Biochemical Genetics of Respiration-Deficient Mutants of Animal Cells

  • Immo E. Scheffler


Given an abundant supply of glucose and oxygen, mammalian cells have a capacity for energy production (ATP synthesis) that far exceeds the need of the cell. The control of energy metabolism in normal cells is exquisite, and it has presented a fascinating challenge to several generations of biochemists. On the one hand, ATP is generated only when it is needed, but a viable cell also maintains its energy charge at a constant level (Atkinson, 1968, 1977).


Electron Transport Chain Citric Acid Cycle Complementation Group Chinese Hamster Cell Mitochondrial Protein Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackrell, B. A. C., Ramsay, R. R., Kearney, E. B., Singer, T. P., White, G. A., and Thom, G. D., 1982, Two small polypeptides from complex II and their role in the reconstruction of Qreductase activity and in the binding of TTF, In: Function of Quinones in Energy Conserving Systems ( B. L. Trumpower, ed.), pp. 319–332, Academic Press, New York.Google Scholar
  2. Atkinson, D. E., 1968, The energy charge of the adenylate pool as a regulatory parameter: Interaction with feedback modifiers. Biochemistry 7: 4030–4034.PubMedCrossRefGoogle Scholar
  3. Atkinson, D. E., 1977, Cellular Energy Metabolism and Its Regulation, Academic Press, New York.Google Scholar
  4. Breen, G. A. M., and Scheffler, I. E., 1979. Respiration-deficient Chinese hamster cell mutants: Biochemical characterization, Somat. Cell Genet. 5: 441–451.PubMedCrossRefGoogle Scholar
  5. Burnett, K. G., and Scheffler, I. E., 1981, Integrity of mitochondria in a mammalian cell mutant defective in mitochondrial protein synthesis, J. Cell Biol. 90: 108–115.PubMedCrossRefGoogle Scholar
  6. Capaldi, R. A., Sweetland, J., and Merli, A., 1977, Polypeptides in the succinate-coenzyme Q segment of the electron transport chain, Biochemistry, 16: 5707–5710.PubMedCrossRefGoogle Scholar
  7. Chang, R. S., Liepins, H., and Margolish, M., 1961, Carbon dioxide requirement and nucleic acid metabolism of He La and conjunctival cells, Proc. Soc. Exp. Biol. Med. 106: 149–152.PubMedGoogle Scholar
  8. Chu, E. H. Y., 1974, Induction and analysis of gene mutations in cultured mammalian somatic cells, Genetics 78: 115–132.PubMedGoogle Scholar
  9. Chu, E. H. Y., Sun, N. C., and Chang, C. C., 1972, Induction of auxotrophic mutations by treatment of Chinese hamster cells with 5-bromodeoxyuridine and black light, Proc. Natl. Acad. USA 69: 3459–3463.CrossRefGoogle Scholar
  10. Cole, S. T., and Guest, J. R., 1982, Molecular genetic aspects of the succinate–fumarate oxidoreductases of E. coli, Biochem. Soc. Trans. 10: 473–475.PubMedGoogle Scholar
  11. Cole, S. T., Grundstrom, T., Jaurin, B., Robinson, J. J., and Weiner, J. H., 1982, Location and nucleotide sequence of frdB, the gene coding for the iron–sulphur protein subunit of the fumarate reductase of E. coli, Eur. J. Biochem. 126: 211–216.PubMedCrossRefGoogle Scholar
  12. Cooper, J. A., Russ, N. A., Schwartz, R. J., and Hunter, T., 1983, Three glycolytic enzymes are phosphorylated at tyrosine in cells transformed by Rous sarcoma virus, Nature 302: 218–223.PubMedCrossRefGoogle Scholar
  13. Davis, K., and Hatefi, Y., 1971, Succinate dehydrogenase. I. Purification, molecular properties, and substructure, Biochemistry 10: 2509–2516.PubMedCrossRefGoogle Scholar
  14. Day, C., and Scheffler, I. E., 1982, Mapping of the genes for some components of complex I of the electron transport chain on the X chromosome of mammals, Somat. Cell Genet. 8: 691–707.PubMedCrossRefGoogle Scholar
  15. DeFrancesco, L., Werntz, D., and Scheffler, I. E., 1975, Conditionally lethal mutations in Chinese hamster cells: Characterization of a cell line with a possible defect in the Krebs cycle, J. Cell. Physiol. 85: 293–306.PubMedCrossRefGoogle Scholar
  16. DeFrancesco, L., Scheffler, I. E., and Bissell, M. J., 1976, A respiration deficient Chinese hamster cell line with a defect in NADH-coenzyme Q reductase, J. Biol. Chem. 251: 4588–4595.PubMedGoogle Scholar
  17. Ditta, G., Soderberg, K., Landy, F., and Scheffler, I. E., 1976, The selection of Chinese hamster cells deficient in oxidative energy metabolism, Somat. Cell Genet. 2: 331–344.PubMedCrossRefGoogle Scholar
  18. Ditta, G., Soderberg, K., and Scheffler, I. E., 1977, Chinese hamster cell mutant with defective mitochondrial protein synthesis, Nature 268: 64–66.PubMedCrossRefGoogle Scholar
  19. Donnelly, M., and Scheffler, I. E., 1976, Energy metabolism in respiration-deficient and wild type Chinese hamster fibroblasts in culture, J. Cell. Physiol. 89: 39–52.PubMedCrossRefGoogle Scholar
  20. Dujon, B., Colson, A. M., and Sloninski, P. P., 1977, The mitochondrial genetic map of Saccharomyces cerevisiae: compilation of mutations, genes, genetic and physical maps, In: Mitochondria 1977, Genetics and Biogenesis of Mitochondria (W. Bandlow, R. J. Schwegen, K. Wolf, and F. Kandewitz, eds.), pp. 579–669, W. de Gruyter, Berlin.Google Scholar
  21. Ernster, L., 1956, Organization of mitochondrial DPN-linked systems. II. Regulation of alternate electron transfer pathways, Exp. Cell Res. 10: 721–732.PubMedCrossRefGoogle Scholar
  22. Geyer, R. P., and Neimark, J. M., 1958, Response of CO2 deficient human cells in vitro to normal cell extracts, Proc. Soc. Exp. Biol. Med. 99: 599–601.PubMedGoogle Scholar
  23. Gregg, C. T., 1972, Some aspects of energy metabolism of mammalian cells, In: Growth, Nutrition, and Metabolism of Cells in Culture ( G. H. Rothblat and V. J. Cristofalo, eds.), pp. 83–136, Academic Press, New York.Google Scholar
  24. Gutman, M., Kearney, E. B., and Singer, T. P., 1971, Control of succinate dehydrogenase in mitochondria, Biochemistry 10: 4763–4770.PubMedCrossRefGoogle Scholar
  25. Harris, M., 1982, Induction of thymidine kinase in enzyme deficient Chinese hamster cells, Cell 29: 483–492.PubMedCrossRefGoogle Scholar
  26. Hatefi, Y., 1976, The enzymes and enzyme complexes of the mitochondrial oxidative phosphorylation system, In: The Enzymes of Biological Membranes ( A. Martonosi, ed.), pp. 3–42, Plenum Press, New York.Google Scholar
  27. Hederstedt, L., and Rutberg, L., 1981, Succinate dehydrogenase-A comparative review, Microbiol. Rev. 45: 542–555.PubMedGoogle Scholar
  28. Heron, C., Smith, S., and Ragan, C. I., 1979, An analysis of the polypeptide composition of bovine heart mitochondrial NADH ubiquinone oxidoreductase by two-dimensional gel electrophoresis, Biochem. J. 181: 435–443.PubMedGoogle Scholar
  29. Kao, F.-T., and Puck, T. T., 1968, Genetics of somatic mammalian cells. VII. Induction and isolation of nutritional mutants in Chinese hamster cells, Proc. Natl. Acad. Sci. USA 60: 1275–1281.PubMedCrossRefGoogle Scholar
  30. Leibovitz, A., 1963, The growth and maintenance of tissue cell culture in free gas exchange with the atmosphere, Am. J. Hyg. 78: 173–180.PubMedGoogle Scholar
  31. Lemire, B. C., Robinson, J. J., and Weiner, J. H., 1982, Identification of membrane anchor polypeptides of E. coli fumarate reductase, J. Bacteriol. 152: 1126–1131.PubMedGoogle Scholar
  32. Lewin, A. S., Gregor, I., Mason, T. L., Nelson, N., and Schatz, G., 1980, Cytoplasmically made subunits of yeast mitochondrial F1-ATPase and cytochrome c oxidase are synthesized as individual precursors, not as polyproteins, Proc. Natl. Acad. Sci. USA 77: 3998–4002.PubMedCrossRefGoogle Scholar
  33. Maccechini, M. L., Rudin, Y., Blobel, G., and Schatz, G., 1979, Import of proteins into mitochondria: Precursor forms of the extramitochondrially made F1 ATPase subunits in yeast, Proc. Natl. Acad. Sci. USA 76: 343–347.CrossRefGoogle Scholar
  34. McKeehan, W. L., 1982, Glycolysis, glutaminolysis, and cell proliferation, Cell Biol. Int. Rep. 6: 635–650.PubMedCrossRefGoogle Scholar
  35. McLimans, W. F., 1972, The gaseous environment of the mammalian cell in culture, In: Growth, Nutrition and Metabolism of the Mammalian Cell in Culture (G. H. Rothblat and V. J. Cristofalo, eds.), pp. 137–170, Academic Press, New York.Google Scholar
  36. Maiti, I. B., Comlan de Souza, A., and Thirion, J. P., 1981, Biochemical and genetic characterization of respiration-deficient mutants of Chinese hamster cells with a Gal phenotype, Somat. Cell Genet. 7: 567–582.PubMedCrossRefGoogle Scholar
  37. Malczewski, R. M., and Whitfield, C. D., 1982, Respiration defective Chinese hamster cell mutants containing low levels of NADH-ubiquinone reductase and cytochrome c oxidase, J. Biol. Chem. 257: 8137–8142.PubMedGoogle Scholar
  38. Mascarello, J. T., Soderberg, K., and Scheffler, I. E., 1980, Assignment of a gene for succinate dehydrogenase to human chromosome 1 by somatic cell hybridization, Cytogenet. Cell Genet. 28: 121–135.PubMedCrossRefGoogle Scholar
  39. Merli, A., Capaldi, R. A., Ackrell, B. A. C., and Kearney, E. G., 1979, Arrangement of complex II (succinate-ubiquinone reductase) in the mitochondrial inner membrane, Biochemistry 18: 1393–1400.PubMedCrossRefGoogle Scholar
  40. Nelson, N., and Schatz, G., 1979, Energy-dependent processing of cytoplasmically made precursors to mitochondria] proteins, Proc. Natl. Acad. Sci. USA 76: 4365–4369.PubMedCrossRefGoogle Scholar
  41. Neupert, W., and Schatz, G., 1981, How proteins are transported into mitochondria, Trends Biochem. Sci. 6: 1–4.CrossRefGoogle Scholar
  42. Paul, J., 1965, Carbohydrate and energy metabolism, In: Cells and Tissues in Culture (E. N. Wittmer, ed.), pp. 239–276, Academic Press, New York.Google Scholar
  43. Pedersen, P. L., 1978, Tumor mitochondria and the bioenergetics of cancer cells, Prog. Exp. Tumor Res. 22: 190–274.PubMedGoogle Scholar
  44. Poyton, R. O., and McKemmie, E., 1979, A polyprotein precursor to all four cytoplasmically translated subunits of cytochrome c oxidase from S. cerevisiae, J. Biol. Chem. 254: 6763–6771.PubMedGoogle Scholar
  45. Puck, T. T., and Kao, F.-T., 1967, Genetics of mammalian calls. V. Treatment with 5’ BUdR and visible light for isolation of nutritionally deficient mutants, Proc. Natl. Acad. Sci. USA 58: 1227–1234.PubMedCrossRefGoogle Scholar
  46. Racker, E., 1972, Bioenergetics and the problem of tumor growth, Am. Sci. 60: 56–63.PubMedGoogle Scholar
  47. Racker, E., 1976, A New Look at Mechanisms in Bioenergetics, pp. 153–175, Academic Press, New York.Google Scholar
  48. Racker, E., Johnson, J. H., and Blackwell, M. T., 1983, The role of ATPase in glycolysis of Ehrlich ascites tumor cells, J. Biol. Chem 258: 3702–3705.PubMedGoogle Scholar
  49. Ragan, C. I., 1980, The molecular organization of NADH dehydrogenase, In: Subcellular Biochemistry, Vol. 7 ( D. B. Roodyn, ed.), pp. 267–307, Plenum Press, New York.Google Scholar
  50. Ragan, C. I., Galante, Y. M., Hatefi, Y., and Ohnishi, T., 1982, Resolution of mitochondrial NADH dehydrogenase and isolation of two iron-sulfur proteins, Biochemistry 21: 590–594.PubMedCrossRefGoogle Scholar
  51. Reid, G. A., and Schatz, G., 1982, Biogenesis of mitochondrial membrane proteins, In: Membranes in Growth and Development: Progress in Clinical and Biological Research ( J. F. Hoffman, G. H. Giebisch, and L. Bolis, eds.), pp. 49, Alan R. Liss, New York.Google Scholar
  52. Schatz, G., and Butow, R. A., 1983, How are proteins imported into mitochondria?, Cell 32: 39–52.CrossRefGoogle Scholar
  53. Scheffler, I. E., 1974, Conditional lethal mutants of Chinese hamster cells: Mutants requiring exogenous carbon dioxide for growth, J. Cell. Physiol. 83: 219–230.PubMedCrossRefGoogle Scholar
  54. Soderberg, K., Mascarello, J. T., Breen, G. A. M., and Scheffler, I. E., 1979, Respiration-deficient Chinese hamster cell mutants: Genetic characterization, Somat. Cell Genet. 5: 225–240.PubMedCrossRefGoogle Scholar
  55. Soderberg, K., Ditta, G., and Scheffler, I. E., 1977, Mammalian cells with defective mitochondrial functions: A Chinese hamster cell line lacking succinate dehydrogenase activity, Cell 10: 697–702.PubMedCrossRefGoogle Scholar
  56. Soderberg, K., Nissinen, E., Bakay, B., and Scheffler, I. E., 1980, The energy charge in wild-type and respiration-deficient Chinese hamster cell mutants, J. Cell. Physiol. 103: 169–172.PubMedCrossRefGoogle Scholar
  57. Sun, N. C., Chang, C. C., and Chu, E. H. Y., 1975, Mutant hamster cells exhibiting a pleiotropic effect on carbohydrate metabolism, Proc. Natl. Acad. Sci. USA 72: 469–473.PubMedCrossRefGoogle Scholar
  58. Veeger, C., Der Vartanian, D. V., and Zeylemaker, W. F., 1969, Succinate dehydrogenase, In: Methods in Enzymology ( J. M. Lowenstein, ed.), pp. 81–90, Academic Press, New York.Google Scholar
  59. Whitfield, C. D., Bostedor, R., Goodrum, D., Haak, M., and Chu, E. H. Y., 1981, Hamster cell mutants unable to grow on galactose and exhibiting an overlapping complementation pattern are defective in the electron transport chain, J. Biol. Chem. 256: 6651–6656.PubMedGoogle Scholar
  60. Wiseman, A., and Attardi, G., 1979, Cytoplasmically inherited mutations of a human cell line resulting in deficient mitochondria) protein synthesis, Somat. Cell Genet. 5: 241–262.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Immo E. Scheffler
    • 1
  1. 1.Department of BiologyUniversity of California at San DiegoLa JollaUSA

Personalised recommendations