The Utilization of Carbohydrates by Animal Cells

An Approach to Their Biochemical Genetics
  • Michael J. Morgan
  • Pelin Faik


Animal cells in culture, in marked contrast to microorganisms (Chapters 10–12), are able to grow on only a limited number of carbohydrates other than glucose. The early literature contains a number of reports on the ability of carbohydrates to support growth of various cell types (Eagle et al., 1958; Morgan and Morton, 1960) but some investigations are open to the criticism that they did not take fully into account the facts that many commercially available carbohydrates are contaminated with glucose, that serum itself contains glucose, and that the cells may thus really have been utilizing glucose.


Pentose Phosphate Pathway Rous Sarcoma Virus Hexose Transport Chinese Hamster Cell Gluconeogenic Enzyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aithal, H. N., Walsh-Reitz, M. M., and Toback, F. G., 1983, Appearance of a cytosolic protein that stimulates glyceraldehyde-3-phosphate dehydrogenase activity during initiation of renal epithelial cell growth, Proc. Natl. Acad. Sci. USA 80: 2941–2945.PubMedCrossRefGoogle Scholar
  2. Amos, H., Leventhal, M., Chu, L., and Karnovsky, M. J., 1976, Modifications of mammalian cell surfaces induced by sugars: Scanning electron microscopy, Cell 7: 97–103.PubMedCrossRefGoogle Scholar
  3. Ardawi, M. S. M., and Newsholme, E. A., 1982, Maximum activities of some enzymes of glycolysis, the tricarboxylic acid cycle and ketone-body and glutamine utilisation pathways in lymphocytes of the rat, Biochem. J. 208: 743–748.PubMedGoogle Scholar
  4. Arinze, I. J., Raghunathan, R., and Russell, J. D., 1978, Induction of mitochondrial phosphoenolpyruvate carboxykinase in cultured human fibroblasts, Biochim. Biophys. Acta 531: 792–804.Google Scholar
  5. Attenello, J. W., and Lee, A. S., 1984, Regulation of a hybrid gene by glucose and temperature in hamster fibroblasts, Science 226: 187–190.PubMedCrossRefGoogle Scholar
  6. Avner, P., Dubois, P., Nicolas, J. F., Jakob, H., Gaillard, J., and Jacob, F., 1977, Mouse teratocarcinoma: Carbon source utilisation patterns for growth and in vitro differentiation, Exp. Cell Res. 105: 39–50.PubMedCrossRefGoogle Scholar
  7. Bailey, J. M., Gey, G. O., and Gey, M. K., 1959, The carbohydrate nutrition and metabolism of a strain of mammalian cells (MB III strain of mouse lymphoblasts) growing in vitro, J. Biol. Chem. 234: 1042–1047.PubMedGoogle Scholar
  8. Benn, P. A., Kelley, R. I., Mellman, W. J., Amer, L., Boches, F. S., Markus, H. B., Nichols, W., and Hoffman, B., 1981, Reversion from deficiency of galactose 1-phosphate uridyltransferase (GALT) in an SV40-transformed human fibroblast line, Somat. Cell Genet. 7: 667–682.PubMedCrossRefGoogle Scholar
  9. Bertolotti, R., 1977a, A selective system for hepatoma cells producing gluconeogenic enzymes, Somat. Cell Genet. 3: 365–380.PubMedCrossRefGoogle Scholar
  10. Bertolotti, R., 1977b, Expression of differentiated functions in hepatoma cell hybrids: Selection in glucose-free media of segregated hybrid cells which re-express gluconeogenic enzymes, Somat. Cell Genet. 3: 579–602.PubMedCrossRefGoogle Scholar
  11. Bishayee, S., and Das, M., 1981, Aberrant energy metabolism in a variant epidermal growth factor receptor-negative fibroblastic cell line, FEBS Lett. 127: 237–240.PubMedCrossRefGoogle Scholar
  12. Bloch, R., Betschart, B., and Burger, M. M., 1977, Cell culture in serum depleted of glycosidases by heating, Exp. Cell Res. 104: 143–152.PubMedCrossRefGoogle Scholar
  13. Blomquist, C. H., Gregg, C. T., and Tobey, R. A., 1971, Enzyme and co-enzyme levels, oxygen uptake and lactate production in synchronised cultures of Chinese hamster cells, Exp. Cell Res. 66: 75–80.PubMedCrossRefGoogle Scholar
  14. Bruni, P., Faranraro, M., Vasta, V., and D’Alessandro, A., 1983, Increase of the glycolytic rate in human resting fibroblasts following serum stimulation: The possible role of the fructose 2,6bisphosphate, FEBS Lett. 159: 39–42.PubMedCrossRefGoogle Scholar
  15. Burns, R. L., Rossenberger, P. G., and Klebe, R. J., 1976, Carbohydrate preferences of mammalian cells, J. Cell. Physiol. 88: 307–316.PubMedCrossRefGoogle Scholar
  16. Bustamante, E., and Pedersen, P. L., 1977, High aerobic glycolysis of rat hepatoma cells in culture: Role of mitochondrial hexokinase, Proc. Natl. Acad. Sci. USA 74: 3735–3739.PubMedCrossRefGoogle Scholar
  17. Bustamante, E., Morris, H. P., and Pedersen, P. L., 1981, Energy metabolism of tumour cells: Requirement for a hexokinase with a propensity for mitochondrial binding, J. Biol. Chem. 256: 8699–8704.PubMedGoogle Scholar
  18. Cassio, D., 1984, Re-expression of hepatic functions in mouse hepatoma x rat hepatoma hybrids, Differentiation 26: 77–82.PubMedCrossRefGoogle Scholar
  19. Chen, Y. T., Mattison, D. R., Feigenbaum, L., Fukui, H., and Schulman, J. D., 1981, Reduction in oocyte number following prenatal exposure to a diet high in galactose, Science 214: 1145–1147.PubMedCrossRefGoogle Scholar
  20. Clayton, D. F., and Darnell, J. E., 1983, Changes in liver-specific compared to common gene transcription during primary culture of mouse hepatocytes, Mol. Cell. Biol. 3: 1552–1561.PubMedGoogle Scholar
  21. Cogoli, A., Tschopp, A., and Fuchs-Bislin, P., 1984, Cell sensitivity to gravity, Science 225: 228–230.PubMedCrossRefGoogle Scholar
  22. Colby, C., and Romano, A. H., 1974, Phosphorylation but not transport of sugars is enhanced in virus-transformed mouse 3T3 cells, J. Cell. Physiol. 85: 15–24.CrossRefGoogle Scholar
  23. Cooper, J. A., Reiss, N. A., Schwartz, R. J., and Hunter, T., 1983, Three glycolytic enzymes are phosphorylated at tyrosine in cells transformed by Rous sarcoma virus, Nature 302: 218–223.PubMedCrossRefGoogle Scholar
  24. Cox, R. P., and Gesner, B. M., 1965, Effect of simple sugars on the morphology and growth pattern of mammalian cell cultures, Proc. Natl. Acad. Sci. USA 54: 1571–1579.PubMedCrossRefGoogle Scholar
  25. Dahl, R. H., and Morse, M. L., 1979, Differential metabolism of mannose by Chinese hamster cell lines, Exp. Cell Res. 121: 277–282.PubMedCrossRefGoogle Scholar
  26. Dahl, R. H., Morrissey, A., Puck, T. T., and Morse, M. L., 1976, Carbohydrate energy sources for Chinese hamster cells in culture, Proc. Soc. Exp. Biol. Med. 153: 251–253.PubMedGoogle Scholar
  27. Demetrakopoulos, G. E., and Amos, H., 1976, D-Xylose and xylitol: Previously unrecognised sole carbon and energy sources for chick and mammalian cells, Biochem. Biophys. Res. Commun. 72: 1169–1176.PubMedCrossRefGoogle Scholar
  28. Demetrakopoulos, G. E., Gonzalez, F., Colofiore, J., and Amos, H., 1977, Growth of chick and mammalian cells on D-xylose, Exp. Cell Res. 106: 167–173.PubMedCrossRefGoogle Scholar
  29. Deschatrette, J., and Weiss, M. C., 1974, Characterisation of differentiated and dedifferentiated clones from a rat hepatoma, Biochimie 56: 1603–1611.PubMedCrossRefGoogle Scholar
  30. Deschatrette, J., Moore, E. E., Dubois, M., and Weiss, M. C., 1980, Dedifferentiated variants of a rat hepatoma: Reversion analysis, Cell 19: 1043–1051.PubMedCrossRefGoogle Scholar
  31. Diamond, I., Legg, A., Schneider, J. A., and Rozengurt, E., 1978, Glycolysis in quiescent cultures of 3T3 cells: Stimulation by serum, epidermal growth factor, and insulin in intact cells and persistence of the stimulation after cell homogenization, J. Biol. Chem. 253: 866–871.PubMedGoogle Scholar
  32. D’Urso, M., Mareni, C., Toniolo, D., Piscopo, M., Schlessinger, D., and Luzzatto, L., 1983, Regulation of glucose 6-phosphate dehydrogenase expression in CHO—human fibroblast somatic cell hybrids, Somat. Cell Genet. 9: 429–443.PubMedCrossRefGoogle Scholar
  33. Eagle, H., Barban, S., Levy, M., and Schulze, H. O., 1958, The utilisation of carbohydrates by human cell cultures, J. Biol. Chem. 233: 551–558.Google Scholar
  34. Emerman, J. T., Bartley, J. C., and Bissell, M. J., 1981, Glucose metabolite patterns as markers of functional differentiation in freshly isolated and cultured mouse mammary epithelial cells, Exp. Cell Res. 134: 241–250.PubMedCrossRefGoogle Scholar
  35. Faik, P., and Morgan, M. J., 1976, Carbohydrate metabolism in Chinese hamster cells, Biochem. Soc. Trans. 4: 1043–1045.PubMedGoogle Scholar
  36. Faik, P., and Morgan, M. J., 1977a, A method of isolation of Chinese hamster cell variants with an altered ability to utilise carbohydrates, Cell Biol. Int. Rep. 1: 555–562.PubMedCrossRefGoogle Scholar
  37. Faik, P., and Morgan, M. J., 1977b, Properties of carbohydrate utilising variants of Chinese hamster cells, Cell Biol. Int. Rep. 1: 563–570.PubMedCrossRefGoogle Scholar
  38. Faik, P., and Morgan, M. J., 1980, The regulation of carbohydrate metabolism in animal cells: Isolation of variants able to utilise lactate, Biochem. Soc. Trans. 8: 632–633.PubMedGoogle Scholar
  39. Faik, P., and Morgan, M. J., 1984, Regulation of hexose uptake in Chinese hamster ovary cells, Biochem. Soc. Trans. 12: 10.Google Scholar
  40. Faik, P., Rawson, S., Walker, J. H., and Morgan, M. J., 1986, Introduction of human phosphoglycerate kinase (PGK) cDNA into a PGK-deficient line of Chinese hamster ovary cells, Genet. Res.,in press.Google Scholar
  41. Fodge, D. W., and Rubin, H., 1973, Activation of phosphofructokinase by stimulants of cell multiplication, Nature 246: 181–183.CrossRefGoogle Scholar
  42. Fukushima, N., Cohen-Khallas, M., and Kalant, N., 1981, Galactose and glucose metabolism by cultured hepatocytes: Responsiveness to insulin and the effect of age, Dev. Biol. 84: 359–363.PubMedCrossRefGoogle Scholar
  43. Giovanni, M. Y., Kessel, D., and Gluck, M. C., 1981, Specific monosaccharide inhibition of active sodium channels in neuroblastoma cells, Proc. Natl. Acad. Sci. USA 78: 1250–1254.PubMedCrossRefGoogle Scholar
  44. Gregory, S. H., and Bose, S. K., 1977, Density-dependent changes in hexose transport, glycolytic enzyme levels and glycolytic rates, in uninfected and murine sarcoma virus-transformed rat kidney cells, Exp. Cell Res. 110: 387–397.PubMedCrossRefGoogle Scholar
  45. Gregory, S. H., and Bose, S. K., 1979, Glycolytic enzyme activities in malignant cells grown in vitro and in vivo, Cancer Lett. 7: 319–324.PubMedCrossRefGoogle Scholar
  46. Gunn, J. M., Shinozuka, H., and Williams, G. M., 1975, Enhancement of phenotypic expression in cultured malignant liver epithelial cells by a complex medium, J. Cell. Physiol. 87: 79–89.CrossRefGoogle Scholar
  47. Halban, P. A., Praz, G. A., and Wollheim, C. B., 1983, Abnormal glucose metabolism accompanies failure of glucose to stimulate insulin release from a rat pancreatic cell line (RINm5F), Biochem. J. 212: 439–443.PubMedGoogle Scholar
  48. Harris, M., and Kutsky, P. B., 1953, Utilisation of added sugars by chick heart fibroblasts in dialysed media, J. Cell. Comp. Physiol. 42: 449–466.CrossRefGoogle Scholar
  49. Hers, H. G., and Van Schaftingen, E., 1982, Fructose 2,6-bisphosphate 2 years after its discovery, Biochem. J. 206: 1–12.PubMedGoogle Scholar
  50. Hill, H. Z., 1976, The effect of pH on incorporation of galactose by a normal human cell line and cell lines from patients with defective galactose metabolism, J. Cell. Physiol. 87: 313–320.PubMedCrossRefGoogle Scholar
  51. Hoffee, P., Jargiello, P., Zaner, L., and Martin, J., 1977, Pentose utilising variants of Novikoff hepatoma cells: Modification of growth and morphological properties, J. Cell. Physiol. 91: 3950.CrossRefGoogle Scholar
  52. Hutz, M. H., Michelson, A. M., Antonarakis, S. E., Orkin, S. H., and Kazazian, H. H., 1984, Restriction site polymorphism in the phosphoglycerate kinase gene on the X chromosome, Hum. Genet. 66: 217–219.PubMedCrossRefGoogle Scholar
  53. Isaka, T., Yoshida, M., Owada, M., and Toyoshima, K., 1975, Alterations in membrane polypeptides of chick embryo fibroblasts induced by transformation with avian sarcoma viruses, Virology 65: 226–237.PubMedCrossRefGoogle Scholar
  54. Jargiello, P., 1978, Pentose utilising variants of Novikoff hepatoma cells: Phenotypic characterisation, Somat. Cell Genet. 4: 647–660.PubMedCrossRefGoogle Scholar
  55. Jargiello, P., 1980, Multiple genetic changes determine ribose utilisation by Novikoff hepatoma cell variants, Biochim. Biophys. Acta 632: 507–516.PubMedCrossRefGoogle Scholar
  56. Jargiello, P., 1982, Altered expression of ribokinase activity in Novikoff hepatoma variants, Biochim. Biophys. Acta 698: 78–85.PubMedGoogle Scholar
  57. Johnson, G. S., and Schwartz, J. P., 1976, Effects of sugars on the physiology of cultured fibroblasts, Exp. Cell Res. 97: 281–290.PubMedCrossRefGoogle Scholar
  58. Kajstura, J., and Korohoda, W., 1983, Significance of energy metabolism pathways for stimulation of DNA synthesis by cell migration and serum, Eur. J. Cell Biol. 31: 9–14.PubMedGoogle Scholar
  59. Kielty, C. M., Povey, S., and Hopkinson, D. A., 1981, Regulation of expression of liver-specific enzymes. 1. Detection in mammalian tissues and cultured cells, Ann. Hum. Genet. 45: 341–356.PubMedCrossRefGoogle Scholar
  60. Kielty, C. M., Povey, S., and Hopkinson, D. A., 1982, Regulation of expression of liver-specific enzymes. 3. Further analysis of a series of rat hepatoma x human somatic cell hybrids, Ann. Hum. Genet. 46: 307–327.PubMedCrossRefGoogle Scholar
  61. Kletzien, R. F., and Perdue, J. F., 1974, Sugar transport in chick embryo fibroblasts, III. Evidence for host-transcriptional and host-translational regulation of transport following serum addition, J. Biol. Chem. 249: 3383–3387.Google Scholar
  62. Krooth, R. S., and Weinberg, A. N., 1961, Studies on cell lines developed from the tissues of patients with galactosemia, J. Exp. Med. 113: 1155–1171.PubMedCrossRefGoogle Scholar
  63. Kuchka, M., Markus, H. B., and Mellman, W. J., 1981, Influence of hexose conditions on glutamine oxidation of SV40-transformed and diploid fibroblast human cell lines, Biochem. Med. 26: 356–364.PubMedCrossRefGoogle Scholar
  64. Landau, B. R., and Wood, H. G., 1983, The pentose cycle in animal tissues: Evidence for the classical and against the `L-type’ pathway, Trends Biochem. Sci. 8: 292–296.Google Scholar
  65. Lanks, K. W., 1983, Metabolite regulation of heat shock protein levels, Proc. Natl. Acad. Sci. USA 80: 5325–5329.PubMedCrossRefGoogle Scholar
  66. Lazo, P. A., 1981, Amino acids and glucose utilisation by different metabolic pathways in ascites-tumour cells, Eur. J. Biochem. 117: 19–25.PubMedCrossRefGoogle Scholar
  67. Lee, A. S., 1981, The accumulation of three specific proteins related to glucose-regulated proteins in a temperature-sensitive hamster mutant cell line K12, J. Cell. Physiol. 106: 119–125.PubMedCrossRefGoogle Scholar
  68. Lee, A. S., Bell, J., and Ting, J., 1984, Biochemical characterization of the 94- and 78-kilodalton glucose-regulated proteins in hamster fibroblasts, J. Biol. Chem. 259: 4616–4621.PubMedGoogle Scholar
  69. Levilliers, J., and Weiss, M. C., 1983, Differentiation is not restored in hybrids between independent variants of a rat hepatoma, Somat. Cell Genet. 9: 407–413.PubMedCrossRefGoogle Scholar
  70. Lin, A. Y., and Lee, A. S., 1984, Induction of two genes by glucose starvation in hamster fibroblasts, Proc. Natl. Acad. Sci. USA 81: 988–992.PubMedCrossRefGoogle Scholar
  71. McGowan, J. A., Russell, W. E., and Bucher, L. R., 1984, Hepatocyte DNA replication: Effect of nutrients and intermediary metabolites, Fed. Proc. 43: 131–133.PubMedGoogle Scholar
  72. McKeehan, W. L., 1984, Control of normal and transformed cell proliferation by growth factor—nutrient interactions, Fed. Proc. 43: 113–115.PubMedGoogle Scholar
  73. McKeehan, W. L., McKeehan, K. A., and Calkins, D., 1982, Epidermal growth factor modifies Cat+, Mg2+ and 2-oxocarboxylic acid, but not K+ and phosphate ion requirement for multiplication of human fibroblasts, Exp. Cell Res. 140: 25–30.PubMedCrossRefGoogle Scholar
  74. Maiti, I. B., Comlan de Souza, A., and Thirion, J. P., 1981, Biochemical and genetic characterization of respiration-deficient mutants of Chinese hamster cells with a Gal phenotype, Somat. Cell Genet. 7: 567–582.PubMedCrossRefGoogle Scholar
  75. Malaisse, W. J., Malaisse-Lagae, F., Sener, A., Van Schaftingen, E., and Hers, H. G., 1981, Is the glucose-induced stimulation of glycolysis in pancreatic islets attributable to activation of phosphofructokinase by fructose 2,6-bisphosphate?, FEBS Lett. 125: 217–219.PubMedCrossRefGoogle Scholar
  76. Meglasson, M. D., and Matschinsky, F. M., 1984, New perspectives on pancreatic islet glucokinase, Am. J. Physiol. 246: E1 - E13.PubMedGoogle Scholar
  77. Melnykovych, G. and Bishop, C. F., 1972, Utilisation of hexoses and synthesis of glycogen in two strains of HeLa cells, In Vitro 7: 397–405.PubMedGoogle Scholar
  78. Michelson, A. M., Markham, A. F., and Orkin, S. H., 1983, Isolation and DNA sequence of a full-length cDNA clone for human X chromosome-encoded phosphoglycerate kinase, Proc. Natl. Acad. Sci. USA 80: 427–476.CrossRefGoogle Scholar
  79. Miwa, S., Nakashima, K., Oda, S., Ogawa, H., Nakafuji, H., Arlma, M., Okuna, T., Nakashima, T., 1972, Phosphoglycerate kinase (PGK) deficiency hereditary nonspherocytic hemolytic anemia: Report of a case found in a Japanese family, Acta Haematol. Jpn. 35: 570–574.Google Scholar
  80. Moore, E. E., and Weiss, M. C., 1982, Selective isolation of stable and unstable dedifferentiated variants from a rat hepatoma cell line, J. Cell. Physiol. 111: 1–8.PubMedCrossRefGoogle Scholar
  81. Morgan, J., and Morton, H., 1960, Carbohydrate utilisation by chick embryonic heart cultures, Can. J. Biochem. Physiol. 35: 69–78.CrossRefGoogle Scholar
  82. Morgan, M. J., 1981, The pentose phosphate pathway: Evidence for the indispensable role of glucose-phosphate isomerase, FEBS Lett. 130: 124–126.PubMedCrossRefGoogle Scholar
  83. Morgan, M. J., and Faik, P., 1980, The regulation of carbohydrate metabolism in animal cells: Isolation of a glycolytic variant of Chinese hamster ovary cells, Cell Biol. Int. Rep. 4: 121–127.PubMedCrossRefGoogle Scholar
  84. Morgan, M. J., and Faik, P., 1981, Carbohydrate metabolism in cultured animal cells, Biosci. Rep. 1: 669–686.PubMedCrossRefGoogle Scholar
  85. Morgan, M. J., Faik, P., and Walker, S. W., 1980, The regulation of carbohydrate metabolism in animal cells: Isolation of a glycolytic variant, Biochem. Soc. Trans. 8: 631–632.PubMedGoogle Scholar
  86. Morgan, M. J., Bowness, K. M., and Faik, P., 1981, Regulation of carbohydrate metabolism in cultured mammalian cells: Energy provision in a glycolytic mutant, Biosci. Rep. 1: 811–817.PubMedCrossRefGoogle Scholar
  87. Morgan, M. J., Bowness, K. M., and Faik, P., 1983a, Energy provision in Chinese hamster ovary cells, Biochem. Soc. Trans. 11: 725–726.Google Scholar
  88. Morgan, M. J., Faik, P., and Calvert, J., 1983b, Genetics of carbohydrate metabolism in animal cells, Genet. Res. 41: 307.Google Scholar
  89. Nepokroeff, C. M., Lakshmann, M. R., Ness, G. C., Muesing, R. A., Kleinsek, D. A., and Porter, J. W., 1974, Co-ordinate control of rat liver lipogenic enzymes by insulin. Arch. Biochem. Biophys. 162: 340–344.PubMedCrossRefGoogle Scholar
  90. Ovadi, J., and Keleti, T., 1978, Kinetic evidence for interaction between aldolase and Dglyceraldehyde-3-phosphate dehydrogenase, Eur. J. Biochem. 85: 157–161.PubMedCrossRefGoogle Scholar
  91. Pauwels, P. J., Opperdoes, F. R., and Trouet, A., 1984, Effect of oxygen and glucose availability on the glycolytic rate in neuroblastoma cells under different conditions of culture, Neurochem. Int. 6: 467–473.PubMedCrossRefGoogle Scholar
  92. Piechaczyk, M., Blanchard, J. M., Riaad-EI Sabouty, S., Dani, C., Marty, L, and Jeanteur, P., 1984, Unusual abundance of vertebrate 3-phosphate dehydrogenase pseudogenes, Nature 312: 469–471.PubMedCrossRefGoogle Scholar
  93. Pinto, M., Appay, M. D., Simon-Assman, P., Chevalier, G., Dracopoli, N., Fogh, J., and Zweibaum, A., 1982, Enterocytic differentiation of cultured human colon cancer cells by replacement of glucose by galactose in the medium, Biol. Cell. 44: 193–196.Google Scholar
  94. Pouysségur, J., Shiu, R. P. C., and Pastan, I., 1977, Induction of two transformation-sensitive membrane polypeptides in normal fibroblasts by a block in glycoprotein synthesis or glucose deprivation, Cell 11: 941–947.PubMedCrossRefGoogle Scholar
  95. Pouysségur, J., Franchi, A., Salomon, J.-C., and Silvestre, P., 1980, Isolation of a Chinese hamster fibroblast mutant defective in hexose transport and aerobic glycolysis: Its use to dissect the malignant phenotype, Proc. Natl. Acad. Sci. USA 77: 2698–2701.PubMedCrossRefGoogle Scholar
  96. Racker, E., 1976, Why do tumour cells have a high aerobic glycolysis?, J. Cell. Physiol. 89: 697–700.PubMedCrossRefGoogle Scholar
  97. Racker, E., 1984, Resolution and reconstitution of biological pathways from 1919 to 1984, Fed. Proc. 42: 2899–2909.Google Scholar
  98. Racker, E., Johnson, J. H., and Blackwell, M. D., 1983, The role of ATPase in glycolysis of Ehrlich ascites tumour cells, J. Biol. Chem. 258: 3702–3705.PubMedGoogle Scholar
  99. Reitzer, L. J., Wise, B. M., and Kennel, D., 1980, The pentose cycle: Control and essential function in HeLa cell nucleic acid synthesis, J. Biol. Chem. 255: 5616–5626.PubMedGoogle Scholar
  100. Rheinwald, J. G., and Green, H., 1974, Growth of cultured mammalian cells on secondary glucose sources, Cell 2: 287–293.PubMedCrossRefGoogle Scholar
  101. Romano, A. H., and Connell, N. D., 1982a, 6-Deoxy-D-glucose and D-xylose, analogs for the study of D-glucose transport by mouse 3T3 cells, J. Cell. Physiol. 111: 77–82.Google Scholar
  102. Romano, A. H., and Connell, N. D., 1982b, Effect of glucose uptake on growth rate of mouse 3T3 cells, J. Cell. Physiol. 111: 195–200.PubMedCrossRefGoogle Scholar
  103. Rosenstraus, M., and Chasin, L. A., 1975, Isolation of mammalian cell mutants deficient in glucose 6-phosphate dehydrogenase activity: Linkage to hypoxanthine phosphoribosyltransferase, Proc. Natl. Acad. Sci. USA 72: 493–497.PubMedCrossRefGoogle Scholar
  104. Russell, J. D., and De Mars, R., 1967, UDP glucose: a-n-galactose-l-phosphate uridyl transferase activity in cultured human fibroblasts, Biochem. Genet. 1: 11–24.PubMedCrossRefGoogle Scholar
  105. Scannell, J., and Morgan, M. J., 1980, The regulation of carbohydrate metabolism in animal cells: Growth on starch and maltose, Biochem. Soc. Trans. 8: 633–634.PubMedGoogle Scholar
  106. Scannell, J., and Morgan, M. J., 1982, The regulation of carbohydrate metabolism in animal cells: Isolation of starch-and maltose-utilising variants, Biosci. Rep. 2: 99–106.PubMedCrossRefGoogle Scholar
  107. Schneider, J. A., Diamond, I., and Rozengurt, E., 1978, Glycolysis in quiescent cultures of 3T3 cells: Addition of serum, epidermal growth factor, and insulin increases the activity of phosphofructokinase in a protein synthesis-indepedent manner, J. Biol. Chem. 253: 872–877.PubMedGoogle Scholar
  108. Schwartz, J. P., and Johnson, G. S., 1976, Metabolic effects of glucose deprivation and of various sugars in normal and transformed fibroblast cell lines, Arch. Biochem. Biophys. 173: 237–245.PubMedCrossRefGoogle Scholar
  109. Sens, D. A., Hochstadt, B., and Amos, H., 1982, Effects of pyruvate on the growth of normal and transformed hamster embryo fibroblasts, J. Cell. Physiol. 110: 329–335.PubMedCrossRefGoogle Scholar
  110. Silnutzer, J., and Jargiello, P., 1981, Extinction and expression of the ribose-positive phenotype in hybrid Novikoff hepatoma cells, Somat. Cell Genet. 7: 119–131.PubMedCrossRefGoogle Scholar
  111. Singer-Sam, J., Simmer, R. L., Keith, D. M., Shirley, L., Teplitz, M., Itakura, K., Gartler, S. M., and Riggs, A. D., 1983, Isolation of a cDNA clone for human X-linked 3-phosphoglycerate kinase by use of a mixture of synthetic oligodeoxyribonucleotides as a detection probe, Proc. Natl. Acad. Sci. USA 80: 802–806.PubMedCrossRefGoogle Scholar
  112. Singh, M., Singh, V. N., August, G. T., and Horecker, B. L., 1974a, Alterations in glucose metabolism in chick embryo cells transformed by Rous sarcoma virus: Transformation-specific changes in the activities of key enzymes of the glycolytic and hexose monophosphate shunt pathways, Arch. Biochem. Biophys. 165: 240–246.PubMedCrossRefGoogle Scholar
  113. Singh, M., Singh, V. N., August, G. T., and Horecker, B. L., 1974b, Alterations in glucose metabolism in chick embryo cells transformed by Rous sarcoma virus: Intracellular levels of glycolytic intermediates, Proc. Nad. Acad. Sci. USA 71: 4129–4132.CrossRefGoogle Scholar
  114. Smith, M. L., and Buchanan, J. M., 1979, Nucleotide and pentose synthesis after serum-stimulation of resting 3T6 fibroblasts, J. Cell. Physiol. 101: 293–310.PubMedCrossRefGoogle Scholar
  115. Sols, A., Cadenas, E., and Alvarado, F., 1960, Enzymatic basis of mannose toxicity in honey bees, Science 131: 297–298.PubMedCrossRefGoogle Scholar
  116. Stern, E. S., and Krooth, R. S., 1975, Studies on the regulation of the three enzymes of the Leloir pathway in cultured mammalian cells: Effect of substitution of galactose for glucose as the sole hexose in the medium in human diploid cell strains and in a rat hepatoma line, J. Cell. Physiol. 86: 91–103.PubMedCrossRefGoogle Scholar
  117. Stone, E. M., Rothblum, K. N., and Schwartz, R. J., 1985, Intron-dependent evolution of chicken glyceraldehyde phosphate dehydrogenase gene, Nature 313: 498–500.PubMedCrossRefGoogle Scholar
  118. Stone, K. R., Smith, R. E., and Joklik, W. K., 1974, Changes in membrane polypeptides that occur when chick embryo fibroblasts and NRK cells are transformed with avian sarcoma viruses, Virology 58: 86–100.PubMedCrossRefGoogle Scholar
  119. Sun, N. C., Chang, C. C., and Chu, E. H. Y., 1975, Mutant hamster cells exhibiting a pleiotropic effect on carbohydrate metabolism, Proc. Natl. Acad. Sci. USA 72: 469–473.PubMedCrossRefGoogle Scholar
  120. Tschopp, A., and Cogoli, A., 1983, Hypergravity promotes cell proliferation, Experientia 12: 1323–1329.CrossRefGoogle Scholar
  121. Usanga, E. A., and Luzzatto, L., 1985, Adaption of Plasmodium falciparum to glucose 6-phosphate dehydrogenase-deficient host red cells by production of parasite-encoded enzyme, Nature 313: 793–795.PubMedCrossRefGoogle Scholar
  122. Venetianer, A., and Bosze, Z., 1983, Expression of differentiated functions in dexamethasoneresistant hepatoma cells, Differentiation 25: 70–78.PubMedCrossRefGoogle Scholar
  123. Vozdev, V. A., 1976, Role of the pentose phosphate pathway in metabolism of D. melanogaster elucidated by mutations affecting glucose 6-phosphate and 6-phosphate gluconate dehydrogenase, FEBS Lett. 64: 85–88.CrossRefGoogle Scholar
  124. Wagner, K. R., Kauffman, F. C., and Max, S. R., 1978, The pentose phosphate pathway in regenerating skeletal muscle, Biochem. J. 170: 17–22.PubMedGoogle Scholar
  125. Walker, D. G., 1966, The nature and function of hexokinases in animal tissues, in: Essays in Biochemistry, Vol. 2 ( P. N. Campbell and G. D. Greville, eds.), pp. 33–67, Academic Press, New York.Google Scholar
  126. Wang, T., Marquardt, C., and Foker, J., 1976, Aerobic glycolyses during lymphocyte proliferation, Nature 261: 702–705.PubMedCrossRefGoogle Scholar
  127. Wang, T., Foker, J. E., and Tsai, M. Y., 1980, The shift of an increase in phosphofructokinase activity from protein synthesis-dependent to -independent mode during concanavalin A induced lymphocyte proliferation, Biochem. Biophys. Res. Commun. 95: 13–19.PubMedCrossRefGoogle Scholar
  128. Webber, M. J., Evans, P. K., Johnson, M. A., McNair, T. S., Nakamura, K. D., and Salter, D. W., 1984, Transport of potassium, amino acids, and glucose in cells transformed by Rous sarcoma virus, Fed. Proc. 43: 107–112.Google Scholar
  129. Whitfield, C. D., Buchsbaum, B., Bostedor, R., and Chu, E. H. Y., 1978, Inverse relationship between galactokinase activity and 2-deoxygalactose resistance in Chinese hamster ovary cells, Somat. Cell Genet. 4: 699–713.PubMedCrossRefGoogle Scholar
  130. Williams, J. F., 1980, A critical examination of the evidence for the reactions of the pentose pathway in animal tissue, Trends Biochem. Sci. 5: 315–320.CrossRefGoogle Scholar
  131. Williams, J. F., Arora, K. K., and Longenecker, J. F., 1983, The F-pentose cycle doesn’t have the answers for liver tissue, Trends Biochem. Sci. 8: 275–277.CrossRefGoogle Scholar
  132. Wohlhueter, R. M., and Plagemann, P. G. W., 1981, Hexose transport and phosphorylation by Novikoff rat hepatoma cells as a function of extracellular pH, J. Biol. Chem. 256: 869–875.PubMedGoogle Scholar
  133. Wolfrom, C., Loriette, C., Polini, G., Delhotal, B., Lemonnier, F.; and Gautier, M., 1983, Comparative effects of glucose and fructose on growth and morphological aspects of cultured skin fibroblasts, Exp. Cell Res. 149: 535–546.PubMedCrossRefGoogle Scholar
  134. Yoshida, A., and Miwa, S., 1974, Characterisation of a phosphoglycerate kinase variant associated with haemolytic anaemia, Am. J. Hum. Genet. 26: 378–384.PubMedGoogle Scholar
  135. Ziegler, M. L., and Davidson, R. L., 1979, The effect of hexose on chloramphenicol sensitivity and resistance in Chinese hamster cells, J. Cell. Physiol. 98: 627–637.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Michael J. Morgan
    • 1
  • Pelin Faik
    • 1
  1. 1.Department of BiochemistryUniversity of LeicesterLeicesterUK

Personalised recommendations