgroup flagellates maintained in culture, J. Parasitol. 58: 1122–1136.

    PubMed  CAS  Google Scholar 

  • Meshnick, S. R., 1984, The chemotherapy of African trypanosomiasis, In: Parasitic Diseases (J. M. Mansfield, ed.), Vol. 2, pp. 165–199, Dekker, New York.

    Google Scholar 

  • Meshnick, S. R., Blobstein, S. H., Grady, R. W., and Cerami, A., 1978, An approach to the development of new drugs for African trypanosomiasis, J. Exp. Med. 148: 569–579.

    PubMed  CAS  Google Scholar 

  • Muse, K. E., and Roberts, J. F., 1973, Microbodies in Crithidia fasciculata, Protoplasma 78: 343–348.

    Google Scholar 

  • Njogu, R. M., and Nyindo, M., 1981, Presence of a peculiar pathway of glucose metabolism in infective forms of Trypanosoma brucei cultured from salivary glands of tsetse flies, J. Parasitol. 67: 847–851.

    PubMed  CAS  Google Scholar 

  • Njogu, R. M., Whittaker, C. J., and Hill, G. C., 1980, Evidence for a branched electron transport chain in Trypanosoma brucei, Mol. Biochem. Parasitol. 1: 13–29.

    PubMed  CAS  Google Scholar 

  • Nwagwu, M., and Opperdoes, F. R., 1982, Regulation of glycolysis in Trypanosoma brucei: Hexokinase and phosphofructokinase activity, Acta Trop. 39: 61–72.

    PubMed  CAS  Google Scholar 

  • Oduro, K. K., Flynn, I. W., and Bowman, I. B. R., 1980a, Trypanosoma brucei: Activities and subcellular distribution of glycolytic enzymes from differently disrupted cells, Exp. Parasitol. 50: 123–135.

    PubMed  CAS  Google Scholar 

  • Oduro, K. K., Bowman, I. B. R., and Flynn, I. W., 1980b, Trypanosoma brucei: Preparation and some properties of a multienzyme complex catalysing part of the glycolytic pathway, Exp. Parasitol. 50: 240–250.

    PubMed  CAS  Google Scholar 

  • Ojeda, P. V., and Flynn, I. W., 1982, Some aspects of resistance to arsenical drugs in Trypanosoma brucei, In: Abstracts of Vth International Congress of Parasitology, Toronto, p. 724.

    Google Scholar 

  • Opperdoes, F. R., 1980, Miconazole: An inhibitor of cyanide-insensitive respiration in Trypanosoma brucei, Trans. R. Soc. Trop. Med. Hyg. 74: 423–424.

    PubMed  CAS  Google Scholar 

  • Opperdoes, F. R., 198la, A rapid method for the isolation of intact glycosomes from Trypanosoma brucei by Percoll-gradient centrifugation in a vertical rotor, Mol. Biochem. Parasitol. 3: 181–186.

    CAS  Google Scholar 

  • Opperdoes, F. R., 1981b, Alternate metabolic pathways in protozoan energy metabolism, Parasitology 82: 1–30.

    Google Scholar 

  • Opperdoes, F. R., 1982, The glycosome, Ann. N.Y. Acad. Sci. 386: 543–545.

    CAS  Google Scholar 

  • Opperdoes, F. R., 1983a, Toward the development of new drugs for parasitic diseases, In: Parasitology: A Global Perspective ( K. S. Warren and J. Z. Bowers, eds.), pp. 191–202, Springer-Verlag, Berlin.

    Google Scholar 

  • Opperdoes, F. R., 1983b, Glycolysis as target for the development of new trypanocidal drugs, In: Mechanism of Drug Action ( T. P. Singer, T. E. Mansour, and R. N. Undarza, eds.), pp. 121–131, Academic Press, New York.

    Google Scholar 

  • Opperdoes, F. R., 1984, Localization of the initial steps in alkoxyphospholipid biosynthesis in glycosomes (microbodies) of Trypanosoma brucei, FEBS Lett. 169: 35–39.

    PubMed  CAS  Google Scholar 

  • Opperdoes, F. R., and Borst, P., 1977, Localization of nine glycolytic enzymes in a microbody-like organelle in Trypanosoma brucei: The glycosome, FEBS Lett. 80: 360–364.

    PubMed  CAS  Google Scholar 

  • Opperdoes, F. R., and Cottem, D., 1982, Involvement of the glycosome of Trypanosoma brucei in carbon dioxide fixation, FEBS Lett. 143: 60–64.

    PubMed  CAS  Google Scholar 

  • Opperdoes, F. R., and Nwagwu, M., 1980, Suborganellular localization of glycolytic enzymes in the glycosome of Trypanosoma brucei, In: The Host Invader Interplay (H. Van den Bossche, ed.), pp. 683–686, Elsevier/North-Holland, Amsterdam.

    Google Scholar 

  • Opperdoes, F. R., Borst, P., and Fonck, K., 1976, The potential use of inhibitoes of glycerol3-phosphate oxidase for chemotherapy of African trypanosomiasis, FEBS Lett. 62: 169–172.

    PubMed  CAS  Google Scholar 

  • Opperdoes, F. R., Borst, P., Bakker, S., and Leene, W., 1977a, Localization of glycerol-3-phosphate oxidase in the mitochondrion and particulate NAD -linked glycerol-3-phosphate dehydrogenase in the microbodies of the bloodstream form of Trypanosoma brucei, Eur. J. Biochem. 76: 29–39.

    PubMed  CAS  Google Scholar 

  • Opperdoes, F. R., Borst, P., and Spits, H., 1977b, Particle-bound enzymes in the bloodstream form of Trypanosoma brucei, Eur. J. Biochem. 76: 21–28.

    PubMed  CAS  Google Scholar 

  • Opperdoes, F. R., Markos, A., and Steiger, R. F., 1981, Localization of malate dehydrogenase, adenylate kinase and glycolytic enzymes in glycosomes and the threonine pathway in the mitochondrion of cultured procyclic trypomastigotes of Trypanosoma brucei, Mol. Biochem. Parasitol. 4: 291–309.

    PubMed  CAS  Google Scholar 

  • Opperdoes, F. R., Baudhuin, P., Coppens, I., De Roe, C., Edwards, S. W., Weijers, P. J., and Misset, O., 1984, Purification, morphometric analysis and characterization of the glycosomes (microbodies) of the protozoan hemoflagellate Trypanosoma brucei, J. Cell Biol. 98: 1178–1184.

    PubMed  CAS  Google Scholar 

  • Pettigrew, G. W., 1972, The amino acid sequence of a cytochrome c from a protozoan, Crithidia oncopelti, FEBS Lett. 22: 64–66.

    PubMed  CAS  Google Scholar 

  • Pettigrew, G. W., and Smith, G. M., 1977, Novel N-terminal protein blocking group identified as dimethylproline, Nature 265: 661–662.

    PubMed  CAS  Google Scholar 

  • Pittam, M. D., 1970, Medium for in vitro culture of Trypanosoma rhodesiense and T. brucei, appendix to: Dixon, H., and Williamson, J., The lipid composition of blood and culture forms of Trypanosoma lewisi and Trypanosoma rhodesiense compared to that of their environment, Comp. Biochem. Physiol. 33: 111–128.

    Google Scholar 

  • Rickmann, L. R., and Robson, J., 1970, The testing of proven Trypanosoma brucei and T. rhodesiense strains by the blood incubation infectivity test, Bull. WHO 42: 911–916.

    Google Scholar 

  • Rifkin, M. R., 1978, Identification of the trypanocidal factor in normal human serum: High density lipoprotein, Proc. Natl. Acad. Sci. USA 75: 3450–3454.

    PubMed  CAS  Google Scholar 

  • Ringler, R. L., 1961, Studies on the mitochondrial a-glycerophosphate dehydrogenase. II. Extraction and partial purification of the dehydrogenase from pig brain, J. Biol. Chem. 236: 1192–1198.

    PubMed  CAS  Google Scholar 

  • Robertson, D. H. H., Pickens, S., Lawson, J. H., and Lennox, B., 1980, An accidental laboratory infection with African trypanosomes of a defined stock. I. The clinical course of infection, J. Infect. 2: 105–112.

    PubMed  CAS  Google Scholar 

  • Rustin, P., Dupont, J., and Lance, C., 1983, A role for fatty acid peroxy radicals in the cyanideinsensitive pathway of plant mitochondria?, Trends Biochem. Sci. 8: 155–157.

    CAS  Google Scholar 

  • Ryley, J. F., 1956, Studies on the metabolism of the protozoa. 7. Comparative carbohydrate metabolism of eleven species of trypanosome, Biochem. J. 62: 215–222.

    PubMed  CAS  Google Scholar 

  • Ryley, J. F., 1962, Studies on the metabolism of protozoa. 9. Comparative metabolism of bloodstream and culture forms of Trypanosoma rhodesiense, Biochem. J. 85: 211–223.

    PubMed  CAS  Google Scholar 

  • Saz, H. J., 1972, Comparative biochemistry of carbohydrates in nematodes and cestodes, In: Comparative Biochemistry of Parasites ( H. Van den Bossche, ed.), pp. 33–47, Academic Press, New York.

    Google Scholar 

  • Simpson, L., Simpson, A. M., Kidane, G., Livingston, L., and Spithill, T. W., 1980, The kinetoplast DNA of the hemoflagellate protozoa, Am. J. Trop. Med. Hyg. 29: 1053–1063.

    PubMed  CAS  Google Scholar 

  • Smith, G. M., and Pettigrew, G. W., 1980, Identification of N,N-dimethylproline as the N-terminal blocking group of Crithidia oncopelti cytochrome c557, Eur. J. Biochem. 110: 123–130.

    PubMed  CAS  Google Scholar 

  • Srivastava, H. K., and Bowman, I. B. R., 1971, Adaptation in oxidative metabolism of Trypanosoma rhodesiense during transformation in culture, Comp. Biochem. Physiol. 40B: 973–981.

    CAS  Google Scholar 

  • Srivastava, H. K., and Bowman, I. B. R., 1972, Metabolic transformation of Trypanosoma rhodesiense in culture, Nature New Biol. 57: 152–153.

    Google Scholar 

  • Stuart, K., 1980, Cultivation of dyskinetoplastic Trypanosoma brucei, J. Parasitol. 66: 1060–1961.

    PubMed  CAS  Google Scholar 

  • Tanner, M., 1980, Studies on the mechanisms supporting the growth of Trypanosoma (Trypanozoon) brucei as bloodstream-like forms in vitro, Acta Trop. 37: 203–220.

    PubMed  CAS  Google Scholar 

  • Taylor, M. B., Berghausen, P., Heyworth, P., Messenger, N., Rees, L. J., and Gutteridge, W., 1980, Subcellular localization of some glycolytic enzymes in parasitic flagellated protozoa, Int. J. Biochem. 11: 117–120.

    PubMed  CAS  Google Scholar 

  • Threlfall, D. R., Williams, B. L., and Goodwin, T. W., 1965, Terpenoid quinones and sterols in parasitic and culture forms of Trypanosoma rhodesiense, In: Progress in Protozoology: 2 nd International Congress of Protozoology, p. 141, Excerpta Medica, Series 91, Amsterdam.

    Google Scholar 

  • Tobie, E. J., von Brand, T., and Mehlman, B., 1950, Cultural and physiological observations on Trypanosoma rhodesiense and Trypanosoma gambiense, J. Parasitol. 36: 48–54.

    PubMed  CAS  Google Scholar 

  • Trigg, P. I., 1979, Research and training in tropical diseases, Trends Biochem. Sci. 4: 29–30.

    Google Scholar 

  • Turner, M. J., 1982, Biochemistry of the variant surface glycoproteins of salivarian trypanosomes, Adv. Parasitol. 21: 69–151.

    PubMed  CAS  Google Scholar 

  • Van der Meer, C., and Zwart, D., 1980, Pitfalls of salicylhydroxamic acid plus glycerol treatment of T. vivax infected goats, In: The Host Invader Interplay ( H. Van den Bossche, ed.), pp. 687–690, Elsevier/North-Holland, Amsterdam.

    Google Scholar 

  • Van der Meer, C., Versluijs-Broers, J. A. M., and Opperdoes, F. R., 1979, Trypanosoma brucei: Trypanocidal effect of salicylhydroxamic acid plus glycerol in infected rats, Exp. Parasitol. 48: 126–134.

    Google Scholar 

  • Vickerman, K., 1965, Polymorphism and mitochondrial activity in sleeping sickness trypanosomes, Nature 208: 762–766.

    PubMed  CAS  Google Scholar 

  • Vickerman, K., 1970, Morphological and physiological considerations of extracellular blood protozoa, In: Ecology and Physiology of Parasites ( A. M. Fallis, ed.), pp. 58–91, University of Toronto Press, Toronto.

    Google Scholar 

  • Vickerman, K., and Preston, T. M., 1976, Comparative cell biology of the kinetoplastic flagellates, In: Biology of the Kinetoplastida ( W. H. R. Lumsden and D. A. Evans, eds.), Vol. 1, pp. 35–130, Academic Press, New York.

    Google Scholar 

  • Visser, N., and Opperdoes, F. R., 1980, Glycolysis in Trypanosoma brucei, Eur. J. Biochem. 103: 623–632.

    PubMed  CAS  Google Scholar 

  • Visser, N., Opperdoes, F. R., and Borst, P., 1981, Subcellular compartmentation of glycolytic intermediates in Trypanosoma brucei, Eur. J. Biochem. 118: 521–526.

    CAS  Google Scholar 

  • Weinman, D., 1960, Cultivation of the African sleeping sickness trypanosomes from the blood and cerebrospinal fluid of patients and suspects, Trans. R. Soc. Trop. Med. Hyg. 54: 180–190.

    Google Scholar 

  • WHO, 1979, The African trypanosomiases, Technical Report No. 635, World Health Organization, Geneva.

    Google Scholar 

  • Zweygarth, E., Ahmed, J. S., and Rehbein, G., 1983, Cultivation of infective forms of Trypanosoma (T.) brucei evansi in a continuous culture system, Z. Parasitenkd. 69: 131–133.

    PubMed  CAS  Google Scholar 

References to Addendum

  1. Baltz, T., Baltz, D., Giroud, C. and Crockett, J., 1985. Cultivation in a semi-defined medium of animal infective forms of Trypanosoma brucei, T. equiperdum, T. evansi, T. rhodesiense and T. gambiense, EMBO (Eur. Mol. Biol. Org.) J., 4: 1273–1277.

    CAS  Google Scholar 

  2. Dusenko, M., Ferguson, M. A., Lamont, G. S., Rifkin, M. R., and Cross, G. A. M. Cysteine eliminated the feeder cell requirement for cultivation of Trypanosoma brucei bloodstream forms in vitro, J. Exp. Med. 162: 1256–1263.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Fairlamb, A.H., Opperdoes, F.R. (1986). Carbohydrate Metabolism in African Trypanosomes, with Special Reference to the Glycosome. In: Morgan, M.J. (eds) Carbohydrate Metabolism in Cultured Cells. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7679-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7679-8_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7681-1

  • Online ISBN: 978-1-4684-7679-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics