Glutaminolysis in Animal Cells

  • Wallace L. McKeehan


Glutamine is the most abundant amino acid in plasma and most tissues (Van Slyke et al., 1943). Because of both empirical reasoning and cellular requirements determined experimentally, it is the most abundant amino acid in most cell culture media (Ham and McKeehan, 1979). Although other amino acids have metabolic functions in addition to protein and peptide synthesis, glutamine is the most versatile (Krebs, 1980). It is the major source of urinary nitrogen and a key factor in acid—base balance in mammals. The carbon skeleton of glutamine is an important precursor of glucose in kidney cortex and thus contributes to renal gluconeogenesis (Krebs, 1963; Goodman et al., 1966). Glutamine is a vehicle for transporting nitrogen among tissues. Skeletal muscle is the principal site of glutamine production. Release of glutamine from muscle is nearly four times that that can be accounted for by direct protein breakdown (Blackshear et al., 1975; Pardridge and Casenello-Ertl, 1979; Garber, 1980). The principal site of net glutamine metabolism appears to be the gut (Windmueller and Spaeth, 1974; Hanson and Parsons, 1977) followed by the liver (Blackshear et al., 1975). Glutamine is a key metabolite for elimination of toxic ammonia in nerve tissue and may be an important precursor of glutamate and a-aminobutyrate, a synaptic transmitter (Waelsch, 1960; Takagaki et al.,1961). In addition to its specific roles in multiple tissues, glutamine is the primary amino group donor in synthesis of purines and pyrimidines, amino sugars, pyridine nucleotides, and asparagine in mammalian cells. The reader is referred to the following books and reviews for an in-depth picture of the role of glutamine (and glutamate) in mammals: Meister (1956, 1965), Lund et al. (1970), Prusiner and Stadtman (1973), Shepartz (1973), Meister (1978), Munro (1978), Mora and Palacios (1980), Kovacevic and McGivan (1983).


Malic Enzyme Aerobic Glycolysis Ehrlich Ascites Tumor Cell Human Diploid Fibroblast Glutamine Metabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ababei, L., Sarkar, S. R., and Rapoport, S., 1962, Deamination as a locus of action of glucose inhibition of respiration in reticulocytes, Acta Biol. Med. Ger. 8: 266.PubMedGoogle Scholar
  2. Adachi, H., 1967, The placenta and hormones, J. Jpn. Obstet. Gynecol. Soc. 19: 665.Google Scholar
  3. Aoki, T., Morris, H. P., and Weber, G., 1982, Regulatory properties and behavior of carbamoyl phosphate synthetase II (glutamine-hydrolyzing) in normal and proliferating tissues, J. Biol. Chem. 257: 432.PubMedGoogle Scholar
  4. Ardawi, M. S. M., and Newsholme, E. A., 1982a, Maximum activities of some enzymes of glycolysis, the tricarboxylic acid cycle and ketone-body and glutamine utilization pathways in lymphocytes of the rat, Biochem. J. 208: 743.PubMedGoogle Scholar
  5. Ardawi, M. S. M., and Newsholme, E. A., 1982b, Glutamine metabolism in lymphocytes of the rat, Biochem. J. 212: 835.Google Scholar
  6. Azzi, A., Chappell, J. B., and Robinson, B. H., 1967, Penetration of mitochondrial membrane by glutamate and aspartate, Biochem. Biophys. Res. Commun. 29: 148.PubMedGoogle Scholar
  7. Bae, I. H., and Foote, R. H., 1975a, Utilization of glutamine for energy and protein synthesis by cultured rabbit follicular oocytes, Exp. Cell Res. 90: 432.PubMedGoogle Scholar
  8. Bae, I. H., and Foote, R. H., 1975b, Carbohydrate and amino acid requirements and ammonia production of rabbit follicular oocytes matured in vitro, Exp. Cell Res. 91: 113.PubMedGoogle Scholar
  9. Barsh, G. S., and Cunningham, D. D., 1977, Nutrient uptake and control of animal cell proliferation, J. Supramol. Struct. 7: 61.PubMedGoogle Scholar
  10. Baverel, G., and Lund, P., 1979, A role for bicarbonate in the regulation of mammalian glutamine metabolism, Biochem. J. 184: 599.PubMedGoogle Scholar
  11. Berl, S., and Clarke, D. D., 1969, Compartmentation of amino acid metabolism, in: Handbook of Neurochemistry ( A. Lajtha, ed.), Vol. 2, pp. 447–450, Plenum Press, New York.Google Scholar
  12. Berl, S., Clarke, D. D., and Schneider, D. (eds.), 1975, Metabolic Compartmentation and Neurotransmission, Plenum Press, New York.Google Scholar
  13. Blackshear, P. J., Holloway, P. A. H., and Alberti, K. G. M., 1975, Factors regulating amino-acid release from extrasplanchnic tissues in rat—Interactions of alanine and glutamine, Biochem. J. 150: 379.PubMedGoogle Scholar
  14. Blitz, R. M., Letteri, J. M., Pellegrino, E. D., and Pinkus, L., 1982, Glutamine: A new metabolic substrate, Adv. Exp. Med. Biol. 157: 423.Google Scholar
  15. Borst, P., 1962, The pathway of glutamate oxidation by mitochondri isolated from different tissues, Biochim. Biophys. Acta 57: 256.PubMedGoogle Scholar
  16. Bradford, H. F., and Ward, H. K., 1975, Glutamine as a metabolic substrate for isolated nerve-endings: Inhibition by ammonium ions, Biochem. Soc. Trans. 3: 1223.Google Scholar
  17. Bradford, H. F., and Ward, H. K., 1976, On glutaminase activity in mammalian synaptosomes, Brain Res. 110: 115.PubMedGoogle Scholar
  18. Brdiczka, D., and Pette, D., 1971, Intra-and extramitochondrial isozymes of (NADP) malate dehydrogenase, Eur. J. Biochem. 19: 546.PubMedGoogle Scholar
  19. Buchanan, J. M., 1973, The amidotransferases, Adv. Enzymol. 39: 91.PubMedGoogle Scholar
  20. Calman, K. C., 1982, Cancer cachexia, Br. J. Hosp. Med. 27: 28.PubMedGoogle Scholar
  21. Chappell, J. B., 1968, Systems used for transport of substrates into mitochondria, Br. Med. Bull. 24: 150.PubMedGoogle Scholar
  22. Coles, N. W., and Johnstone, R. M., 1962, Glutamine metabolism in Ehrlich ascites-carcinoma cells, Biochem. J. 83: 284.PubMedGoogle Scholar
  23. Cori, C. F., 1981, The glucose-lactic acid cycle and gluconeogenesis, Curr. Top. Cell. Regul. 18: 2237.Google Scholar
  24. Costa, G., 1977, Cachexia, the metabolic component of neoplastic diseases, Cancer Res. 37: 2237.Google Scholar
  25. Crabtree, B., and Newsholme, E. A., 1985, A quantitative approach to metabolic control, Curr. Topics Cell. Regul. 25: 21.Google Scholar
  26. Crompton, M., and Chappell, J. B., 1973, Transport of glutamine and glutamate in kidney mitochondria in relation to glutamine deamidation, Biochem. J. 132: 35.PubMedGoogle Scholar
  27. Curthoys, N. P., and Shapiro, R. A., 1978, Effect of metabolic acidosis and of phosphate on presence of glutamine within matrix space of rat renal mitochondria during glutamine transport, J. Biol. Chem. 253: 63.PubMedGoogle Scholar
  28. Curthoys, N. P., Sindel, R. W., and Lowry, O. H., 1973, Rat kidney glutaminase isozymes, in: The Enzymes of Glutamine Metabolism ( S. Prusiner and E. R. Stadtman, eds.), pp. 259–276, Academic Press, New York.Google Scholar
  29. Deaciuc, I. V., and Petrescu, I., 1980, Regulation of glutamine catabolism in the perfused guineapig liver in relation to ureogenesis and gluconeogenesis, Int. J. Biochem. 12: 605.PubMedGoogle Scholar
  30. Dean, B., and Bartley, W., 1973, Oxaloacetate decarboxylases of rat liver, Biochem. J. 135: 667.PubMedGoogle Scholar
  31. DeFrancesco, L., Wentz, D., and Scheffler, I. E., 1975, Conditionally lethal mutations in Chinese hamster cells: Characterization of a cell line with a possible defect in the Krebs cycle, J. Cell. Physiol. 85: 293.PubMedGoogle Scholar
  32. Denton, R. M., and McCormack, J. G., 1980, On the role of the calcium-transport cycle in heart and other mammalian mitochondria, FEBS Lett. 119: 1.PubMedGoogle Scholar
  33. Donnelly, M., and Scheffler, I. E., 1976, Energy metabolism in respiration-deficient and wild-type Chinese hamster fibroblasts in culture, J. Cell. Physiol. 89: 39.PubMedGoogle Scholar
  34. Eagle, H., Oyama, V. I., Levy, M., Horton, C. L., and Fleischman, R., 1956, The growth response of mammalian cells in tissue culture to L-glutamine and L-glutamic acid, J. Biol. Chem. 218: 607.PubMedGoogle Scholar
  35. Eagle, H., Barban, S., Levy, M., and Schulze, H. O., 1958, The utilization of carbohydrates by human cell cultures, J. Biol. Chem. 233: 551.PubMedGoogle Scholar
  36. Eigenbrodt, E., and Glossmann, H., 1980, Glycolysis—One of the keys to cancer? Trends Pharmacol. Sci. May: 240.Google Scholar
  37. Fagan, J. B., and Racker, E., 1978, Determinants of glycolytic rate in normal and transformed chick embryo fibroblasts, Cancer Res. 38: 749.PubMedGoogle Scholar
  38. Felig, P., 1973, The glucose–alanine cycle, Metabolism 22: 179.PubMedGoogle Scholar
  39. Fenselau, A., Wallis, K., and Morris, H. P., 1975, Acetoacetate coenzyme A transferase activity in rat hepatomas, Cancer Res. 35: 2315.PubMedGoogle Scholar
  40. Fenselau, A., Wallis, K., and Morris, H. P., 1976, Subcellular localization of acetoacetate coenzyme A transferase in rat hepatomas, Cancer Res. 36: 4429.PubMedGoogle Scholar
  41. Franchi, A., Silvestre, P., and Pouysségur, J., 1981, A genetic approach to the role of energy metabolism in the growth of tumor cells: Tumorigenicity of fibroblast mutants deficient either in glycolysis or in respiration, Im. J. Cancer 27: 819.Google Scholar
  42. Frizzel, R. A., Markscheid-Kaspi, L., and Schultz, S. G., 1974, Oxidative metabolism of rabbit ileal mucosa, Am. J. Physiol. 226: 1142.Google Scholar
  43. Garber, A. J., 1980, Glutamine metabolism in skeletal muscle, in: Glutamine: Metabolism, Enzymology and Regulation ( J. Mora and R. Palacious, eds.), pp. 259–284, Academic Press, New York.Google Scholar
  44. Garber, A. J., Karl, I. E., and Kipnis, D. M., 1976, Alanine and glutamine synthesis and release from skeletal muscle. I. Glycolysis and amino acid release, J. Biol. Chem. 251: 826.PubMedGoogle Scholar
  45. Gilbert, J. B.,, Price, V. E., and Greenstein, J. P., 1949, Effect of anions on the non-enzymatic desamidation of glutamine, J. Biol. Chem. 180: 209.PubMedGoogle Scholar
  46. Glazer, R. I., Vogel, C. L., Potel, I. R., and Anthony, P. P., 1974, Glutamate dehydrogenase activity related to histopathological grade of hepatocellular carcinoma in man, Cancer Res. 34: 2975.PubMedGoogle Scholar
  47. Godfrey, S., Kuhlenschmidt, T., and Curthoys, N. P., 1977, Correlation between activation and dimer formation of rat renal phosphate-dependent glutaminase, J. Biol. Chem. 252: 1927.PubMedGoogle Scholar
  48. Goetz, I. E., Weinstein, C., and Roberts, E., 1973, Properties of a hamster tumor cell line grown in a glutamine-free medium, In Vitro 9: 46.PubMedGoogle Scholar
  49. Gold, J., 1966, Metabolic profiles in human tumors. I. A new technic for the utilization of human solid tumors in cancer research and its application to the anaerobic glycolysis of isologous benign and malignant colon tissues, Cancer Res. 26: 695.PubMedGoogle Scholar
  50. Gold, J., 1974, Cancer cachexia and gluconeogenesis, Ann. N.Y. Acad. Sci. 230: 103.PubMedGoogle Scholar
  51. Goldstein, L., and Boylan, J. M., 1978, Renal mitochondrial glutamine transport and metabolism—Studies with a rapid-mixing, rapid-filtration technique, Am. J. Physiol. 234: F514.PubMedGoogle Scholar
  52. Goodman, A. D., Fuisz, R. E., and Cahill, G. F., 1966, Renal gluconeogenesis in acidosis, alkalosis, and potassium deficiency: Its possible role in regulation of renal ammonia production, J. Clin. Invest. 45: 612.PubMedGoogle Scholar
  53. Graff, S., Moser, H., Kastner, O., Graff, A. M., and Tannenbaum, M., 1965, The significance of glycolysis, J. Natl. Cancer Inst. 34: 511.PubMedGoogle Scholar
  54. Gregg, C. T., 1972, Some aspects of the energy metabolism of mammalian cells, in: Growth Nutrition and Metabolism of Cells in Culture ( G. H. Rothblat and V. J. Cristofalo, eds.), pp. 83–129, Academic Press, New York.Google Scholar
  55. Griffiths, J. B., and Pirt, S. J., 1967, The uptake of amino acids by mouse cells (strain LS) during growth in batch culture and chemostat culture, Proc. R. Soc. London Ser. B 168: 421.Google Scholar
  56. Guidotti, G. G., Borghetti, A. F., and Gozzola, G. C., 1978, The regulation of amino acid transport in animal cells, Biochim. Biophys. Acta 515: 329.PubMedGoogle Scholar
  57. Gwatkin, R. B. L., and Haidri, A. A., 1973, Requirements for the maturation of hamster oocytes in vitro, Exp. Cell Res. 76: 1.PubMedGoogle Scholar
  58. Ham, R. G., and McKeehan, W. L., 1979, Media for growth of cells in culture, Methods Enzymol. 5: 44.Google Scholar
  59. Ham, R. G., Hammond, S. L., and Miller, L. L., 1977, Critical adjustment of cysteine and glutamine concentrations for improved clonal growth of WI-38 cells, In Vitro 13: 1.PubMedGoogle Scholar
  60. Hansford, R. G., 1980, Control of mitochondrial substrate oxidation, Curr. Top. Bioenerg. 10: 217.Google Scholar
  61. Hansford, R. G., and Lehninger, A. L., 1973, Active oxidative decarboxylation of malate by mitochondria isolated from L-1210 ascites tumor cells, Biochem. Biophys. Res. Commun. 51: 480.PubMedGoogle Scholar
  62. Hanson, P. J., and Parsons, D. S., 1977, Metabolism and transport of glutamine and glucose in vascularly perfused small intestine of rat, Biochem. J. 166: 509.PubMedGoogle Scholar
  63. Hanson, P. J., and Parsons, D. S., 1980, The interrelationship between glutamine and alanine in the intestine, Biochem. Soc. Trans. 8: 506.PubMedGoogle Scholar
  64. Haruno, K., 1956, Changes in glutaminase activity of liver tissue from rats during the development of hepatic tumors by carcinogen feeding, Gann 47: 231.Google Scholar
  65. Hems, R., Stubbs, M., and Krebs, H. A., 1968, Restricted permeability of rat liver for glutamate and succinate, Biochem. J. 107: 807.PubMedGoogle Scholar
  66. Hertz, L., Yu, A., Svenneby, G., Kvamme, E., Fosmark, H., and Shousboe, A., 1980, Absence of preferential glutamine uptake into neurons—an indication of a net transfer of TCA constituents from nerve endings to astrocytes, Neurosci. Lett. 16: 103.PubMedGoogle Scholar
  67. Herzfeld, A., and Roper, S. M., 1979, Effects of cortisol or starvation on the activities of four enzymes in small intestine and liver of the rat during development, J. Dev. Physiol. 1: 315.PubMedGoogle Scholar
  68. Hills, A. G., Reid, E. L., and Kerr, W. D., 1972, Circulatory transport of L-glutamine in fasted mammals: Cellular sources of urine ammonia, Am. J. Physiol. 223: 1470.PubMedGoogle Scholar
  69. Hoek, J. B., and Njogu, R. M., 1976, Glutamate transport and trans-membrane pH gradient in isolated rat liver mitochondria, FEBS Lett. 71: 341.PubMedGoogle Scholar
  70. Holzman, I. R., Phillips, A. F., and Battaglia, F. C., 1979, Glucose metabolism, lactate, and ammonia production by the human placenta in vitro, Pediatr. Res. 13: 117.PubMedGoogle Scholar
  71. Homsby, P. J., and Gill, G. N., 1981, Regulation of glutamine and pyruvate oxidation in cultured adrenocortical cells by cortisol, antioxidants, and oxygen: Effects on cell proliferation, J. Cell. Physiol. 109: 111.Google Scholar
  72. Horowitz, B., Madras, B. K., Meister, A., and Stockert, E., 1968, Asparagine synthetase activity of mouse leukemias, Science 160: 533.PubMedGoogle Scholar
  73. Horowitz, M. L., and Knox, W. E., 1968, A phosphate activated glutaminase in rat liver different from that in kidney and other tissues, Enzymol. Biol. Clin. 9: 241.Google Scholar
  74. Huang, Y. Z., and Knox, W. E., 1976, A comparative study of glutaminase isozymes in rat tissues, Enzyme 21: 408.PubMedGoogle Scholar
  75. Hume, D. A., Radik, J. L., Ferber, E., and Weidemann, M. J., 1978, Aerobic glycolysis and lymphocyte transformation, Biochem. J. 174: 703.PubMedGoogle Scholar
  76. Ishikawa, E., 1976, Regulation of uptake and output of amino-acids by rat tissues, Adv. Enzyme Regul. 14: 117.PubMedGoogle Scholar
  77. Janski, A. M., and Cornell, N. W., 1980, Subcellular distribution of enzymes determined by rapid digitonin fractionation of isolated hepatocytes, Biochem. J. 186: 423.PubMedGoogle Scholar
  78. Kaplan, R. S., Morris, H. P., and Coleman, P. S., 1982, Kinetic characteristics of citrate influx and efflux with mitochondria from Morris hepatomas 3924A and 16, Cancer Res. 42: 4399.PubMedGoogle Scholar
  79. Katunuma, N., Huzino, A., and Tomino, I., 1967, Organ specific control of glutamine metabolism, Adv. Enzyme Regul. 5: 55.PubMedGoogle Scholar
  80. Katunuma, N., Kuroda, Y., Yoshida, T., Sanada, Y., and Morris, H. P., 1972, Relationship between degree of differentiation and growth rate of minimal deviation hepatomas and kidney cortex tumors studied with glutaminase isozymes, Gann 13: 143.Google Scholar
  81. Katunuma, N., Katsunuma, T., Towatari, T., and Tomino, I., 1973, Regulatory mechanisms of glutamine catabolism, in: The Enzymes of Glutamine Metabolism ( S. Prusiner and E. R. Stadt-man, eds.), pp. 227–258, Academic Press, New York.Google Scholar
  82. Kilberg, M. S., Handlogten, M. E., and Christensen, H. N., 1980, Characteristics of an amino acid transport system in rat liver for glutamine, asparagine, histidine, and closely related analogs, J. Biol. Chem. 255: 4011.PubMedGoogle Scholar
  83. Kitos, P. A., Sinclair, R., and Waymouth, C., 1962, Glutamine metabolism by animal cells growing in a synthetic medium, Exp. Cell Res. 27: 307.PubMedGoogle Scholar
  84. Klingenberg, M., 1970, Metabolite transport in mitochondria: An example for intracellular membrane function, in: Essays in Biochemistry ( P. N. Campbell and F. Dickens, eds.), Vol. 6, pp. 119–159, Academic Press, New York.Google Scholar
  85. Klingenberg, M., 1971, Kinetic study of the dicarboxylic carrier in rat liver mitochondria, Eur. J. Biochem. 22: 66.PubMedGoogle Scholar
  86. Knox, W. E., 1976, Enzyme Patterns in Fetal, Adult and Neoplastic Rat Tissues, 2nd ed., Karger, Basel.Google Scholar
  87. Knox, W. E., Tremblay, G. C., Spanier, B. B., and Friedell, G. H., 1967, Glutaminase activities in normal and neoplastic tissues of the rat, Cancer Res. 27: 1456.PubMedGoogle Scholar
  88. Knox, W. E., Horowitz, M. L., and Friedell, G. H., 1969, The proportionality of glutaminase content to growth rate and morphology of rat neoplasmas, Cancer Res. 29: 669.PubMedGoogle Scholar
  89. Koser, B. H., and Christensen, H. N., 1971, Effect of substrate structure on coupling ratio for Na±-dependent transport of amino-acids, Biochim. Biophys. Acta 241: 9.PubMedGoogle Scholar
  90. Kovacevie, Z., 1971, The pathway of glutamine and glutamate oxidation in isolated mitochondria from mammalian cells, Biochem. J. 125: 757.Google Scholar
  91. Kovacevic, Z., 1974, Properties and intracellular localization of Ehrlich ascites tumor cell glutaminase, Cancer Res. 34: 3403.PubMedGoogle Scholar
  92. Kovacevic, Z., 1975, Possible mechanisms of efflux of glutamate from kidney mitochondria generated by activity of mitochondria) glutaminase, Biochim. Biophys. Acta 396: 325.PubMedGoogle Scholar
  93. Kovacevic, Z., and McGivan, J. D., 1983, Mitochondrial metabolism of glutamine and glutamate and its physiological significance, Phys. Rev. 63: 547.Google Scholar
  94. Kovacevic, Z., and Morris, H. P., 1972, The role of glutamine in the oxidative metabolism of malignant cells, Cancer Res. 32: 326.PubMedGoogle Scholar
  95. Krebs, H. A., 1935, Metabolism of amino-acids: The synthesis of glutamine from glutamic acid and ammonia, and the enzymic hydrolysis of glutamine in animal tissues, Biochem. J. 29:1951. Krebs, H. A., 1963, Renal gluconeogenesis, Adv. Enzyme Regul. 1: 385.Google Scholar
  96. Krebs, H. A., 1980, Glutamine metabolism in the animal body, in: Glutamine: Metabolism, Enzymology, and Regulation ( J. Mora and R. Palacios, eds.), pp. 319–329, Academic Press, New York.Google Scholar
  97. Kvamme, E., and Svenneby, G., 1961, The effect of glucose on glutamine utilization by Ehrlich ascites tumor cells, Cancer Res. 21: 92.PubMedGoogle Scholar
  98. Lamar, C., 1968, Studies on two glutaminase systems from rat kidney, Biochim. Biophys. Acta 151: 188.PubMedGoogle Scholar
  99. Lalloue, K. F., and Schoolwerth, A. C., 1979, Metabolite transport in mitochondria, Annu. Rev. Biochem. 48: 871.Google Scholar
  100. Lavietes, B. B., Regan, D. H., and Demopoulos, H. B., 1974, Glutamate oxidation of 6C3HED lymphoma: Effects of L-asparaginase on sensitive and resistant lines, Proc. Natl. Acad. Sci. USA 71: 3993.PubMedGoogle Scholar
  101. Lawson, D. H., Richmond, A., Nixon, D. W., and Rudman, D., 1982, Metabolic approaches to cancer cachexia, Annu Rev. Nutr. 2: 277.PubMedGoogle Scholar
  102. Lazo, P., 1981, Amino acids and glucose utilization by different metabolic pathways in ascites-tumour cells, Eur. J. Biochem. 117: 19.PubMedGoogle Scholar
  103. Lazo, P. A., and Sols, A., 1980, Energetics of tumour cells: Enzyme basis of aerobic glycolysis, Biochem. Soc. Trans. 8: 579.PubMedGoogle Scholar
  104. Lehninger, A. L., 1975, Biochemistry: The Molecular Basis of Cell Structure and Function, Worth, New York.Google Scholar
  105. Lemons, L. H., Adkock, E. W., Jones, M. D., Naughton, M. A., Meschia, G., and Battaglia, F. C., 1976, Umbilical uptake of amino acids in the unstressed fetal lamb, J. Clin. Invest. 58: 1428.PubMedGoogle Scholar
  106. Levintow, L., Eagle, H., and Piez, K. A., 1957, The role of glutamine in protein biosynthesis in tissue culture, J. Biol. Chem. 227: 929.PubMedGoogle Scholar
  107. Linder-Horowitz, M., Knox, W. E., and Morris, H. P., 1969, Glutaminase activities and growth rates of rat hepatomas, Cancer Res. 29: 1195.PubMedGoogle Scholar
  108. Linn, R. C., and Davis, E. J., 1974, Malic enzymes of rabbit heart mitochondria: Separation and comparison of some characteristics of a nicotinamide adenine dinucleotide-preferring and a nicotinamide adenine dinucleotide phosphate-specific enzyme, J. Biol. Chem. 249: 3867.Google Scholar
  109. Lowenstein, J. M., 1969, Citric Acid Cycle, Control and Compartmentation, Dekker, New York.Google Scholar
  110. Lowenstein, J. M., 1972, Ammonia production in muscle and other tissue: The purine nucleotide cycle, Phys. Rev. 52: 382.Google Scholar
  111. Luchinsky, H. L., 1951, The activity of glutaminase in the human placenta, Arch. Biochem. Biophys. 31: 132.Google Scholar
  112. Lund, P., 1971, Control of glutamine synthesis in rat liver, Biochem. J. 124: 653.PubMedGoogle Scholar
  113. Lund, P., 1980, Glutamine metabolism in the rat, Biochem. J. 117: K86.Google Scholar
  114. Lund, P., and Watford, M., 1976, Glutamine as a precursor of urea, in: The Urea Cycle ( S. Grisolia, R. Bagenna, and F. Mayor, eds.), pp. 479–485, Wiley, New York.Google Scholar
  115. Lund, P., Bresnan, J. T., and Eggleston, L. V., 1970, The regulation of ammonia metabolism in mammalian tissue, in: Essays in Cell Metabolism ( W. Bartley, H. L. Kornberg, and J. R. Quayle, eds.), pp. 167–180, Wiley, New York.Google Scholar
  116. McCormack, J. G., and Denton, R. M., 1981, A comparative study of the regulation by Cat+ of the activities of the 2-oxoglutarate dehydrogenase complex and NAD+-isocitrate dehydrogenase from a variety of sources, Biochem. J. 196: 619.PubMedGoogle Scholar
  117. McKeehan, W. L., 1982, Glycolysis, glutaminolysis and cell proliferation, Cell Biol. Int. Rep. 6: 635.PubMedGoogle Scholar
  118. McKeehan, W. L., and McKeehan, K. A., 1982, Changes in NAD(P)+-dependent malic enzyme and malate dehydrogenase activities during fibroblast proliferation, J. Cell. Physiol. 110: 142.PubMedGoogle Scholar
  119. McMenamy, R. H., Shoemaker, W. C., Richmond, J. E., and Elwyn, D., 1962, Uptake and metabolism of amino acids by the dog liver perfused in situ, Am. J. Physiol. 202: 407.Google Scholar
  120. Makarewicz, W., and Swierczynski, J., 1982, Ammonia formation from some amino acids by human term placental mitochondria, Biochem. Med. 28: 135.PubMedGoogle Scholar
  121. Mandella, R. D., and Sauer, L. A., 1975, The mitochondrial malic enzymes: Submitochondrial localization and purification and properties of the NAD(P)+-dependent enzyme from adrenal cortex, J. Biol. Chem. 250: 5877.PubMedGoogle Scholar
  122. Meister, A., 1956, Metabolism of glutamine, Physiol. Rev. 36: 103.PubMedGoogle Scholar
  123. Meister, A., 1962, Amide nitrogen transfer (survey), The Enzymes 16: 247.Google Scholar
  124. Meister, A., 1965, Glutamic acid and glutamine, in: Biochemistry of the Amino Acids, Vol. 2, pp. 617–635, Academic Press, New York.Google Scholar
  125. Meister, A., 1978, Biochemistry of glutamate, glutamine and glutathione, in: Glutamic Acid: Advances in Biochemistry and Physiology ( L. J. Filer, Jr., S. Garattini, M. R. Kare, W. A. Reynolds, and W. J. Wartman, eds.), pp. 369–385, Raven Press, New York.Google Scholar
  126. Miller, R. E., and Canino, D. A., 1981, An association between glutamine synthetase activity and adipocyte differentiation in cultured 3T3–L1 cells, Arch. Biochem. Biophys. 209: 486.PubMedGoogle Scholar
  127. Mora, J., and Palacios, R. (eds.), 1980, Glutamine: Metabolism, Enzymology and Regulation, Academic Press, New York.Google Scholar
  128. Moreadith, R. W., and Lehninger, A. L., 1984a, The pathways of glutamate and glutamine oxidation by tumor cell mitochondria. Role of mitochondria) NAD(P) + -dependent malic enzyme, J. Biol. Chem. 259: 6215.PubMedGoogle Scholar
  129. Moreadith, R. W., and Lehninger, A. L., 1984b, Purification, kinetic behavior, and regulation of NAD(P) + malic enzyme of tumor mitochondria, J. Biol. Chem. 259: 6222.PubMedGoogle Scholar
  130. Morehouse, R. F., and Curthoys, N. P., 1981, Properties of rat renal phosphate-dependent glutaminase coupled to Sepharose, Biochem. J. 193: 709.PubMedGoogle Scholar
  131. Morris, H. P., 1972, Isozymes in selected hepatomas and some biological characteristics of a spectrum of transplantable hepatomas, Gann 13: 95.Google Scholar
  132. Munro, H. M., 1978, Factors in the regulation of glutamate metabolism, in: Glutamic Acid: Advances in Biochemistry and Physiology ( L. J. Filer, Jr., S. Garattini, M. R. Kare, W. A. Reynolds, and R. J. Wartman, eds.), pp. 55–65, Raven Press, New York.Google Scholar
  133. Nagel, W. O., Dauchy, R. T., and Sauer, L., 1980, Mitochondrial malic enzymes: An association between NAD(P)+-dependent malic enzyme and cell renewal in Sprague—Dawley rat tissues, J. Biol. Chem. 255: 3849.PubMedGoogle Scholar
  134. Nagel, W. O., and Sauer, L. A., 1982, Mitochondrial malic enzymes. Purification and properties of the NAD(P)+-dependent malic enzyme from canine intestinal mucosa.Google Scholar
  135. Neptune, E. M., Jr., 1965, Respiration and oxidation of various substrates by ileum in vitro, Am. J. Physiol. 209: 329.PubMedGoogle Scholar
  136. Newsholme, E. A., Crabtree, B., and Ardawi, M. S. M., The role of high rates of glycolysis and glutamine utilization in rapidly dividing cells, Bioscience Rep. 5: 393.Google Scholar
  137. Nyhan, W. L., and Busch, H., 1958a, Metabolic patterns for L-glutamate-U-C14 in tissues of tumor-bearing rats, Cancer Res. 18: 385.PubMedGoogle Scholar
  138. Nyhan, W. L., and Busch, H., 19586, Metabolic patterns for succinate-2-C14 in tissues of tumor-bearing rats, Cancer Res. 18: 1203.Google Scholar
  139. Olivera, A., and Meigs, R., 1975, Mitochondria from human term placenta. I. Isolation and assay conditions for oxidative phosphorylation, Biochim. Biophys. Acta 376: 426.PubMedGoogle Scholar
  140. Olivotto, M., and Paoletti, F., 1981, The role of respiration in tumor cell transition from the noncycling to the cycling state, J. Cell. Physiol. 107: 243.PubMedGoogle Scholar
  141. Olivotto, M., Caldini, R., Chevanne, M., and Apolleschi, M. G., 1983, The respiration-linked limiting step of tumor cell transition from the noncycling to the cycling state: Its inhibition by oxidizable substrates and its relation to purine metabolism, J. Cell. Physiol. 116: 149.PubMedGoogle Scholar
  142. Ottaway, J. H., McClellan, J. A., and Saunderson, C. L., 1981, Succinic thiokinase and metabolic control, Int. J. Biochem. 13: 401.PubMedGoogle Scholar
  143. Palmieri, F., Quagliariello, E., and Klingenberg, M., 1972, Kinetics and specificity of the oxoglutarate carrier in rat-liver mitochondria, Eur. J. Biochem. 29: 408.PubMedGoogle Scholar
  144. Papaconstantinou, J., Goldberg, E. B., and Colowick, S. P., 1963, The role of glycolysis in the growth of tumor cells, in: Control Mechanisms in Respiration and Fermentation ( B. Wright, ed.), pp. 243–251, Ronald Press, New York.Google Scholar
  145. Paradies, G., Capuano, F., Palombi, G., Galeotti, T., and Papa, S., 1983, Transport of pyruvate in mitochondria from different tumor cells, Cancer Res. 43: 5068.PubMedGoogle Scholar
  146. Pardridge, W. M., and Casenello-Ertl, D., 1979, Effects of glutamine deprivation on glucose and amino-acid metabolism in tissue culture, Am. J. Physiol. 236: E234.PubMedGoogle Scholar
  147. Pardridge, W. M., Davidson, M. B., and Casenello-Ertl, D., 1978, Glucose and amino acid metabolism in an established line of skeletal muscle cells, J. Cell. Physiol. 96: 309.PubMedGoogle Scholar
  148. Pardridge, W. M., Duducgian-Vartavarian, L., Casenello-Ertl, D., Jones, M. R., and Kopple, J. D., 1980, Glucose and amino acid metabolism in neonatal rat skeletal muscle in tissue culture, J. Cell. Physiol. 102: 91.PubMedGoogle Scholar
  149. Pederson, P. L., 1978, Tumor mitochondria and the bioenergetics of cancer cells, Prog. Exp. Tumor Res. 22: 190.Google Scholar
  150. Pinkus, L. M., and Berkowitz, J. M., 1980, Utilization of glutamine by canine pancreas in vivo and acinar cells in vitro, Fed. Proc. 39: 1902.Google Scholar
  151. Pinkus, L. M., and Windmueller, H. G., 1977, Phosphate-dependent glutaminase of small intestine: Localization and role in intestinal glutamine metabolism, Arch. Biochem. Biophys. 182: 506.PubMedGoogle Scholar
  152. Pitts, R. F., Pilkington, L. A., MacLeod, M. B., and Leal-Pinto, E., 1972, Metabolism of glutamine by intact functioning kidney of dog—Studies in metabolic-acidosis and alkalosis, J. Clin. Invest. 51: 557.PubMedGoogle Scholar
  153. Porteous, J. W., 1980, Glutamate, glutamine, aspartate, asparagine, glucose and ketone body metabolism in chick intestinal brush-border cells, Biochem. J. 188: 619.PubMedGoogle Scholar
  154. Pouysségur, J., Franchi, A., Salomon, J.-C., and Silvestre, P., 1980, Isolation of a Chinese hamster fibroblast mutant defective in hexose transport and aerobic glycolysis: Its use to dissect the malignant phenotype, Proc. Natl. Acad. Sci. USA 77: 2698.PubMedGoogle Scholar
  155. Prajda, N., Katunuma, N., Morris, H. P., and Weber, G., 1975, Imbalance of purine metabolism in hepatomas of different growth rates as expressed in behavior of glutamine-phosphoribosylpyrophosphate amidotransferase (amidophosphoribosyltransferase, EC, J. Biol. Chem. 250: 432.Google Scholar
  156. Prusiner, S., and Stadtman, E. R. (eds.), 1973, The Enzymes of Glutamine Metabolism, Academic Press, New York.Google Scholar
  157. Rabinovitz, M., Olson, M. E., and Greenburg, D. M., 1956, Role of glutamine in protein synthesis by the Ehrlich ascites cells, J. Biol. Chem. 231: 879.Google Scholar
  158. Racker, E., 1976, Why do tumor cells have a high aerobic glycolysis?, J. Cell. Physiol. 89: 697.PubMedGoogle Scholar
  159. Raina, P. N., and Ramakrishnan, C. V., 1964, Glutaminase activity in rat tissues, Oncologia 18: 14.Google Scholar
  160. Rapoport, S., Rost, J., and Schultze, M., 1971, Glutamine and glutamate as respiratory substrates of rabbit reticulocytes, Eur. J. Biochem. 23: 1966.Google Scholar
  161. Regan, D. H., Lavietes, B. B., Regan, M. G., Demopoulos, H. B., and Morris, H. P., 1973, Glutamate-mediated respiration in tumors, J. Natl. Cancer Inst. 51: 1013.Google Scholar
  162. Reitzer, L. J., Wice, B. M., and Kennell, D., 1979, Evidence that glutamate, not sugar, is the major energy source for cultured HeLa cells, J. Biol. Chem. 254: 2669.PubMedGoogle Scholar
  163. Reitzer, L. J., Wice, B. M., and Kennell, D., 1980, The pentose cycle: Control and essential function in HeLa cell nucleic acid synthesis, J. Biol. Chem. 255: 5616.PubMedGoogle Scholar
  164. Renner, E. D., Plagemann, P. G. W., and Bernlohr, R. W., 1972, Permeation of glucose by simple and facilitated diffusion by Novikoff rat hepatoma cells in suspension culture and its relation to glucose metabolism, J. Biol. Chem. 247: 5765.PubMedGoogle Scholar
  165. Rheinwald, J. G., and Green, H., 1974, Growth of cultured mammalian cells on secondary glucose sources, Cell 2: 287.PubMedGoogle Scholar
  166. Roberts, E., and Borges, P. R. F., 1955, Patterns of free amino acids in growing and regressing tumors, Cancer Res. 15: 697.PubMedGoogle Scholar
  167. Roberts, E., and Simonsen, D. G., 1960, Free amino acids and similar substances in normal and neoplastic tissue, in: Amino Acids, Proteins and Cancer Biochemistry ( J. T. Edsell, ed.), pp. 127–135, Academic Press, New York.Google Scholar
  168. Roberts, E., Tanaka, K. K., Tanaka, T., and Simonsen, D. G., 1956, Free amino acids in growing and regressing ascites cell tumors: Host resistance and chemical agents, Cancer Res. 16: 970.PubMedGoogle Scholar
  169. Robins, S., 1957, Textbook of Pathology, Saunders, Philadelphia.Google Scholar
  170. Robinson, B. H., 1971a, Transport of phosphoenolpyruvate by the tricarboxylate transporting system in mammalian mitochondria, FEBS Lett. 14: 309.PubMedGoogle Scholar
  171. Robinson, B. H., 1971b, The role of the tricarboxylate transporting system in the production of phosphoenolpyruvate by ox liver mitochondria, FEBS Lett. 16: 267.PubMedGoogle Scholar
  172. Romano, A. H., 1976, Is glucose transport enhanced in virus-transformed mammalian cells? A dissenting view, J. Cell. Physiol. 89: 737.PubMedGoogle Scholar
  173. Romano, A. H., and Cornell, N. D., 1982, Transport of 6-deoxy-D-glucose and D-xylose by untransformed and SV40-transformed 3T3 cells, J. Cell. Physiol. 111: 83.PubMedGoogle Scholar
  174. Roos, D., and Loos, J. A., 1973, Changes in the carbohydrate metabolism of mitogenically stimulated human peripheral lymphocytes. II. Relative importance of glycolysis and oxidative phosphorylation on phytohaemagglutinin stimulation, Exp. Cell Res. 77: 127.PubMedGoogle Scholar
  175. Saheki, T., and Katunuma, N., 1975, Analysis of regulatory factors for urea synthesis by isolated perfused rat-liver. 1. Urea synthesis with ammonia and glutamine as nitrogen sources, J. Biochem. 77: 659.PubMedGoogle Scholar
  176. Salzman, N. P., Eagle, H., and Sebring, E. D., 1957, The utilization of glutamine, glutamic acid, and ammonia for the biosynthesis of nucleic acid bases in mammalian cell cultures, J. Biol. Chem. 227: 1001.Google Scholar
  177. Sauer, L. A., 1973, An NAD- and NADP-dependent malic enzyme with regulatory properties in rat liver and adrenal cortex mitochondrial fractions, Biochem. Biophys. Res. Commun. 50: 524.PubMedGoogle Scholar
  178. Sauer, L. A., and Dauchy, R. T., 1978, Identification and properties of the nicotinamide adenine dinucleotide (phosphate) + -dependent malic enzyme in mouse ascites tumor mitochondria, Cancer Res. 38: 1751.PubMedGoogle Scholar
  179. Sauer, L. A., and Dauchy, R. T., 1983, Ketone body, glucose, lactic acid, and amino acid utilization by tumors and in vivo in fasted rats, Cancer Res. 43: 3497.PubMedGoogle Scholar
  180. Sauer, L. A., Dauchy, R. T., and Nagel, W. 0., 1979, Identification of an NAD(P) -dependent “malic” enzyme in small-intestinal-mucosal mitochondria, Biochem. J. 184: 185.PubMedGoogle Scholar
  181. Sauer, L. A., Dauchy, R. T., Nagel, W. 0., and Morris, H. P., 1980, Mitochondrial malic enzymes: Mitochondrial NAD(P) + -dependent malic enzyme activity and malate-dependent pyruvate formation are progression-linked in Morris hepatomas, J. Biol. Chem. 255: 3844.PubMedGoogle Scholar
  182. Sauer, L. A., Stayman, J. W., III, and Dauchy, R. T., 1982, Amino acid, glucose, and lactic acid utilization in vivo by rat tumors, Cancer Res. 42: 4090.PubMedGoogle Scholar
  183. Schneider, H., Mohlen, K. H., Challier, J. C., and Dancis, J., 1979, Transfer of glutamic acid across the human placenta perfused in vitro, Br. J. Obstet. Gynaecol. 86: 299.PubMedGoogle Scholar
  184. Schoolwerth, A. C., and Lalloue, K. F., 1980, The role of microcompartmentation in the regulation of glutamate metabolism by rat kidney mitochondria, J. Biol. Chem. 255: 3403.Google Scholar
  185. Schweiger, H. G., Rapoport, S. and Schozel, F., 1956, Nitrogen metabolism in erythrocyte maturation: Residual nitrogen formation and hemoglobin synthesis, Hoppe-Seylers Z. Physiol. Chem. 306: 33.PubMedGoogle Scholar
  186. Sevdalian, D. A., Ozand, P. T., and Zielke, H. R., 1980, Increase in glutaminase activity during the growth cycle of cultured human diploid fibroblasts, Enzyme 25: 142.PubMedGoogle Scholar
  187. Shaffer, J. B., and Felder, M. R., 1983, Turnover of cytoplasmic and mitochondrial aspartate aminotransferase isozymes in mouse liver and transplantable hepatomas, Arch. Biochem. Biophys. 223: 649.PubMedGoogle Scholar
  188. Shank, R. P., and Aprison, M. H., 1981, Present status and significance of the glutamine cycle in neural tissue, Life Sci. 28: 837.PubMedGoogle Scholar
  189. Shepartz, B., 1973, Regulation of Amino Acid Metabolism in Mammals, Saunders, Philadelphia. Shotwell. M. A., Kilberg, M. S., and Oxender, D. L., 1983, The regulation of neutral amino acid transport in mammalian cells, Biochim. Biophys. Acta 737: 267.Google Scholar
  190. Simpson, E., and Estabrook, R. W., 1969, Mitochondrial malic enzyme: The source of reduced nicotinamide adenine dinucleotide phosphate for steroid hydroxylation in bovine adrenal cortex mitochondria, Arch. Biochem. Biophys. 129: 384.PubMedGoogle Scholar
  191. Singer, T. P., Kearney, E. B., and Kenney, W. C., 1973, Succinate dehydrogenase, Adv. Enzymol. 37: 189.PubMedGoogle Scholar
  192. Singh, M., Singh, V. N., August, J. T., and Horecker, B. L., 1974a, Alterations in glucose metabolism in chick embryo cells transformed by Rous sarcoma virus: Transformation-specific changes in the activities of key enzymes of the glycolytic and hexose monophosphate shunt pathways, Arch. Biochem. Biophys. 165: 240.PubMedGoogle Scholar
  193. Singh, V. N., Singh, M., August, J. T., and Horecker, B. L., 1974b, Alterations in glucose metabolism in chick embryo cells transformed by Rous sarcoma virus: Intracellular levels of glycolytic intermediates, Proc. Natl. Acad. Sci. USA 71: 4129.PubMedGoogle Scholar
  194. Sols, A., 1976, The Pasteur effect in the allosteric era, in: Reflections on Biochemistry ( A. Kornberg, B. L. Horecker, L. Cornudella, and J. Oro, eds.), pp. 199–206, Pergamon Press, Elmsford, N.Y.Google Scholar
  195. Stanisz, J., Wice, B. R., and Kennell, D. E., 1983, Comparative energy metabolism in cultured heart muscle and HeLa cells, J. Cell. Physiol. 115: 320.PubMedGoogle Scholar
  196. Stegink, L. D., Pitkin, R. M., Reynolds, W. A., Filer, L. J., Booz, D. P., and Brummel, M. C., 1975, Placental transfer of glutamate and its metabolites in the primate, Am. J. Obstet. Gynecol. 122: 70.PubMedGoogle Scholar
  197. Steinberger, A., and Steinberger, E., 1966, Stimulatory effect of vitamins and glutamine on the differentiation of germ cells in rat testes organ culture grown in chemically defined media, Exp. Cell Res. 44: 429.PubMedGoogle Scholar
  198. Stoner, G. D., and Merchant, D. J., 1972, Amino acid utilization of L-M strain mouse cells in a chemically defined medium, In Vitro 7: 330.PubMedGoogle Scholar
  199. Sumbilla, C. M., Ozand, P. T., and Zielke, H. R., 1981, Activities of enzymes required for the conversion of 4-carbon TCA cycle compounds to 3-carbon glycolytic compounds in human diploid fibroblasts, Enzyme 26: 201.PubMedGoogle Scholar
  200. Swierczynski, J., Scislowski, P., Aleksandrowicz, A., and Zelewski, L., 1982, NAD(P)-dependent malic enzyme activity in human term placental mitochondria, Biochem. Med. 28: 247.PubMedGoogle Scholar
  201. Takagaki, G., Berl, S., Clarke, D. D., Purpura, D. P., and Waelsch, H., 1961, Glutamic acid metabolism in brain and liver during infusion with ammonia labelled with nitrogen-15, Nature 189: 326.PubMedGoogle Scholar
  202. Tapia, R., 1980, Glutamine metabolism in brain, in: Glutamine: Metabolism, Enzymology and Regulation ( J. Mora and R. Palacios, eds.), pp. 285–297, Academic Press, New York.Google Scholar
  203. Tate, S. S., and Meister, A., 1973, Glutamine synthetases of mammalian liver and brain, in: The Enzymes of Glutamine Metabolism ( S. Prusiner, ed.), pp. 77–127, Academic Press, New York.Google Scholar
  204. Thomas, E. L., and Christensen, H. N., 1971, Nature of cosubstrate action of Na+ and neutral amino-acids in a transport system, J. Biol. Chem. 246: 1682.PubMedGoogle Scholar
  205. Tiemeier, D. C., Smotkin, D., and Milman, G., 1973, Regulation of glutamine synthetase in Chinese hamster cells, in: The Enzymes of Glutamine Metabolism ( S. Prusiner, ed.), pp. 145–166, Academic Press, New York.Google Scholar
  206. Tildon, J. T., 1983, Glutamine: a possible energy source for the brain, in: Glutamine, Glutamate, and GABA in the Central Nervous System ( L. Hertz, E. Kyamme, E. G. McGeer, and A. Schousboe, eds.), pp. 415–429, Alan R. Liss, Inc., New York.Google Scholar
  207. Towler, C. M., Pugh-Humphreys, G. P., and Porteous, J. P., 1978, Characterization of columnar absorptive epithelial cells isolated from rat jejunum, J. Cell Sci. 29: 53.PubMedGoogle Scholar
  208. Trayhurn, P., and Van Heyningen, R., 1971, Aerobic metabolism in the bovine lens, Exp. Eye Res. 12: 315.PubMedGoogle Scholar
  209. Trayhurn, P., and Van Heyningen, R., 1973a, The metabolism of amino acids in the bovine lens, Biochem. J. 136: 67.PubMedGoogle Scholar
  210. Trayhurn, P., and Van Heyningen, R., 19736, The metabolism of glutamine in the bovine lens: Glutamine as a source of glutamate, Exp. Eye Res. 17: 149.Google Scholar
  211. Tritsch, G. L., and Moore, G. E., 1962, Spontaneous decomposition of glutamine in cell culture media, Exp. Cell Res. 28: 360.PubMedGoogle Scholar
  212. Tsoncheva, A., 1974, Some properties of isozymes of NADP-malate dehydrogenase from cortical layers of rat kidneys, Biokhimiya 39: 1172.Google Scholar
  213. Tsuiki, S., Sato, K., Mijagi, T., and Kikuchi, H., 1972, Isozymes of fructose 1,6-disphosphatase, glycogen synthetase, and glutamine:fructose 6-phosphate amidotransferase, Gann 13: 153.Google Scholar
  214. Tyrrell, J. B., and Anderson, J. N., 1971, Glycolytic and pentose phosphate pathway enzymes in jejunal mucosa: Adaptive responses to alloxan-diabetes and fasting in the rat, Endocrinology 89: 1178.PubMedGoogle Scholar
  215. Van Slyke, D. D., Phillips, R. A., Hamilton, P. B., Archibald, R. M., Futcher, P. H., and Hiller, A., 1943, Glutamine as source material of urinary ammonia, J. Biol. Chem. 150: 481.Google Scholar
  216. Vina, J. R., and Williamson, D. H., 1981, Utilization of L-alanine and L-glutamine by lactating mammary gland of the rat, Biochem. J. 196: 757.PubMedGoogle Scholar
  217. Volman-Mitchell, H., and Parsons, D. S., 1974, Distribution and activities of dicarboxylic amino acid transaminases in gastrointestinal mucosa of rat, mouse, hamster, guinea pig, chicken and pigeon, Biochim. Biophys. Acta 334: 316.Google Scholar
  218. Waelsch, H., 1960, An attempt at integration of structure and metabolism in the nervous system, in: Structure and Function of the Cerebral Cortex (D. B. Tower and J. P. Shade, eds.), pp. 313326, Elsevier, Amsterdam.Google Scholar
  219. Wanders, R. J. A., Hoek, J. B., and Tager, J. M., 1980, Origin of the ammonia found in protein-free extracts of rat-liver mitochondria and rat hepatocytes, Eur. J. Biochem. 110: 197.PubMedGoogle Scholar
  220. Wang, T., Marquardt, C., and Foker, J., 1976, Aerobic glycolysis during lymphocyte proliferation, Nature 261: 701.Google Scholar
  221. Warburg, 0., 1926, Über den Stoffweschel der Tumoren, Springer-Verlag, Berlin (Translation: The Metabolism of Tumors, Arnold Constable, London, 1930 ).Google Scholar
  222. Warburg, 0., 1956, On the origin of cancer cells, Science 123: 309.Google Scholar
  223. Warburg, O., Kubowitz, F., and Christian, W., 1931, Uber die wirkung von phenylhydrazin und phenylhydroxylamin auf der stoffwechsel de roten blutzellen, Biochem. Z. 242: 170.Google Scholar
  224. Wasilenko, W. J., and Marchok, A. C., 1984, Pyruvate regulation of growth and differentiation in primary cultures of rat tracheal epithelial cells, Exp. Cell Res. 155: 507.PubMedGoogle Scholar
  225. Wasilenko, W. J., and Marchok, A. C., 1985, Malic enzyme and malate dehydrogenase activities in rat tracheal epithelial cells during the progression of neoplasia, Cancer Letters 28: 35.PubMedGoogle Scholar
  226. Watford, M., Lund, P., and Krebs, H. A., 1979a, Isolation and metabolic characteristics of rat and chicken enterocytes, Biochem. J. 178: 589.PubMedGoogle Scholar
  227. Watford, M., Vinay, P., Lemieux, G., and Gougoux, A., 1979b, The formation of pyruvate from citric acid-cycle intermediates in kidney cortex, Biochem. Soc. Trans. 7: 753.PubMedGoogle Scholar
  228. Watford, M., Vinay, P., Lemieux, G., and Gougoux, A., 1980, The regulation of glucose and pyruvate formation from glutamine and citric-acid-cycle intermediates in the kidney cortex of rats, dogs, rabbits and guinea pigs, Biochem. J. 188: 741.PubMedGoogle Scholar
  229. Wein, J., and Goetz, I. E., 1973, Asparaginase and glutaminase activities in culture media containing dialyzed fetal calf serum, In Vitro 9: 186.PubMedGoogle Scholar
  230. Weinhouse, S., 1976, The Warburg hypothesis fifty years later, Z. Krebsforsch. Klin. Onkol. 87: 115.Google Scholar
  231. Wenner, C. E., 1975, Regulation of energy metabolism in normal and tumor cells, in: Cancer: A Comprehensive Treatise ( F. F. Becker, ed.), Vol. 3, pp. 389–403, Plenum Press, New York.Google Scholar
  232. Whittaker, P. A., and Danks, S. M., 1978, Mitochondria: Structure, Function and Assembly, Longman, London.Google Scholar
  233. Wice, B. M., Reitzer, L. J., and Kennell, D., 1981, The continuous growth of vertebrate cells in the absence of sugar, J. Biol. Chem. 256: 7812.PubMedGoogle Scholar
  234. Williams, W. J., and Manson, C. A., 1958, Glutaminase of the human malignant cell, strain HeLa, J. Biol. Chem. 232: 229.PubMedGoogle Scholar
  235. Williamson, J. R., 1976, Role of anion transport in the regulation of metabolism, in: Gluconeogenesis: Its Regulation in Mammalian Species ( R. W. Hanson and M. A. Mehlman, eds.), pp. 165–181, Wiley, New York.Google Scholar
  236. Williamson, J. R., and Cooper, R. H., 1980, Regulation of the citric-acid cycle in mammalian systems, FEBS Lett. 117: K73.PubMedGoogle Scholar
  237. Windmueller, H. G., 1982, Glutamine utilization by the small intestine, Adv. Enzymol. 53:201. Windmueller, H. G., and Spaeth, A. E., 1974, Uptake and metabolism of plasma glutamine by the small intestine, J. Biol. Chem. 249: 5070.Google Scholar
  238. Windmueller, H. G., and Spaeth, A. E., 1980, Respiratory fuels and nitrogen metabolism in vivo in small intestine of fed rats, J. Biol. Chem. 255: 107.PubMedGoogle Scholar
  239. Wise, E. M., and Ball, E. G., 1964, Malic enzyme and lipogenesis, Proc. Natl. Acad. Sci. USA 52: 1255.PubMedGoogle Scholar
  240. Yu, A. C., Shousbae, A., and Hertz, L., 1982, Metabolic fate of C-labeled glutamate in astrocytes in primary cultures, J. Neurochem., 39: 958.Google Scholar
  241. Zielke, H. R., Ozand, P. T., Tildon, J. T., Sevdalian, D. A., and Cornblath, M., 1976, Growth of human diploid fibroblasts in the absence of glucose utilization, Proc. Natl. Acad. Sci. USA 73: 4110.PubMedGoogle Scholar
  242. Zielke, H. R., Ozand, P. T., Tildon, J. T., Sevdalian, D. A., and Cornblath, M., 1978, Reciprocal regulation of glucose and glutamine utilization by cultured human diploid fibroblasts, J. Cell. Physiol. 95: 41.PubMedGoogle Scholar
  243. Zielke, H. R., Sumbilla, C. M., Sevdalian, D. A., Hawkins, R. L., and Ozand, P. T., 1980, Lactate: A major product of glutamine metabolism by human diploid fibroblasts, J. Cell. Physiol. 104: 433.PubMedGoogle Scholar
  244. Zielke, H. R., Sumbilla, C. M., and Ozand, P. T., 1981, Effect of glucose on aspartate and glutamate synthesis by human diploid fibroblasts, J. Cell. Physiol. 107: 251.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Wallace L. McKeehan
    • 1
  1. 1.W. Alton Jones Cell Science CenterLake PlacidUSA

Personalised recommendations