Advertisement

Convergent Pathways of Sugar Catabolism in Bacteria

  • Ronald A. Cooper

Abstract

At first sight, bacteria appear to have a multiplicity of pathways for sugar degradation since a wide variety of five- and six-carbon sugars, sugar alcohols, sugar acids, and amino sugars can be utilized. For example, the commonly studied organism Escherichia colt can use more than 30 different monosaccharides for growth. However, the situation is more straightforward than it seems since the pathways for the catabolism of these compounds are interlinked and, with very few exceptions, they all produce glyceraldehyde-3-phosphate, which is converted by a trunk pathway (Fig. 1) to a common product of all sugar degradation, pyruvate.

Keywords

Triose Phosphate Sugar Acid Aerobacter Aerogenes Leloir Pathway Hexose Monophosphate Pathway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allenza, P., and Lessie, T. G., 1982, Pseudomonas cepacia mutants blocked in the Entner—Doudoroff pathway, J. Bacteriol. 150: 1340–1347.Google Scholar
  2. Allenza, P., Lee, Y. N., and Lessie, T. G., 1982, Enzymes related to fructose utilization in Pseudomonas cepacia, J. Bacteriol. 150: 1348–1356.PubMedGoogle Scholar
  3. Anderson, A., and Cooper, R. A., 1969, Gluconeogenesis in Escherichia coli: The role of triosephosphate isomerase, FEBS Lett. 4: 19–20.PubMedCrossRefGoogle Scholar
  4. Aparicio, M. L., Ruiz-Amil, M., Vicente, M., and Canovas, J. L. 1971, The role of phosphoglycerate kinase in the metabolism of Pseudomonas putida, FEBS Lett. 14: 326–328.PubMedCrossRefGoogle Scholar
  5. Ashwell, G., Wahba, A. J., and Hickman, J., 1958, A new pathway of uronic acid metabolism, Biochim. Biophys. Acta 30: 186–187.PubMedCrossRefGoogle Scholar
  6. Bachmann, B. J., 1983, Linkage map of Escherichia coli K12, edition 7, Microbiol. Rev. 47:180–230. Baumann, L., and Baumann, P., 1973, Enzymes of glucose catabolism in cell-free extracts of non-fermentative marine eubacteria, Can. J. Microbiol. 19: 302–304.Google Scholar
  7. Baumann, P., and Baumann, L., 1975, Catabolism of D-fructose and D-ribose by Pseudomonas doudorofi, Arch. Microbiol. 105: 225–240.PubMedCrossRefGoogle Scholar
  8. Benziman, M., 1969, Factors affecting the activity of pyruvate kinase of Acetobacter xylinum, Biochem. J. 112: 631–636.PubMedGoogle Scholar
  9. Bissett, D. L., and Anderson, R. L., 1973, Lactose and D-galactose metabolism in Staphylococcus aureus: Pathway of D-galactose 6-phosphate degradation, Biochem. Biophys. Res. Commun. 52: 641–647.PubMedCrossRefGoogle Scholar
  10. Bissett, D. L., and Anderson, R. L., 1974, Lactose and D-galactose metabolism in group N streptococci: Presence of enzymes for both the D-galactose 1-phosphate and D-tagatose 6-phosphate pathways, J. Bacteriol. 117: 318–320.Google Scholar
  11. Bock, A., and Neidhardt, F. C., 1966, Isolation of a mutant of Escherichia coli with a temperature-sensitive fructose 1,6-diphosphate aldolase activity, J. Bacteriol. 92: 464–469.PubMedGoogle Scholar
  12. Boronat, A., and Aguilar, J., 1979, Rhamnose induced propanediol oxidoreductase in Escherichia coli: Purification, properties, and comparison with the fucose-induced enzyme, J. Bacteriol. 140: 320–326.PubMedGoogle Scholar
  13. Boronat, A., and Aguilar, J., 1981, Metabolism of L-fucose and L-rhamnose in Escherichia coli: Differences in the induction of propanediol oxidoreductase, J. Bacteriol. 147: 181–185.PubMedGoogle Scholar
  14. Buckel, P., and Zehelein, E., 1981, Expression of Pseudomonas fluorescens D-galactose dehydrogenase in E. coli, Gene 16: 149–159.PubMedCrossRefGoogle Scholar
  15. Burlinghame, R., and Chapman, P. J., 1983, Catabolism of phenylpropionic acid and its 3-hydroxy derivative by Escherichia coli, J. Bacteriol. 155: 113–121.Google Scholar
  16. Chakrabarti, T., Chen, Y.-M., and Lin, E. C. C., 1984, Clustering of genes for L-fucose dissimilation by Escherichia coli, J. Bacteriol. 157: 984–986.PubMedGoogle Scholar
  17. Charnetzky, W. T., and Mortlock, R. P., 1973, Ribitol catabolic pathway in Klebsiella aerogenes, J. Bacteriol. 119: 162–169.Google Scholar
  18. Chen, Y.-M., Chakrabarti, T., and Lin, E. C. C., 1984, Constitutive activation of L-fucose genes by an unlinked mutation in Escherichia coli, J. Bacteriol. 159: 725–729.PubMedGoogle Scholar
  19. Cooper, R. A., 1975, The methylglyoxal by-pass of the Embden—Meyerhof pathway, Biochem. Soc. Trans. 3: 837–840.Google Scholar
  20. Cooper, R. A., 1978, The utilization of D-galactonate and D-2-oxo-3-deoxygalactonate by Escherichia coli K12, Arch. Microbiol. 118: 199–206.PubMedCrossRefGoogle Scholar
  21. Cooper, R. A., 1979, The pathway for L-galactonate catabolism in Escherichia coli KI2, FEBS Lett. 103: 216–220.PubMedCrossRefGoogle Scholar
  22. Cooper, R. A., 1980, The pathway for L-gulonate catabolism in Escherichia coli K12 and Salmonella typhimurium LT-2, FEBS Leu. 115: 63–67.CrossRefGoogle Scholar
  23. Cooper, R. A., 1984, Metabolism of methylglyoxal in micro-organisms, Annu. Rev. Microbiol. 38: 49–68.PubMedCrossRefGoogle Scholar
  24. Cooper, R. A., and Anderson, A., 1970, The formation and catabolism of methylglyoxal during glycolysis in Escherichia coli, FEBS Leu. 11: 273–276.CrossRefGoogle Scholar
  25. Cooper, R. A., and Skinner, M. A., 1980, Catabolism of 3- and 4-hydroxyphenylacetate by the 3,4-dihydroxyphenylacetate pathway in Escherichia coli, J. Bacteriol. 143: 302–306.PubMedGoogle Scholar
  26. Cozzarelli, N. R., Koch, J. P., Hayashi, S., and Lin, E. C. C., 1965, Growth stasis by accumulated L-a-glycerophosphate in Escherichia coli, J. Bacteriol. 90: 1325–1329.PubMedGoogle Scholar
  27. Curtis, S. J., and Epstein, W., 1975, Phosphorylation of D-glucose in Escherichia coli mutants defective in glucosephosphotransferase, mannosephosphotransferase and glucokinase, J. Bacteriol. 122: 1189–1199.PubMedGoogle Scholar
  28. Dakin, H. D., and Dudley, H. W., 1913, On glyoxalase, J. Biol. Chem. 14: 423–431.Google Scholar
  29. DeLey, J., 1960, Comparative carbohydrate metabolism and localization of enzymes in Pseudomonas and related microorganisms, J. Appl. Bacteriol. 23: 400–441.CrossRefGoogle Scholar
  30. DeLey, J., and Doudoroff, M., 1957, The metabolism of D-galactose in Pseudomonas saccharophila, J. Biol. Chem. 227: 745–757.Google Scholar
  31. DeMoss, R. D., Bard, R. C., and Gunsalus, I. C., 1951, The mechanism of the heterolactic fermentation: a new route for ethanol formation, J. Bacteriol. 62: 499–511.PubMedGoogle Scholar
  32. deVries, W., and Stouthamer, A. H., 1968, Fermentation of glucose, lactose, galactose, mannitol and xylose by bifidobacteria, J. Bacteriol. 96: 472–478.Google Scholar
  33. deVries, W., Gerbrandy, S. J., and Stouthamer, A. H., 1967, Carbohydrate metabolism in Bifidobacterium bifidum, Biochim. Biophys. Acta 136: 415–425.CrossRefGoogle Scholar
  34. Egyud, L. G., and Szent-Gyorgyi, A., 1966, On the regulation of cell division, Proc. Natl. Acad. Sci. USA 56: 203–207.PubMedCrossRefGoogle Scholar
  35. Entner, N., and Doudoroff, M., 1952, Glucose and gluconic acid oxidation of Pseudomonas saccharophila, J. Biol. Chem. 196: 853–862.PubMedGoogle Scholar
  36. Ferenci, T., and Kornberg, H. L., 1971, Role of fructose 1,6-diphosphate in fructose utilization by Escherichia coli, FEBS Lett. 14: 360–363.PubMedCrossRefGoogle Scholar
  37. Fraenkel, D. G., 1968a, The accumulation of glucose 6-phosphate from glucose and its effect in an Escherichia coli mutant lacking phosphoglucose isomerase and glucose 6-phosphate dehydrogenase, J. Biol. Chem. 243: 6451–6457.PubMedGoogle Scholar
  38. Fraenkel, D. G., 1968b, Selection of Escherichia coli mutants lacking glucose 6-phosphate dehydrogenase or gluconate 6-phosphate dehydrogenase, J. Bacteriol. 95: 1267–1271.PubMedGoogle Scholar
  39. Fraenkel, D. G., and Levisohn, S. R., 1967, Glucose and gluconate metabolism in an Escherichia coli mutant lacking phosphoglucose isomerase, J. Bacteriol. 93: 1571–1578.PubMedGoogle Scholar
  40. Fraenkel, D. G., Falcoz-Kelly, F., and Horecker, B. L., 1964, The utilization of glucose 6-phosphate by glucokinaseless and wild-type strains of Escherichia coli, Proc. Natl. Acad. Sci. USA 52: 1207–1213.PubMedCrossRefGoogle Scholar
  41. Garrido-Pertierra, A., and Cooper, R. A., 1977, Pyruvate formation during the catabolism of simple hexose sugars by Escherichia coli: Studies with pyruvate kinase-negative mutants, J. Bacteriol. 129: 1208–1214.Google Scholar
  42. Gibbins, L. N., and Simpson, F. J., 1964, The incorporation of D-allose into the glycolytic pathway of Aerobacter aerogenes, Can. J. Microbiol. 10: 829–836.PubMedCrossRefGoogle Scholar
  43. Gromet, Z., Schramm, M., and Hestrin, S., 1957, Synthesis of cellulose by Acetobacter xylinum. 4. Enzyme systems present in a crude extract of glucose-grown cells, Biochem. J. 67: 679–689.PubMedGoogle Scholar
  44. Gunsalus, I. C., Horecker, B. L., and Wood, W. A., 1955, Pathways of carbohydrate metabolism in micro-organisms, Bacteriol. Rev. 19: 79–128.PubMedGoogle Scholar
  45. Hacking, A. J., and Lin, E. C. C., 1976, Disruption of the fucose pathway as a consequence of genetic adaptation to propanediol as a carbon source in Escherichia coli, J. Bacteriol. 126: 1166–1172.PubMedGoogle Scholar
  46. Hacking, A. J., and Lin, E. C. C., 1977, Regulatory changes in the fucose system associated with the evolution of a catabolic pathway for propanediol in Escherichia coli, J. Bacteriol. 130: 832–838.PubMedGoogle Scholar
  47. Hamilton, I. R., and Lebtag, H., 1979, Lactose metabolism by Streptococcus mutans: Evidence for induction of the tagatose 6-phosphate pathway, J. Bacteriol. 140: 1102–1104.PubMedGoogle Scholar
  48. Hanson, T. E., and Anderson, R. L., 1966, D-Fructose 1-phosphate kinase, a new enzyme instrumental in the metabolism of D-fructose, J. Biol. Chem. 241: 1644–1645.PubMedGoogle Scholar
  49. Heath, E. C., and Ghalambor, M. A., 1962, The metabolism of L-fucose. 1. The purification and properties of L-fuculose kinase, J. Biol. Chem. 237: 2423–2426.PubMedGoogle Scholar
  50. Heath, E. C., Hurwitz, J., and Horecker, B. L., 1956, Acetyl phosphate formation in the phosphorolytic cleavage of pentose phosphate, J. Am. Chem. Soc. 78: 5449.CrossRefGoogle Scholar
  51. Hillman, J. D., and Fraenkel, D. G., 1975, Glyceraldehyde 3-phosphate dehydrogenase mutants of Escherichia coli, J. Bacteriol. 122: 1175–1179.PubMedGoogle Scholar
  52. Hommes, R. W. J., Postma, P. W., Neijssel, O. M., Tempest, D. W., Dokter, P., and Duine, J. A., 1984, Evidence of a quinoprotein glucose dehydrogenase apoenzyme in several strains of Escherichia coli, FEMS Microbiol. Leu. 24: 329–333.CrossRefGoogle Scholar
  53. Hopper, D. J., and Cooper, R. A., 1972, The purification and properties of Escherichia coli methylglyoxal synthase, Biochem. J. 128: 321–329.PubMedGoogle Scholar
  54. Hunt, J. C., and Phibbs, P. V., Jr., 1983, Regulation of alternate peripheral pathways of glucose catabolism during aerobic and anaerobic growth of Pseudomonas aeruginosa, J. Bacteriol. 154: 793–802.PubMedGoogle Scholar
  55. Hylemon, P. B., and Phibbs, P. V., Jr., 1972, Independent regulation of hexose catabolizing enzymes and glucose transport activity in Pseudomonas aeruginosa, Biochem. Biophys. Res. Commun. 48: 1041–1048.PubMedCrossRefGoogle Scholar
  56. Irani, M., and Maitra, P. K., 1974, Isolation and characterisation of Escherichia coli mutants defective in enzymes of glycolysis, Biochem. Biophys. Res. Commun. 56: 127–133.PubMedCrossRefGoogle Scholar
  57. Iyengar, R., and Rose, I. A., 1983, Methylglyoxal synthase uses the trans-isomer or triose-1,2-enediol 3-phosphate, J. Am. Chem. Soc. 105: 3301–3303.CrossRefGoogle Scholar
  58. Kaback, H. R., 1974, Transport studies in bacterial membrane vesicles: Cytoplasmic membrane vesicles devoid of soluble constituents catalyze the transport of many metabolites, Science 186: 882–892.PubMedCrossRefGoogle Scholar
  59. Kalckar, H. M., 1958, Uridinediphosphogalactose: Metabolism, enzymology and biology, Adv. Enzymol. 20: 111–133.Google Scholar
  60. Katz, J., and Wood, H. G., 1960, The use of glucose-C14 for the evaluation of the pathways of glucose metabolism, J. Biol. Chem. 235: 2165–2177.PubMedGoogle Scholar
  61. Kelker, N. E., Hanson, T. E., and Anderson, R. L., 1970, Alternate pathways of D-fructose metabolism in Aerobacter aerogenes: A specific n-fructokinase and its preferential role in the metabolism of sucrose, J. Biol. Chem. 245: 2060–2065.PubMedGoogle Scholar
  62. Kitos, P. A., Wang, C. H., Mohler, B. A., King, T. E., and Cheldelin, V. H., 1958, Glucose and gluconate dissimilation in Acetobacter suboxydans, J. Biol. Chem. 233: 1295–1298.PubMedGoogle Scholar
  63. Komberg, H. L., and Jones-Mortimer, M. C., 1975, PtsX: A gene involved in the uptake of glucose and fructose by Escherichia coli, FEBS Lett. 51: 1–4.Google Scholar
  64. Kornberg, H. L., and Soutar, A. K., 1973, Utilization of gluconate by Escherichia coli: Induction of gluconate kinase and 6-phosphogluconate dehydratase activities, Biochem. J. 134: 489–498.PubMedGoogle Scholar
  65. Lagarde, A. E., Pouysségur, J. M., and Stoeber, F. R., 1973, A transport system for 2-keto-3-deoxy-D-gluconate uptake in Escherichia coli K12: Biochemical and physiological studies in whole cells, Eur. J. Biochem. 36: 328–341.PubMedCrossRefGoogle Scholar
  66. LeBlanc, D. J., and Mortlock, R. P., 1971, Metabolism of D-arabinose: A new pathway in Escherichia coli, J. Bacteriol. 106: 90–96.PubMedGoogle Scholar
  67. Lessie, T. G., and Phibbs, P. V., Jr., 1984, Alternative pathways of carbohydrate utilization in pseudomonads, Annu. Rev. Microbiol. 38: 359–387.PubMedCrossRefGoogle Scholar
  68. Lin, E. C. C., 1976, Glycerol dissimilation and its regulation in bacteria, Annu. Rev. Microbiol. 30: 535–578.PubMedCrossRefGoogle Scholar
  69. MacGee, J., and Doudoroff, M., 1954, A new phosphorylated intermediate in glucose oxidation, J. Biol. Chem. 210: 617–626.PubMedGoogle Scholar
  70. McGill, D. J., and Dawes, E. A., 1971, Glucose and fructose metabolism in Zymomonas anaerobia, Biochem. J. 125: 1059–1068.PubMedGoogle Scholar
  71. Mayo, J. W., and Anderson, R. L., 1969, Basis for the mutational acquisition of the ability of Aerobacter aerogenes to grow on L-mannose, J. Bacteriol. 100: 948–955.PubMedGoogle Scholar
  72. Midgley, M., and Dawes, E. A., 1973, The regulation of transport of glucose and methyl a-glucoside in Pseudomonas aeruginosa, Biochem. J. 132: 141–154.PubMedGoogle Scholar
  73. Morrissey, A. T. E., and Fraenkel, D. G., 1968, Selection of fructose 6-phosphate kinase mutants in Escherichia coli, Biochem. Biophys. Res. Commun. 32: 467–473.PubMedCrossRefGoogle Scholar
  74. Neijssel, O. M., Tempest, D. W., Postma, P. W., Duine, J. A., and Frank Jzn, J., 1983, Glucose metabolism by K+-limited Klebsiella aerogenes: Evidence for the involvement of a quinoprotein glucose dehydrogenase, FEMS Microbiol. Leu. 20: 35–39.CrossRefGoogle Scholar
  75. Orthner, C. L., and Pizer, L. I., 1974, An evaluation of regulation of the hexosemonophosphate shunt in Escherichia coli, J. Biol. Chem. 249: 3750–3755.PubMedGoogle Scholar
  76. Palleroni, N. J., Contopoulou, R., and Doudoroff, M., 1956, Metabolism of carbohydrates by Pseudomonas saccharophila. II. Nature of the kinase reaction involving fructose, J. Bacteriol. 71: 202–207.PubMedGoogle Scholar
  77. Racker, E., 1948, Enzymatic formation and breakdown of pentose phosphate, Fed. Proc. 7:180. Racker, E., 1954, Alternate pathways of glucose and fructose metabolism, Adv. Enzymol. 15: 141–182.Google Scholar
  78. Racker, E., 1957, Micro-and macro-cycles in carbohydrate metabolism, Harvey Lect. 51: 143–174.Google Scholar
  79. Robert-Baudouy, J. M., Portalier, R. C., and Stoeber, F. R., 1974, Regulation du metabolisme des hexuronates chez Escherichia coli K12: Modalites de l’induction des enzymes du systems hexuronate, Eur. J. Biochem. 43: 1–15.PubMedCrossRefGoogle Scholar
  80. Roehl, R. A., and Phibbs, P. V., Jr., 1982, Characterization and genetic mapping of fructose phosphotransferase mutations in Pseudomonas aeruginosa, J. Bacteriol. 149: 897–905.PubMedGoogle Scholar
  81. Roehl, R. A., Feary, T. W., and Phibbs, P. V., Jr., 1983, Clustering of mutations affecting central pathway enzymes of carbohydrate catabolism in Pseudomonas aeruginosa, J. Bacteriol. 156: 1123–1129.PubMedGoogle Scholar
  82. Sapico, V., Hanson, T. E., Walter, R. W., and Anderson, R. L., 1968, Metabolism of D-fructose in Aerobacter aerogenes: Analysis of mutants lacking D-fructose 6-phosphate kinase and D-fructose 1,6-diphosphatase, J. Bacteriol. 96: 51–54.PubMedGoogle Scholar
  83. Sawyer, M. H., Baumann, P., Baumann, L., Berman, S. M., Canovas, J. L., and Berman, R. H., 1977, Pathways of D-fructose catabolism in species of Pseudomonas, Arch. Microbiol. 112: 4955.Google Scholar
  84. Scangos, G. A., and Reiner, A. M., 1978, Ribitol and D-arabitol catabolism in Escherichia coli, J. Bacteriol. 134: 492–500.PubMedGoogle Scholar
  85. Scardovi, V., and Trovatelli, L. D., 1965, The fructose 6-phosphate shunt as peculiar pattern of hexose degradation in the genus Bifidobacterium, Ann. Microbiol. Enzymol. 15: 19–29.Google Scholar
  86. Schramm, M., and Racker, E., 1957, Formation of erythrose 4-phosphate and acetyl phosphate by a phosphorolytic cleavage of fructose 6-phosphate, Nature 179: 1349–1350.CrossRefGoogle Scholar
  87. Sebastian, J., and Asensio, C., 1972, Purification and properties of the mannokinase from Escherichia coli, Arch. Biochem. Biophys. 151: 227–233.PubMedCrossRefGoogle Scholar
  88. Smorawinska, M., Hsu, J. C., Hansen, J. B., Jagusztyn-Krynicka, E. K., Abiko, Y., and Curtiss, R., III, 1983, Clustered genes for galactose metabolism from Streptococcus mutans cloned in Escherichia coli, J. Bacteriol. 153: 1095–1097.PubMedGoogle Scholar
  89. Takagi, Y., and Sawada, H., 1964, The metabolism of L-rhamnose in Escherichia colt. I. LRhamnose isomerase, Biochim. Biophys. Acta 92: 10–17.PubMedGoogle Scholar
  90. Taylor, D. G., Trudgill, P. W., Cripps, R. E., and Harris, P. R., 1980, The microbial metabolism of acetone, J. Gen. Microbiol. 118: 159–170.Google Scholar
  91. Teixeira de Mattos, M. J., and Tempest, D. W., 1983, Metabolic and energetic aspects for the growth of Klebsiella aerogenes NCTC 418 on glucose in anaerobic chemostat culture, Arch. Microbiol. 134: 80–85.CrossRefGoogle Scholar
  92. Tiwari, N. P., and Campbell, J. J. R., 1969, Enzymatic control of the metabolic activity of Pseudomonas aeruginosa grown in glucose or succinate media, Biochim. Biophys. Acta 192: 395–401.PubMedCrossRefGoogle Scholar
  93. Van Dijken, J. P., and Quayle, J. R., 1977, Fructose metabolism in four Pseudomonas species, Arch. Microbiol. 114: 281–286.PubMedCrossRefGoogle Scholar
  94. van Schie, B. J., Van Dijken, J. P., and Kuenen, J. G., 1984, Noncoordinated synthesis of glucose dehydrogenase and its prosthetic group PQQ in Acinetobacter and Pseudomonas species, FEMS Microbiol. Lett. 24: 133–138.CrossRefGoogle Scholar
  95. Vicente, M., and Canovas, J. L., 1973, Glucolysis in Pseudomonas putida: Physiological role of alternative routes from the analysis of defective mutants, J. Bacteriol. 116: 908–914.PubMedGoogle Scholar
  96. Vinopal, R. T., Hillman, J. D., Schulman, H., Reznikoff, W. S., and Fraenkel, D. G., 1975, New phosphoglucose isomerase mutants of Escherichia coli, J. Bacteriol. 122: 1172–1174.PubMedGoogle Scholar
  97. Wang, C. H., Stem, I., Gilmour, C. M., Klungsoyr, S., Reed, D. J., Bialy, J. J., Christensen, B. E., and Cheldelin, V. H., 1958, Comparative study of glucose catabolism by the radiorespirometric method, J. Bacteriol. 76: 207–216.PubMedGoogle Scholar
  98. Wang, R. J., and Morse, M. L., 1968, Carbohydrate accumulation and metabolism in Escherichia coli. I. Description of pleiotropic mutants, J. Mol. Biol. 32: 59–66.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Ronald A. Cooper
    • 1
  1. 1.Department of BiochemistryUniversity of LeicesterLeicesterUK

Personalised recommendations