Advertisement

Active Transport of Sugars into Escherichia coli

  • Peter J. F. Henderson

Abstract

Bacteria often inhabit environments where nutrients are in short supply, and different species must compete with each other for the available carbohydrates. Accordingly, they expend metabolic energy in order to sequester the sugars and achieve intracellular concentrations sufficient for optimal growth rates. Escherichia call can grow on at least 20 different carbohydrates or related compounds (Hays, 1978; Silhavy et al., 1978), but the strategies for energizing their initial transport across the cytoplasmic membrane fall into four general classes. One of these, where the sugar is phosphorylated using phosphoenolpyruvate during the translocation, is described in detail in Chapter 10. The others, where transport is energized either by a gradient of H+, by a gradient of Na+, or by a phosphorylated compound, are discussed in this chapter. The properties of the individual sugar transport systems will be reviewed, but they will be grouped according to these three classes of energization mechanism. First, however, the underlying concepts and experimental strategies involved in investigations of bacterial transport will be outlined (Sections 1 and 2). This chapter is aimed at the newcomer to the field, but it is hoped that the arrangement of the sections will enable the specialist to turn directly to topical areas of interest.

Keywords

Escherichia Coli Transport System Active Transport Bacterial Transport Uncouple Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abou-Sabé, M., and Richman, J., 1973a, On the regulation of D-ribose metabolism in Escherichia coli B/r I, Mol. Gen. Genet. 122: 291–301.PubMedGoogle Scholar
  2. Abou-Sabé, M., and Richman, J., 1973b, On the regulation of D-ribose metabolism in Escherichia coli B/r II, Mol. Gen. Genet. 122: 303–312.Google Scholar
  3. Adler, J., 1975, Chemotaxis in bacteria, Annu. Rev. Biochem. 44: 341–356.PubMedGoogle Scholar
  4. Adler, J., Hazelbauer, G. L., and Dahl, M. M., 1973, Chemotaxis toward sugars in Escherichia coli, J. Bacteriol. 115: 824–847.PubMedGoogle Scholar
  5. Ahlem, C., Huisman, W., Neslund, G., and Dahms, A. S., 1982, Purification and properties of a periplasmic D-xylose-binding protein from Escherichia coli K-12, J. Biol. Chem. 257: 2926–2931.PubMedGoogle Scholar
  6. Amanuma, H., and Anraku, Y., 1974, Transport of sugars and amino acids in bacteria. XII. Substrate specificities of the branched chain amino acid-binding proteins of Escherichia coli, J. Biochem. 76: 1165–1173.PubMedGoogle Scholar
  7. Ames, G. F.-L., Prody, C., and Kustu, S., 1984, Simple, rapid and quantitative release of periplasmic proteins by chloroform, J. Bacteriol. 160: 1181–1183.PubMedGoogle Scholar
  8. Anderson, A., and Cooper, R. A., 1970, Biochemical and genetical studies on ribose catabolism in Escherichia coli K-12, J. Gen. Microbiol. 62: 335–339.PubMedGoogle Scholar
  9. Anraku, Y., 1968, Purification and specificity of the galactose-and leucine-binding proteins, J. Biol. Chem. 243: 3116–3122.PubMedGoogle Scholar
  10. Anraku, Y., 1978, Active transport of amino acids, In: Bacterial Transport ( B. P. Rosen, ed.), pp. 171–219, Dekker, New York.Google Scholar
  11. Argos, P., Mahoney, W. C., Hermodson, M. A., and Hanei, M., 1981, Structural prediction of sugar-binding proteins functional in chemotaxis and transport, J. Biol. Chem. 256: 4357–4361.PubMedGoogle Scholar
  12. Bachmann, B. J., 1983, Linkage map of Escherichia coli K-12, edition 7, Microbiol. Rev. 47: 180–230.PubMedGoogle Scholar
  13. Bavoil, S., Hofnung, M., and Nikaido, H., 1980, Identification of a cytoplasmic membrane-associated component of the maltose transport system of Escherichia coli, J. Biol. Chem. 255: 8366–8369.PubMedGoogle Scholar
  14. Beckwith, J. R., and Zipser, D. (eds.), 1970, The Lactose Operon, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  15. Berger, E. A., 1973, Different mechanisms of energy coupling for the active transport of praline and glutamine in Escherichia coli, Proc. Natl. Acad. Sci. USA 70: 1514–1518.PubMedGoogle Scholar
  16. Berger, E. A., and Heppel, L. A., 1974, Different mechanisms of energy coupling for the shock-sensitive and shock-resistant amino acid permeases of Escherichia coli, J. Biol. Chem. 249: 7747–7755.PubMedGoogle Scholar
  17. Beverin, S., Sheppard, D. E., and Park, S. S., 1971, D-Fucose as a gratuitous inducer of the Larabinose operon in strains of Escherichia coli B/r mutant in gene araC, J. Bacteriol. 107: 79–86.PubMedGoogle Scholar
  18. Beyreuther, K., Bieseler, B., Ehring, R., and Müller-Hill, B., 1981, Identification of internal residues of lactose permease of Escherichia coli by radiolabel sequencing of peptide mixtures, In: Methods in Protein Sequence Analysis ( M. Elzina, ed.), pp. 139–148, Humana Press, Clifton, N.J.Google Scholar
  19. Boonstra, J., Huttunen, M. T., Konings, W. N., and Kaback, H. R., 1975, Anaerobic transport in Escherichia coli membrane vesicles, J. Biol. Chem. 250: 6792–6798.PubMedGoogle Scholar
  20. Boos, W., 1969, The galactose binding protein and its relationship to the ß-methylgalactoside permease from Escherichia coli, Eur. J. Biochem. 10: 66–73.PubMedGoogle Scholar
  21. Boos, W., 1974, Bacterial transport, Annu. Rev. Biochem. 43: 123–146.PubMedGoogle Scholar
  22. Boos, W., Steinacher, I., and Engelhardt-Altendorf, D., 1982, Mapping of mg!B, the structural gene of the galactose-binding protein of E. coli, Mol. Gen. Genet. 184: 508–518.Google Scholar
  23. Bradley, S. A., Tinsley, C. R., and Henderson, P. J. F., 1986, Proton-linked L-fucose transport in Escherichia coli, submitted for publication.Google Scholar
  24. Brass, J. M., Boos, W., and Hengge, R., 1981, Reconstitution of maltose transport in ma1B mutants of Escherichia coli through calcium-induced disruptions of the outer membrane, J. Bacteriol. 146: 10–17.PubMedGoogle Scholar
  25. Brass, J. M., Ehmann, U., and Bukau, B., 1983, Reconstitution of maltose transport in Escherichia coli, J. Bacteriol. 155: 97–106.PubMedGoogle Scholar
  26. Bremer, E., Silhavy, T. J., Weisemann, J. M., and Weinstock, G. M., 1984, kplacMu: A transposable derivative of bacteriophage lambda for creating lac Z protein fusions in a single step, J. Bacteriol. 158: 1084–1093.PubMedGoogle Scholar
  27. Briggs, K. A., Lancashire, W. E., and Hartley, B. S., 1984, Molecular cloning: DNA structure and expression of the Escherichia coli D-xylose isomerase, EMBO J. 3: 611–616.Google Scholar
  28. Brown, C. E., and Hogg, R. W., 1972, A second transport system for L-arabinose in Escherichia coli B/r controlled by the araC gene, J. Bacteriol. 111: 606–613.PubMedGoogle Scholar
  29. Michel, D. E., Gronenborn, B., and Müller-Hill, B., 1980, Sequence of the lactose permease gene, Nature 283: 541–545.Google Scholar
  30. Burstein, C., and Kepes, A., 1971, The a-galactosidase from Escherichia coli K12, Biochim. Biophys. Acta 230: 52–63.PubMedGoogle Scholar
  31. Buttin, G., 1968, Les systémes enzymatiques inducibles du metabolisme des oses chez Escherichia coli, Adv. Enzymol. 30: 81–137.PubMedGoogle Scholar
  32. Cairney, J., Higgins, C. F., and Booth, I. R., 1984, Praline uptake through the major transport system (PP-I: putP) of Salmonella typhimurium is coupled to sodium ions, J. Bacteriol. 160: 22–27.PubMedGoogle Scholar
  33. Carrasco, N., Herzlinger, D., Mitchell, R., Dechiara, S., Danho, W., Gabriel, T. F., and Kaback, H. R., 1984a, Intramolecular dislocation of the -CO2 H terminus of the lac carrier protein in reconstituted proteoliposomes, Proc. Natl. Acad. Sci. USA 81: 4672–4676.PubMedGoogle Scholar
  34. Carrasco, N., Viitanen, P., Herzlinger, D., and Kaback, H. R., 1984b, Monoclonal antibodies against the lac carrier protein forEscherichia colt. 1. Functional studies, Biochemistry 23: 3681–3687.PubMedGoogle Scholar
  35. Casadaban, M. J., and Cohen, S. N., 1979, Lactose genes fused to exogenous promoters in one step using a Mu-lac bacteriophage: In vivo probe for transcriptional control sequences, Proc. Natl. Acad. Sci. USA 76: 4530–4533.PubMedGoogle Scholar
  36. Chappell, J. B., 1968, Systems used for the transport of substrates into mitochondria, Br. Med. Bull. 24: 150–157.PubMedGoogle Scholar
  37. Clark, A. F., and Hogg, R. W., 1981, High-affinity arabinose transport mutants of Escherichia colt: Isolation and gene location, J. Bacteriol. 147: 920–924.PubMedGoogle Scholar
  38. Clarke, L., and Carbon, J., 1976, A colony bank containing synthetic Col El hybrid plasmids representative of the entire E. colt genome, Cell 9: 91–99.PubMedGoogle Scholar
  39. Clément, J. M., and Hofnung, M., 1981, Gene sequences of the X receptor, an outer membrane protein of Escherichia colt K12, Cell 27: 507–514.PubMedGoogle Scholar
  40. Cockrell, R. S., Harris, E. J., and Pressman, B. C., 1967, Synthesis of ATP driven by a potassium gradient in mitochondria, Nature 215: 1487–1488.PubMedGoogle Scholar
  41. Cohn, D. E., and Kaback, H. R., 1980, Mechanism of the melibiose porter in membrane vesicles of Escherichia coli, Biochemistry 19: 4237–4243.PubMedGoogle Scholar
  42. Colowick, S. P., and Womack, F. C., 1969, Binding of diffusible molecules by macromolecules: Rapid movement by rate of dialysis, J. Biol. Chem. 244: 774–777.PubMedGoogle Scholar
  43. Copeland, B. R., Richter, R. J., and Furlong, C. E., 1982, Renaturation and identification of periplasmic proteins in two-dimensional gels of Escherichia colt, J. Biol. Chem. 257: 15065–15071.PubMedGoogle Scholar
  44. Costello, M. J., Viitanen, P., Carrasco, N., Foster, D. L., and Kaback, H. R., 1984, Morphology of proteoliposomes reconstituted with purified lac carrier protein from Escherichia coli, J. Biol. Chem. 259: 15579–15586.PubMedGoogle Scholar
  45. Curtis, S. J., 1974, Mechanism of energy coupling for transport of D-ribose in Escherichia coli, J. Bacteriol. 120: 295–303.PubMedGoogle Scholar
  46. Daruwalla, K., 1979, The energisation of sugar transport systems in bacteria, Ph.D. thesis, University of Cambridge.Google Scholar
  47. Daruwalla, K. R., Paxton, A. T., and Henderson, P. J. F., 1981, Energization of the transport systems for arabinose and comparison with galactose transport in Escherichia coli, Biochem. J. 200: 611–627.PubMedGoogle Scholar
  48. Dassa, E., and Hofnung, M., 1985, Sequence of gene malG in E. colt K12, EMBO J. 4: 2287–2293.Google Scholar
  49. David, J. D., and Wiesmeyer, H., 1970a, Control of xylose metabolism in Escherichia coli, Biochim. Biophys. Acta 201: 497–499.PubMedGoogle Scholar
  50. David, J. D., and Wiesmeyer, H., 1970b, Regulation of ribose catabolism in Escherichia coli: The ribose catabolic pathway, Biochim. Biophys. Acta 208: 45–55.PubMedGoogle Scholar
  51. Davis, E. O., Jones-Mortimer, M. C., and Henderson, P. J. F., 1984, Location of a structural gene for xylose-H+ symport at 91 min on the linkage map of Escherichia coil K12, J. Biol. Chem. 259: 1520–1525.PubMedGoogle Scholar
  52. Debarbouillé, M., and Schwartz, M., 1980, Mutants which make more malT product, the activator of the maltose regulon in Escherichia coli, Mol. Gen. Genet. 178: 589–595.PubMedGoogle Scholar
  53. Di Renzio, J. M., Nakamura, K., and Inouye, M., 1978, The outer membrane proteins of gramnegative bacteria: Biosynthesis, assembly, and functions, Annu. Rev. Biochem. 47: 481–532.Google Scholar
  54. Duplay, P., Bedouelle, H., Fowler, A., Zabin, I., Saurin, W., and Hofnung, M., 1984, Sequences of the malE gene and of its product, the maltose-binding protein of Escherichia coli K12, J. Biol. Chem. 259: 10606–10613.PubMedGoogle Scholar
  55. Ehring, R., Beyreuther, K., Wright, J. K., and Overath, P., 1980, In vitro and in vivo products of E. coli lactose permease gene are identical, Nature 283: 537–540.PubMedGoogle Scholar
  56. Englesberg, E., Irr, J., Power, J., and Lee, N., 1965, Positive control of enzyme synthesis by gene C in the L-arabinose system, J. Bacteriol. 90: 946–957.PubMedGoogle Scholar
  57. Ferenci, T., 1980, Methyl-a-maltoside and 5-thiomaltose; analogues transported by the Escherichia coli maltose transport system, J. Bacteriol. 144: 7–11.PubMedGoogle Scholar
  58. Ferenci, T., and Boos, W., 1980, The role of the Escherichia coli X receptor in the transport of maltose and maltodextrins, J. Supramol. Struct. 13: 101–116.PubMedGoogle Scholar
  59. Ferenci, T., and Klotz, U., 1978, Affinity chromatography isolation of the periplasmic maltose binding protein of Escherichia coli, FEBS Lett. 94: 213–217.PubMedGoogle Scholar
  60. Ferenci, T., Boos, W., Schwartz, M., and Szmelcman, S., 1977, Energy coupling of the transport system of Escherichia coli dependent on maltose-binding protein, Eur. J. Biochem. 75: 187–195.PubMedGoogle Scholar
  61. Flagg, J. L., and Wilson, T. H., 1977, A protonmotive force as the source of energy for galactoside transport in energy depleted Escherichia coli, J. Membr. Biol. 31: 233–255.PubMedGoogle Scholar
  62. Foster, D., Boublik, M., and Kaback, H. R., 1983, Structure of the lac carrier protein of Escherichia coli, J. Biol. Chem. 258: 31–34.PubMedGoogle Scholar
  63. Foster, D. L., Garcia, M. L., Newman, M. J., Patel, L., and Kaback, H. R., 1982, Lactose-proton symport by purified lac carrier protein, Biochemistry 21: 5634–5638.PubMedGoogle Scholar
  64. Frank, L., and Hopkins, I., 1969, Sodium-stimulated transport of glutamate in Escherichia coli, J. Bacteriol. 100: 329–336.PubMedGoogle Scholar
  65. Froshauer, S., and Beckwith, J., 1984, The nucleotide sequence of the gene for malF protein, an inner membrane component of the maltose transport system of Escherichia coli, J. Biol. Chem. 259: 10896–10903.PubMedGoogle Scholar
  66. Futai, M., 1978, Experimental systems for the study of active transport in bacteria, In: Bacterial Transport ( B. P. Rosen, ed.), pp. 7–41, Dekker, New York.Google Scholar
  67. Futai, M., and Kanazawa, H., 1983, Structure and function of proton-translocating adenosine triphosphatase (F0F1): Biochemical and molecular biological approaches, Microbiol. Rev. 47: 285–312.PubMedGoogle Scholar
  68. Gabay, J., Schenkman, S., Desaymard, C., and Schwartz, M., 1985, Monoclonal antibodies and the structure of bacterial membrane proteins, In: Monoclonal Antibodies Against Bacteria (A. S. L. Macario and C. de Macario, eds.), pp. 249–282, Academic Press, New York.Google Scholar
  69. Galloway, D. R., and Furlong, C. E., 1977, The role of ribose-binding protein in transport and chemotaxis in Escherichia coli K-12, Arch. Biochem. Biophys. 184: 496–504.PubMedGoogle Scholar
  70. Ganesan, A. K., and Rotman, B., 1966, Genetic determination and regulation of the methylgalactoside permease, J. Mol. Biol. 16: 42–50.PubMedGoogle Scholar
  71. Garcia, M. L., Viitanen, P., Foster, D. L., and Kaback, H. R., 1983, Mechanism of lactose translocation in proteoliposomes reconstituted with lac carrier protein purified from Escherichia coli, Biochemistry 22: 2524–2531.PubMedGoogle Scholar
  72. Gilson, E., Higgins, C. F., Hofnung, M., Ames, G. F.-L., and Nikaido, J., 1982, Extensive homology between membrane-associated components of histidine and maltose transport systems of Salmonella typhimurium and Escherichia coli, J. Biol. Chem. 257: 9915–9918.PubMedGoogle Scholar
  73. Glynn, I. M., 1967, Involvement of a membrane potential in the synthesis of ATP by mitochondria, Nature 216: 1318–1319.PubMedGoogle Scholar
  74. Goldkorn, T., Rimon, G., and Kaback, H. R., 1983, Topology of the Lac carrier protein in the membrane of Escherichia coli, Proc. Natl. Acad. Sci. USA 80: 3322–3326.PubMedGoogle Scholar
  75. Goldkorn, T., Rimon, G., Kempner, E. S., and Kaback, H. R., 1984, Functional molecular weight of the lac carrier protein from Escherichia coli as studied by radiation inactivation analysis, Proc. Natl. Acad. Sci. USA 81: 1021–1025.PubMedGoogle Scholar
  76. Groarke, J. M., Mahoney, W. C., Hope, J. N., Furlong, C. E., Robb, F. T., Zalkin, H., and Hermodson, M. A., 1983, The amino acid sequence of D-ribose-binding protein from Escherichia coli K12, J. Biol. Chem. 258: 12952–12956.PubMedGoogle Scholar
  77. Haddock, B. A., and Jones, C. W., 1977, Bacterial respiration, Bacteriol. Rev. 41: 47–99.PubMedGoogle Scholar
  78. Hamilton, W. A., 1975, Energy coupling in microbial transport, Adv. Microb. Physiol. 12: 1–53.Google Scholar
  79. Hanatani, M., Yazyu, H., Shiota-Niiya, S., Moriyama, Y., Kanazawa, H., Futai, M., and Tsuchiya, T., 1984, Physical and genetic characterization of the melibiose operon and identification of the gene products in Escherichia coli, J. Biol. Chem. 259: 1807–1812.PubMedGoogle Scholar
  80. Harayama, S., Bollinger, J., Iino, T., and Hazelbauer, G. L., 1983, Characterization of the mgl operon of Escherichia coli by transposon mutagenesis and molecular cloning, J. Bacteriol. 153: 408–415.PubMedGoogle Scholar
  81. Harold, F. M., 1972, Conservation and transformation of energy by bacterial membranes, Bacteriol. Rev. 36: 172–230.PubMedGoogle Scholar
  82. Harold, F. M., 1977, Membranes and energy transduction in bacteria, Curr. Top. Bioenerg. 6: 83–149.Google Scholar
  83. Hays, J. B., 1978, Group translocation transport systems, In: Bacterial Transport ( B. P. Rosen, ed.), pp. 43–102, Dekker, New York.Google Scholar
  84. Hazelbauer, G. L., and Adler, J., 1971, Role of galactose-binding protein in chemotaxis of Escherichia coli toward galactose, Nature New Biol. 230: 101–104.PubMedGoogle Scholar
  85. Hazelbauer, G. L., and Harayama, S., 1979, Mutants in transmission of chemotactic signals from two independent receptors of E. coli, Cell 16: 617–625.Google Scholar
  86. Heffeman, L., Bass, R., and Englesberg, E., 1976, Mutations affecting catabolite repression of the Larabinose regulon in Escherichia coli B/r, J. Bacteriol. 126: 1119–1131.Google Scholar
  87. Heinz, E., and Weinstein, A. M., 1984, The overshoot phenomenon in cotransport, Biochim. Biophys. Acta 776: 83–91.PubMedGoogle Scholar
  88. Heller, K. B., Lin, E. C. C., and Wilson, T. H., 1980, Substrate specificity and transport properties of the glycerol facilitator of Escherichia coli, J. Bacteriol. 144: 274–278.PubMedGoogle Scholar
  89. Henderson, P. J. F., 1974, Application of the chemiosmotic theory to the transport of lactose, D-galactose, and L-arabinose by Escherichia coli, In: Comparative Biochemistry and Physiology of Transport ( L. Bolis, K. Bloch, S. E. Luria, and F. Lynen, eds.), pp. 409–424, North-Holland, Amsterdam.Google Scholar
  90. Henderson, P. J. F., and Giddens, R. A., 1977, 2-Deoxy-D-galactose, a substrate for the galactose-transport system of Escherichia coli, Biochem. J. 168:15–22.PubMedGoogle Scholar
  91. Henderson, P. J. F., and Kornberg, H. L., 1975, The active transport of carbohydrates of Escherichia coli, Ciba Found. Symp. 31: 243–269.PubMedGoogle Scholar
  92. Henderson, P. J. F., and Skinner, A., 1974, Association of proton movements with the galactose and arabinose transport systems of Escherichia coli, Biochem. Soc. Trans. 2: 543–545.Google Scholar
  93. Henderson, P. J. F., Dilks, S. N., and Giddens, R. A., 1975, pH changes associated with the transport of sugars by Escherichia coli, Proc. 10th FEBS Meet., 20:43–53.Google Scholar
  94. Henderson, P. J. F., Giddens, R. A., and Jones-Mortimer, M. C., 1977, Transport of galactose, glucose and their molecular analogues by Escherichia coli K12, Biochem. J. 162: 309–320.PubMedGoogle Scholar
  95. Henderson, P. J. F., Bradley, S., MacPherson, A. J. S., Home, P., Davis, E. O., Daruwalla, K. T., and Jones-Mortimer, M. C., 1984, Sugar-proton transport systems of Escherichia coli, Biochem. Soc. Trans. 12: 146–148.PubMedGoogle Scholar
  96. Henderson, R., and Unwin, P. N. T., 1975, Three-dimensional model of purple membrane obtained by electron microscopy, Nature New Biol. 257: 28–32.Google Scholar
  97. Hendrickson, W., and Schleif, R. F., 1984, Regulation of the Escherichia coli L-arabinose operon studied by gel electrophoresis DNA binding assay, J. Mol. Biol. 174: 611–628.Google Scholar
  98. Hengge, R., and Boos, W., 1983, Maltose and lactose transport in Escherichia coli, examples of two different types of concentrative transport systems, Biochim. Biophys. Acta 737: 443–478.PubMedGoogle Scholar
  99. Herzberg, E., and Hinkle, P., 1974, Oxidative phosphorylation and proton translocation in membrane vesicles prepared from Escherichia coli, Biochem. Biophys. Res. Commun. 58: 178–184.Google Scholar
  100. Herzlinger, D., Viitanan, P., Carrasco, N., and Kaback, H. R., 1984, Monoclonal antibodies against the lac carrier protein from Escherichia coli. 2. Binding studies with membrane vesicles and proteoliposomes reconstituted with purified lac carrier protein, Biochemistry 23: 3688–3693.PubMedGoogle Scholar
  101. Herzlinger, D., Carrasco, N., and Kaback, H. R., 1985, Functional and immunochemical characterization of a mutant of Escherichia coli energy uncoupled for lactose transport, Biochemistry 24: 221–229.PubMedGoogle Scholar
  102. Higgins, C. F., Haag, P. D., Nikaido, K., Ardeshir, F., Garcia, G., and Ames, G.F.-L., 1982, Complete nucleotide sequence and identification of membrane components of the histidine transport operon of S. typhimurium, Nature 298: 723–727.PubMedGoogle Scholar
  103. Higgins, C. F., Hiles, I. D., Whalley, K., and Jamieson, D. J., 1985, Nucleotide binding by membrane components of bacterial periplasmic binding protein-dependent transport systems, EMBO J. 4: 1033–1040.Google Scholar
  104. Hobson, A. C., Weatherwax, R., and Ames, G. F.-L., 1984, ATP-binding sites in the membrane components of histidine permease, a periplasmic transport system, Proc. Natl. Acad. Sci. USA 81: 7333–7337.PubMedGoogle Scholar
  105. Hogg, R. W., 1977, L-Arabinose transport and the L-arabinose binding protein of Escherichia coli, J. Supramol. Struct. 6: 411–417.PubMedGoogle Scholar
  106. Hogg, R. W., and Englesberg, E., 1969, L-Arabinose binding protein from Escherichia coli B/r, J. Bacteriol. 100: 423–431.PubMedGoogle Scholar
  107. Hogg, R. W., and Hermodson, M. A., 1977, Amino acid sequence of the L-arabinose-binding protein from Escherichia coli B/r, J. Biol. Chem. 252: 5135–5141.PubMedGoogle Scholar
  108. Hong, J.-S., Hunt, A. G., Masters, P. S., and Lieberman, M. A., 1979, Requirement of acetyl phosphate for the binding protein-dependent transport systems in Escherichia coli, Proc. Natl. Acad. Sci. USA 76: 1213–1217.PubMedGoogle Scholar
  109. Horecker, B. L., Thomas, J., and Monod, J., 1960, Galactose transport in Escherichia coli, J. Biol. Chem. 235: 1580–1590.PubMedGoogle Scholar
  110. Home, P., 1980, Galactose transport into membrane vesicles, Ph.D. thesis, University of Cambridge.Google Scholar
  111. Horne, P., and Henderson, P. J. F., 1983, The association of proton movement with galactose transport into subcellular membrane vesicles of Escherichia coli, Biochem. J. 210: 699–705.PubMedGoogle Scholar
  112. Hugenholtz, J., Hong, J.-S., and Kaback, M. R., 1981, ATP-driven transport in right-side-out bacterial membrane vesicles, Proc. Nat. Acad. Sci. USA 78: 3446–3449.PubMedGoogle Scholar
  113. Hunt, A. G., and Hong, J.-S., 1981, The reconstitution of binding protein-dependent active transport of glutamine in isolated membrane vesicles from Escherichia coli, J. Biol. Chem. 256: 11988–11991.PubMedGoogle Scholar
  114. Iida, A., Harayama, S., Iino, T., and Hazelbauer, G. L., 1984, Molecular cloning and characterization of genes required for ribose transport and utilization in Escherichia coli K-12, J. Bacteriol. 158: 674–682.PubMedGoogle Scholar
  115. Ingledew, W. S., and Poole, R. K., 1984, The respiratory chains of Escherichia coli, Microbiol. Rev. 48: 222–271.PubMedGoogle Scholar
  116. Inouye, M. (ed.), 1979, Bacterial Outer Membranes, Wiley, New York.Google Scholar
  117. Jagendorf, A. T., and Uribe, E., 1966, ATP formation caused by acid-base transition of spinach chloroplasts, Proc. Natl. Acad. Sci. USA 55: 170–177.PubMedGoogle Scholar
  118. Jobe, A., and Bourgeois, S., 1972, Lac repressor operator interaction. VI. The natural inducer of the lac operon, J. Mol. Biol. 69: 397–408.PubMedGoogle Scholar
  119. Jones, T. H. D., and Kennedy, E. P., 1969, Characterization of the membrane protein of the lactose transport system of Escherichia coli, J. Biol. Chem. 244: 5981–5987.PubMedGoogle Scholar
  120. Jones-Mortimer, M. C., and Henderson, P. J. F., 1986, Use of transposons to isolate and characterise mutants lacking membrane proteins, illustrated by the sugar transport systems of Escherichia coli, Methods Enzymol. 125: 157–180.PubMedGoogle Scholar
  121. Kaback, H. R., 1971, Bacterial membranes, Methods Enzymol. 22: 99–120.Google Scholar
  122. Kaback, H. R., 1972, Transport across isolated bacterial cytoplasmic membranes, Biochim. Biophys. Acta 265: 367–416.PubMedGoogle Scholar
  123. Kaback, H. R., 1974, Transport studies in bacterial membrane vesicles, Science 186: 882–892.PubMedGoogle Scholar
  124. Kaback, H. R., 1977, Molecular biology and energetics of membrane transport, In: Biochemistry of Membrane Transport ( G. Semenza and E. Carafoli, eds.), pp. 598–625, Springer-Verlag, Berlin.Google Scholar
  125. Kaback, H. R., 1983, The Lac carrier protein in Escherichia coli, J. Membr. Biol. 76: 95–112.PubMedGoogle Scholar
  126. Kaczorowski, G. J., and Kaback, H. R., 1979, Effect of pH on efflux, exchange and counterflow of lactose translocation in membrane vesicles from Escherichia coli, Biochemistry 18: 3691–3697.PubMedGoogle Scholar
  127. Kaczorowski, G. J., LeBlanc, G., and Kaback, H. R., 1980, Specific labelling of the lac carrier protein in membrane vesicles of Escherichia coli by a photoaffinity reagent, Proc. Natl. Acad. Sci. USA 77: 6319–6323.PubMedGoogle Scholar
  128. Kagawa, Y., 1978, Reconstitution of the energy transformer, gate and channel, subunit reassembly, crystalline ATPase and ATP synthesis, Biochim. Biophys. Acta 505: 45–93.PubMedGoogle Scholar
  129. Kagawa, Y., 1984, Proton motive ATP synthesis, In: Bioenergetics ( L. Ernster, ed.), pp. 149–186, Elsevier, Amsterdam.Google Scholar
  130. Katz, L., and Englesberg, E., 1971, Hyperinducibility as a result of mutation in structural genes and self-catabolite repression in the ara operon, J. Bacteriol. 107: 34–52.PubMedGoogle Scholar
  131. Kellerman, O., and Szmelcman, S., 1974, Involvement of a “periplasmic” binding protein in active transport of maltose by Escherichia coli K12, Eur. J. Biochem. 47: 139–149.Google Scholar
  132. Kennedy, E. P., 1970, The lactose permease system of Escherichia coli, In: The Lactose Operon ( J. R. Beckwith and D. Zipser, eds.), pp. 49–92, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  133. Klein, W. L., and Boyer, P. D., 1972, Energisation of active transport by Escherichia coli, J. Biol. Chem. 247: 7257–7265.PubMedGoogle Scholar
  134. Kolodrubetz, D., and Schleif, R., 198la, L-Arabinose transport systems in Escherichia coli K-12, J. Bacteriol. 148: 472–479.Google Scholar
  135. Kolodrubetz, D., and Schleif, R., 198lb, Regulation of the L-arabinose transport operons in Escherichia coli, J. Mol. Biol. 151: 215–227.Google Scholar
  136. König, B., and Sandermann, H., 1982, 3-D-Galactoside transport in Escherichia coli, Mr determination of the transport protein in organic solvent, FEBS Lett. 147: 31–34.PubMedGoogle Scholar
  137. Konings, W. N., and Boonstra, J., 1977, Anaerobic electron transfer and active transport in bacteria, Curr. Top. Membr. Transp. 9: 177–231.Google Scholar
  138. Koshland, D. E., 1977, Bacterial chemotaxis and some enzymes in energy metabolism, Symp. Soc. Gen. Microbiol. 27: 317–331.Google Scholar
  139. Kosiba, B. E., and Schleif, R., 1982, Arabinose-inducible promoter from Escherichia coli, J. Mol. Biol. 156: 53–56.PubMedGoogle Scholar
  140. Kyte, J., and Doolittle, R. F., 1982, A simple method for displaying the hydropathic character of a protein, J. Mol. Biol. 157: 105–132.PubMedGoogle Scholar
  141. Lam, V. M. S., Daruwalla, K. R., Henderson, P. J. F., and Jones-Mortimer, M. C., 1980, Proton-linked D-xylose transport in Escherichia coli, J. Bacteriol. 143: 396–402.PubMedGoogle Scholar
  142. Lancaster, J. R., 1982, Mechanism of lactose-proton cotransport in Escherichia coli, FEBS Lett. 150: 9–18.PubMedGoogle Scholar
  143. Lancaster, J. R., and Hinkle, P. C., 1977, Studies of the ß-galactoside transporter in inverted membrane vesicles of Escherichia coli, J. Biol. Chem. 252: 7657–7661.PubMedGoogle Scholar
  144. Landick, R., and Oxender, D. L., 1982, Bacterial periplasmic binding proteins, In: Membranes and Transport (A. N. Martonosi, ed.), Vol. 2, pp. 81–88, Plenum Press, New York.Google Scholar
  145. Larsen, S. H., Adler, J., Gargus, J. J., and Hogg, R. W., 1974, Chemomechanical coupling without ATP: The source of energy for motility and chemotaxis in bacteria, Proc. Natl. Acad. Sci. USA 71: 1239–1243.PubMedGoogle Scholar
  146. Lawlis, V. B., Dennis, M. S., Chen, E. Y., Smith, D. H., and Henner, D. J., 1984, DNA sequence of the xylA and xylB genes of Escherichia coli, Appl. Environ. Microbiol. 47: 15–21.PubMedGoogle Scholar
  147. Lengeler, J., Hermann, K. O., Unsöld, H. J., and Boos, W., 1971, The regulation of the 3methylgalactoside transport system and of the galactose binding protein of Escherichia coli K-12, Eur. J. Biochem. 19: 457–470.PubMedGoogle Scholar
  148. Lever, J. E., 1972, Quantitative assay of the binding of small molecules to protein: Comparison of dialysis and membrane filter assays, Anal. Biochem. 50: 73–83.PubMedGoogle Scholar
  149. Lombardi, F. J., 1981, Lactose-H ± (OH−) transport system of Escherichia coli, Biochim. Biophys. Acta 649: 661–679.PubMedGoogle Scholar
  150. Lombardi, F. J., and Kaback, H. R., 1972, The transport of amino acids by membranes prepared from Escherichia coli, J. Biol. Chem. 247: 7844–7857.PubMedGoogle Scholar
  151. Lopilato, J. E., Tsuchiya, T., and Wilson, T. H., 1978, Role of Na+ and Li+ in thiomethylgalactoside transport by the melibiose transport system of Escherichia coli, J. Bacteriol. 134: 147–156.PubMedGoogle Scholar
  152. Lopilato, J. E., Garwin, J. L., Emr, S. D., Silhavy, T. J., and Beckwith, J. R., 1984, n-Ribose metabolism in Escherichia coli K-12; Genetics, regulation, and transport, J. Bacteriol. 158: 665–673.PubMedGoogle Scholar
  153. Macpherson, A. J. S., Jones-Mortimer, M. C., and Henderson, P. J. F., 1981, Identification of the AraE transport protein of Escherichia coli, Biochem. J. 196: 269–283.PubMedGoogle Scholar
  154. Macpherson, A. J. S., Jones-Mortimer, M. C., Horne, P., and Henderson, P. J. F., 1983, Identification of the GaIP galactose transport protein of Escherichia coli, J. Biol. Chem. 258: 4390–4396.PubMedGoogle Scholar
  155. Mahoney, W. C., Hogg, R. W., and Hermodson, M. A., 1981, The amino acid sequence of the 1)-galactose-binding protein from E. coli B/r, J. Biol. Chem. 256: 4350–4356.PubMedGoogle Scholar
  156. Maniatis, T., Fritsch, E. F., and Sambrook, J., 1982, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  157. Markgraf, M., Bocklage, H., and Müller-Hill, B., 1985, A change of threonine 266 to isoleucine in the lac permease of Escherichia coli diminishes the transport of lactose and increases the transport of maltose, Mol. Gen. Genet. 198: 473–475.PubMedGoogle Scholar
  158. Mitaku, S., Wright, J. K., Best, L., and Jähnig, F., 1984, Localization of the galactoside binding site in the lactose carrier of Escherichia coli, Biochim. Biophys. Acta 776: 247–258.PubMedGoogle Scholar
  159. Mitchell, P., 1961, Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism, Nature 191: 144–148.PubMedGoogle Scholar
  160. Mitchell, P., 1963, Moleculé, group and electron translocation through natural membranes, Biochem. Soc. Symp. 22: 142–169.Google Scholar
  161. Mitchell, P., 1966, Chemiosmotic coupling in oxidative and photosynthetic phosphorylation, Biol. Rev. 41: 445–502.PubMedGoogle Scholar
  162. Mitchell, P., 1973, Performance and conservation of osmotic work by proton-coupled solute porter systems, Bioenergetics 4: 63–91.Google Scholar
  163. Mitchell, P., 1976, Vectorial chemistry and the molecular mechanics of chemiosmotic coupling: Power transmission by proticity, Biochem. Soc. Trans. 4: 399–430.PubMedGoogle Scholar
  164. Mogi, T., and Anraku, Y., 1984, Mechanism of proline transport in Escherichia coli K12, J. Biol. Chem. 259: 7791–7796.PubMedGoogle Scholar
  165. Müller, N., Heine, H.-G., and Boos, W., 1982, Cloning of mglB, the structural gene for the galactose-binding protein of Salmonella typhimurium and Escherichia coli, Mol. Gen. Genet. 185: 473–480.PubMedGoogle Scholar
  166. Neu, H. C., and Heppel, L. A., 1965, The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts, J. Biol. Chem. 240: 3685–3692.PubMedGoogle Scholar
  167. Newman, M. J., and Wilson, T. H., 1980, Solubilization and reconstitution of the lactose transport system from Escherichia coli, J. Biol. Chem. 255: 10583–10586.PubMedGoogle Scholar
  168. Newman, M. J., Foster, D. L., Wilson, T. H., and Kaback, H. R., 1981, Purification and Reconstitution of functional lactose carrier from Escherichia coli, J. Biol. Chem. 256: 11804–11808.PubMedGoogle Scholar
  169. Niiya, S., Yamasaki, K., Wilson, T. H., and Tsuchiya, T., 1982, Altered cation coupling to melibiose transport in mutants of Escherichia coli, J. Biol. Chem. 257: 8902–8906.PubMedGoogle Scholar
  170. Novotny, C. P., and Englesberg, E., 1966, The L-arabinose permease system in Escherichia coli B/r, Biochim. Biophys. Acta 117: 217–230.PubMedGoogle Scholar
  171. Ordal, G. W., and Adler, J., 1974, Isolation and complementation of mutants in galactose taxis and transport, J. Bacteriol. 117: 509–516.PubMedGoogle Scholar
  172. Page, M. G. P., and West, I. C., 1981, The kinetics of the ß-galactoside-proton symport of Escherichia coli, Biochem. J. 196: 721–731.PubMedGoogle Scholar
  173. Page, M. G. P., and West, I. C., 1982, Alternative-substrate inhibition and the kinetic mechanism of the 3-galactoside proton symport of Escherichia coli, Biochem. J. 204: 681–688.PubMedGoogle Scholar
  174. Page, M. G. P., and West, I. C., 1984, The transient kinetics of uptake of galactosides into Escherichia coli, Biochem. J. 223: 723–731.PubMedGoogle Scholar
  175. Parsons, R. G., and Hogg, R. W., 1974, Crystallisation and characterisation of the L-arabinosebinding protein of Escherichia coli B/r, J. Biol. Chem. 249: 3602–3607.PubMedGoogle Scholar
  176. Patel, L., Garcia, M. L., and Kaback, H. R., 1982, Direct measurement of lactose/proton symport in Escherichia coli, Biochemistry 21: 5805–5810.PubMedGoogle Scholar
  177. Pavlasova, E., and Harold, F. M., 1969, Energy coupling in the transport of 13-galactosides by Escherichia coli: Effect of proton conductors, J. Bacteriol. 98: 198–204.PubMedGoogle Scholar
  178. Plate, C. A., 1979, Requirement for membrane potential in active transport of glutamine by Escherichia coli, J. Bacteriol. 137: 221–225.PubMedGoogle Scholar
  179. Plate, C. A., Suit, J. L., Jetten, A. M., and Luria, S. E., 1974, Effects of colicin K on a mutant of Escherichia coli deficient in Ca2+ Mg2+ ATPase, J. Biol. Chem. 249: 6138–6143PubMedGoogle Scholar
  180. Prestidge, L. S., and Pardee, A. B., 1965, A second permease for methylthio-β-D-galactoside in Escherichia coli, Biochim. Biophys. Acta 100: 591–593.PubMedGoogle Scholar
  181. Quiocho, F. A., and Pflugrath, J. W., 1980, The structure of D-galactoside-binding protein at 4.11 resolution looks like L-arabinose-binding protein, J. Biol. Chem. 255: 6559–6561.PubMedGoogle Scholar
  182. Quiocho, F. A., and Vyas, N. K., 1984, Novel stereospecificity of the L-arabinose-binding protein, Nature 310: 381–386.PubMedGoogle Scholar
  183. Quiocho, F. A., Phillips, G. N., Parsons, R. G., and Hogg, R. W., 1974, Crystallographic data of an L-arabinose binding protein from Escherichia coli, J. Mol. Biol. 86: 491–493.PubMedGoogle Scholar
  184. Quiocho, F. A., Gilliland, G. L., and Phillips, G. N., 1977, The 2.8. E resolution structure of the Larabinose binding protein from Escherichia coli, J. Biol. Chem. 252: 5142–5149.PubMedGoogle Scholar
  185. Quiocho, F. A., Meador, W. E., and Pflugrath, J. W., 1979, Preliminary crystallographic data of receptors for transport and chemotaxis in Escherichia coli: D-Galactose and maltose-binding proteins, J. Mol. Biol. 133: 181–184.PubMedGoogle Scholar
  186. Rahmanian, M., Claus, D. R., and Oxender, D. L., 1973, Multiplicity of leucine transport systems in Escherichia coli K12, J. Bacteriol. 116: 1258–1266.PubMedGoogle Scholar
  187. Raibaud, O., and Schwartz, M., 1980, Restriction map of the Escherichia coli malA region and identification of the malT product, J. Bacteriol. 143: 761–771.PubMedGoogle Scholar
  188. Raibaud, O., Roa, M., Braun-Breton, C., and Schwartz, M., 1980, Genetic map of the malK-lamB operon, Mol. Gen. Genet. 174: 241–248.Google Scholar
  189. Ramos, S., and Kaback, H. R., 1977a, The electrochemical proton gradient in Escherichia coli membrane vesicles, Biochemistry 16: 848–854.PubMedGoogle Scholar
  190. Ramos, S., and Kaback, H. R., 1977b, The relationship between the electrochemical proton gradient and active transport in Escherichia coli membrane vesicles, Biochemistry 16: 854–859.PubMedGoogle Scholar
  191. Ramos, S., Schuldiner, S., and Kaback, H. R., 1976, The electrochemical gradient of protons and its relationship to active transport in Escherichia coli membrane vesicles, Proc. Natl. Acad. Sci. USA 73: 1892–1896.PubMedGoogle Scholar
  192. Richarme, G., 1985, 5-Methoxyindole-2-carboxylic acid, a potent inhibitor of binding protein dependent transport in Escherichia coli, Biochim. Biophys. Acta 815:37–43.Google Scholar
  193. Rickenberg, H. W., Cohen, G. N., Buttin, G., and Monod, J., 1956, La galactoside-permease d’Escherichia coli, Ann. Int. Pasteur Paris 91: 829.Google Scholar
  194. Riordan, C., and Kornberg, H. L., 1977, Location of galP, a gene which specifies galactose permease activity, on the Escherichia coli linkage map, Proc. R. Soc. London Ser. B 198: 401–410.Google Scholar
  195. Robbins, A. R., 1975, Regulation of the Escherichia coli methylgalactoside transport system by gene mglD, J. Bacteriol. 123: 69–74.Google Scholar
  196. Robbins, A., and Rotman, B., 1975, Evidence for binding proteinndependent substrate translocation by the methylgalactoside transport system of Escherichia coli K12, Proc. Natl. Acad. Sci. USA 72: 423–427.PubMedGoogle Scholar
  197. Robbins, A. R., Guzman, R., and Rotman, B., 1976, Roles of individual mg/ gene products in the 0-methyl-galactoside transport system of Escherichia coli K12, J. Biol. Chem. 251: 3112–3116.PubMedGoogle Scholar
  198. Rosen, B. P., 1973a, 0-galactoside transport and proton movements in an ATPase-deficient mutant of Escherichia coli, Biochem. Biophys. Res. Commun. 53:1289–1296.Google Scholar
  199. Rosen, B. P., 1973b, Restoration of active transport in an Mg2+ -ATPase-deficient mutant of Escherichia coli, J. Bacteriol. 116: 1124–1129.PubMedGoogle Scholar
  200. Rosen, B. P. (ed.), 1978, Bacterial Transport, Marcel Dekker, New York.Google Scholar
  201. Rosen, B. P., and Kashket, E. R., 1978, Energetics of active transport, In: Bacterial Transport ( B. P. Rosen, ed.), pp. 559–620, Marcel Dekker, New York.Google Scholar
  202. Rosen, B. P., and McLees, J. J., 1974, Active transport of calcium in inverted membrane vesicles of Escherichia coli, Proc. Natl. Acad. Sci. USA 71: 5042–5046.PubMedGoogle Scholar
  203. Rosenberg, H., Gerdes, R. G., and Chegwidden, K., 1977, Two systems for the uptake of phosphate in Escherichia coli, J. Bacteriol. 131: 505–511.PubMedGoogle Scholar
  204. Rosenfeld, S. A., Stevis, P. E., and Ho, N. W. Y., 1984, Cloning and characterisation of the xyl genes from Escherichia coli, Mol. Gen. Genet. 194: 410–415.PubMedGoogle Scholar
  205. Rotman, B., 1959, Separate permeases for the accumulation of methyl-O-D-galactoside and methyl-13n-thiogalactoside in Escherichia coli, Biochim. Biophys. Acta 32: 599–601.PubMedGoogle Scholar
  206. Rotman, B., and Guzman, R., 1982, Identification of the mglA gene product in the 0-methylgalactoside transport system of Escherichia coli using plasmid DNA deletions generated in vitro, J. Biol. Chem. 257: 9030–9034.Google Scholar
  207. Rotman, B., Ganesan, A. K., and Guzman, R., 1968, Transport systems for galactose and galactosides in Escherichia coli: Substrate and inducer specificities, J. Mol. Biol. 36: 247–260.PubMedGoogle Scholar
  208. Sancar, A., Hack, A. M., and Rupp, W. D., 1979, Simple method for identification of plasmidcoded proteins, J. Bacteriol. 137: 692–993.PubMedGoogle Scholar
  209. Sanger, F., Nicklen, S., and Coulson, A. R., 1977, DNA sequencing with chain-terminating inhibitors, Proc. Natl. Acad. Sci. USA 74: 5463–5467.PubMedGoogle Scholar
  210. Sanger, F., Coulson, A. R., Barrell, B. G., Smith, A. J. H., and Roe, B. A., 1980, Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing, J. Mol. Biol. 143: 161–178.PubMedGoogle Scholar
  211. Sanger, F., Coulson, A. R., Hong, G. F., Hill, D. F., and Petersen, G. B., 1982, Nucleotide sequence of bacteriophage X DNA, J. Mol. Biol. 162: 729–773.PubMedGoogle Scholar
  212. Schaefler, S., 1967, Inducible system for the utilization of 0-glucosides in Escherichia coli. I. Active transport and utilization of 13-glucosides, J. Bacteriol. 93: 254–263.PubMedGoogle Scholar
  213. Schaefler, S., and Maas, W. K., 1967, Inducible system for the utilization of 0-glucosides in Escherichia coli. II. Description of mutant types and genetic analysis, J. Bacteriol. 93: 264–272.PubMedGoogle Scholar
  214. Schaffner, W., and Weissman, C., 1973, A rapid, sensitive and specific method for the determination of protein in dilute solution, Anal. Biochem. 56: 502–514.PubMedGoogle Scholar
  215. Schairer, H. U., and Haddock, B. A., 1972, 0-Galactoside accumulation in a Mg2+/Ca2+ activated ATPase deficient mutant of Escherichia coli, Biochem. Biophys. Res. Commun. 48:544–551.PubMedGoogle Scholar
  216. Schleif, R., 1969, An L-arabinose binding protein and arabinose permeation in Escherichia coli, J. Mol. Biol. 46: 185–196.PubMedGoogle Scholar
  217. Schmitt, R., 1968, Analysis of melibiose mutants deficient in a-galactosidase and thiomethylgalactoside permease II in Escherichia coli K12, J. Bacteriol. 96: 462–471.PubMedGoogle Scholar
  218. Schuldiner, S., and Kaback, H. R., 1975, Membrane potential and active transport in membrane vesicles from Escherichia coli, Biochemistry 14: 5451–5461.PubMedGoogle Scholar
  219. Schwartz, M., Kellerman, O., Szmelcman, S., and Hazelbauer, C. L., 1976, Further studies on the binding of maltose to the maltose-binding protein of Escherichia coli, Eur. J. Biochem. 71: 167–170.PubMedGoogle Scholar
  220. Shamanna, D. K., and Sanderson, K. E., 1979a, Uptake and catabolism of o-xylose in Salmonella typhimurium LT2, J. Bacteriol. 139: 64–70.PubMedGoogle Scholar
  221. Shamanna, D. K., and Sanderson, K. E., 1979b, Genetics and regulation of D-xylose utilization of Salmonella typhimurium LT2, J. Bacteriol. 139: 71–79.PubMedGoogle Scholar
  222. Shuman, H. A., and Silhavy, T. J., 1981, Identification of the malK gene product: A peripheral membrane component of the Escherichia coli maltose transport system, J. Biol. Chem. 256: 560–562.PubMedGoogle Scholar
  223. Shuman, H. A., Silhavy, T. J., and Beckwith, J. R., 1980, Labeling of proteins with ß-galactosidase by gene fusion, J. Biol. Chem. 255: 168–174.PubMedGoogle Scholar
  224. Silhavy, T. J., Ferenci, T., and Boos, W., 1978, Sugar transport systems in Escherichia coli, In: Bacterial Transport ( B. P. Rosen, ed.), pp. 127–169, Dekker, New York.Google Scholar
  225. Silhavy, T. J., Benson, S. A., and Emr, S. D., 1983, Mechanisms of protein localization, Microbiol. Rev. 47: 313.PubMedGoogle Scholar
  226. Silhavy, T. J., Berman, M. L., and Enquist, L. W., 1984, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  227. Silver, S., 1978, Transport of cations and anions, In: Bacterial Transport ( B. P. Rosen, ed.), pp. 221–324, Dekker, New York.Google Scholar
  228. Simoni, R. D., and Postma, P. W., 1975, The energetics of bacterial active transport, Annu. Rev. Biochem. 44: 523–554.PubMedGoogle Scholar
  229. Sinnott, M. L., and Viratelle, O. M., 1973, The pH dependence of galactosylation and degalactosylation with 13-galactosidase, Biochem. J. 133: 81–87.PubMedGoogle Scholar
  230. Stalmach, M. E., Grothe, S., and Wood, J. S., 1983, Two proline porters in Escherichia coil K12, J. Bacteriol. 156: 481–486.PubMedGoogle Scholar
  231. Stern, M. J., Ames, G. F.-L., Smith, N. H., Robinson, E. C., and Higgins, C. F., 1984, Repetitive extragenic palindromic sequences: A major component of the bacterial genome, Cell 37: 1015–1026.PubMedGoogle Scholar
  232. Stock, J., and Roseman, S., 1971, A sodium-dependent sugar cotransport system in bacteria, Biochem. Biophys. Res. Commun. 44: 132–138.PubMedGoogle Scholar
  233. Stoner, C., and Schleif, R., 1983, The araE low affinity L-arabinose transport promoter, J. Mol. Biol. 171: 369–381.PubMedGoogle Scholar
  234. Stroobant, P., and Kaback, H. R., 1975, Ubiquinone-mediated coupling of NADH dehydrogenase to active transport in membrane vesicles from Escherichia coli, Proc. Natl. Acad. Sci. USA 72: 3970–3974.PubMedGoogle Scholar
  235. Tanaka, K., Niiya, S., and Tsuchiya, T., 1980, Melibiose transport in Escherichia coli, J. Bacteriol. 141: 1031–1036.PubMedGoogle Scholar
  236. Teather, R. M., Hamelin, O., Schwarz, H., and Overath, P., 1977, Functional Symmetry of the 3galactoside carrier in Escherichia coli, Biochim. Biophys. Acta 467: 386–395.Google Scholar
  237. Teather, R. M., Müller-Hill, B., Abrutsch, U., Aichele, G., and Overath, P., 1978, Amplification of the lactose carrier protein in Escherichia coli using a plasmid vector, Mol. Gen. Genet. 159: 239–248.PubMedGoogle Scholar
  238. Teather, R. M., Bramhall, J., Riede, I., Wright, J. K., Fürst, M., Aichele, G., Wilhelm, U., and Overath, P., 1980, Lactose carrier protein of Escherichia coli, Eur. J. Biochem. 108: 223–231.PubMedGoogle Scholar
  239. Tokuda, H., and Kaback, H. R., 1977, Sodium-dependent methyl-1-thio-3-o-galactopyranoside transport in membrane vesicles isolated from Salmonella typhimurium, Biochemistry 16: 2130–2136.Google Scholar
  240. Trumble, W. R., Viitanen, P. V., Sarkar, H. K., Poonian, M. S., and Kaback, H. R., 1984, Site-directed mutagenesis of Cysi48 in the lac carrier protein of Escherichia coli, Biochem. Biophys. Res. Commun. 119: 860–867.PubMedGoogle Scholar
  241. Tsuchiya, T., and Wilson, T. H., 1978, Cation-sugar cotransport in the melibiose transport system of Escherichia coli, Membr. Biochem. 2: 63–79.PubMedGoogle Scholar
  242. Tsuchiya, T., Raven, J., and Wilson, T. H., 1977, Co-transport of Na+ and methyl-13-D-thiogalactopyranoside mediated by the melibiose transport system of Escherichia coli, Biochem. Biophys. Res. Commun. 76: 26–31.PubMedGoogle Scholar
  243. Tsuchiya, T., Lopilato, J., and Wilson, T. H., 1978, Effect of lithium ion on melibiose transport in Escherichia coli, J. Membr. Biol. 42: 45–59.PubMedGoogle Scholar
  244. Tsuchiya, T., Takeda, K., and Wilson, T. H., 1980, H+-substrate cotransport by the melibiose membrane carrier in Escherichia coli, Membr. Biochem. 3: 131–146.PubMedGoogle Scholar
  245. Tsuchiya, T., Ottina, K., Moriyama, Y., Newman, M. J., and Wilson, T. H., 1982, Solubilization and reconstitution of the melibiose carrier from a plasmid-carrying strain of Escherichia coli, J. Biol. Chem. 257: 5125–5128.PubMedGoogle Scholar
  246. Viitanen, P., Garcia, M. L., and Kaback, H. R., 1984, Purified reconstituted lac carrier protein from Escherichia coli is fully functional, Proc. Natl. Acad. Sci. USA 81: 1629–1633.PubMedGoogle Scholar
  247. von Meyenburg, K., and Nikaido, H., 1977, Specificity of the transport process catalysed by the kreceptor protein, Biochem. Biophys. Res. Commun. 78: 1100–1107.Google Scholar
  248. von Wilcken-Bergmann, B., and Müller-Hill, B., 1982, Sequence of galR gene indicates a common evolutionary origin of lac and gal repressor in Escherichia coli, Proc. Natl. Acad. Sci. USA 79: 2427–2431.Google Scholar
  249. Vorisek, J., and Kepes, A., 1972, Galactose transport in Escherichia coli and the galactose-binding protein, Eur. J. Biochem. 28: 364–372.PubMedGoogle Scholar
  250. Vyas, N. K., Vyas, M. N., and Quiocho, F. A., 1983, The 3A resolution structure of a o-galactosebinding protein for transport and chemotaxis in Escherichia coli, Proc. Natl. Acad. Sci. USA 80: 1792–1796.PubMedGoogle Scholar
  251. Walker, J. E., Saraste, M., Runswick, M. J., and Gay, N. J., 1982, Distantly related sequences in the a-and I3-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold, EMBO J. 1: 945–951.Google Scholar
  252. Walker, J. E., Saraste, M., and Gay, N. J., 1984, Nucleotide sequence, regulation and structure of ATP-synthase, Biochim. Biophys. Acta 768: 164–200.PubMedGoogle Scholar
  253. West, I. C., 1970, Lactose transport coupled to proton movements in Escherichia coli, Biochem. Biophys. Res. Commun. 41: 655–661.PubMedGoogle Scholar
  254. West, I. C., 1980, Energy coupling in secondary active transport, Biochim. Biophys. Acta 604: 91–126.PubMedGoogle Scholar
  255. West, I. C., 1983, The Biochemistry of Membrane Transport, Chapman & Hall, London.Google Scholar
  256. West, I. C., and Mitchell, P., 1972, Proton-coupled 13-galactoside translocation in non-metabolizing Escherichia coli, Bioenergetics 3: 445–462.Google Scholar
  257. West, I. C., and Mitchell, P., 1973, Stoichiometry of lactose-proton symport across the plasma membrane of Escherichia coli, Biochem. J. 132: 587–592.PubMedGoogle Scholar
  258. West, I. C., and Mitchell, P., 1974, Proton/sodium ion antiport in Escherichia coli, Biochem. J. 144: 87–90.PubMedGoogle Scholar
  259. West, I. C., and Page, M. G. P., 1984, When is the outer membrane of Escherichia coli rate-limiting for uptake of galactosides?, J. Theor. Biol. 110: 11–19.PubMedGoogle Scholar
  260. Widdas, W. F., 1952, Inability of diffusion to account for placental glucose transfer in the sheep and consideration of the kinetics of a possible carrier transfer, J. Physiol. (London) 11: 23–39.Google Scholar
  261. Wiesmeyer, H., and Cohn, H., 1960, The characterisation of the pathway of maltose utilisation by Escherichia coli, Biochim. Biophys. Acta 39: 440–447.PubMedGoogle Scholar
  262. Willis, R. C., and Furlong, C. E., 1974, Purification and properties of a ribose binding protein from Escherichia coli, J. Biol. Chem. 249: 6926–6929.PubMedGoogle Scholar
  263. Wilson, D. B., 1974, The regulation and properties of the galactose transport system in Escherichia coli K12, J. Biol. Chem. 249: 553–558.PubMedGoogle Scholar
  264. Wilson, D. B., 1976, Properties of the entry and exit reactions of the beta-methyl galactoside transport system in Escherichia coli, J. Bacteriol. 126: 1156–1165.PubMedGoogle Scholar
  265. Winkler, H. H., and Wilson, T. H., 1966, The role of energy coupling in the transport of 3galactosides by Escherichia coli, J. Biol. Chem. 241: 2200–2211.PubMedGoogle Scholar
  266. Winter, G., Fersht, A. R., Wilkinson, A. J., Zoller, M., and Smith, M., 1982, Redesigning enzyme structure by site-directed mutagenesis: Tyrosyl tRNA synthetase and ATP binding, Nature 299: 756–758.PubMedGoogle Scholar
  267. Witholt, B., and Boekhout, M., 1978, The effect of osmotic shock on the accessibility of the murein layer of exponentially growing Escherichia coli to lysozyme, Biochim. Biophys. Acta 508: 296–305.PubMedGoogle Scholar
  268. Witholt, B., Boekhout, M., Brock, M., Kingma, T., van Heerikhuizen, H., and de Leij, L., 1976, An efficient and reproducible procedure for the formation of spheroplasts from variously grown Escherichia coli, Anal. Biochem. 74: 160–170.PubMedGoogle Scholar
  269. Wong, P. T. S., and Wilson, T. H., 1970, Counterflow of galactosides in Escherichia coli, Biochim. Biophys. Acta 196: 336–350.PubMedGoogle Scholar
  270. Wright, J. K., Riede, I., and Overath, P., 1981, Lactose carrier protein of Escherichia coli: Interaction with galactosides and protons, Biochemistry 20: 6404–6415.PubMedGoogle Scholar
  271. Wright, J. K., Teather, R. M., and Overath, P., 1983, Lactose permease of Escherichia coli, Methods Enzymol. 97: 158–175.PubMedGoogle Scholar
  272. Wu, H. C. P., 1967, Role of the galactose transport system in the establishment of endogenous induction of the galactose operon in Escherichia coli, J. Mol. Biol. 24: 213–223.PubMedGoogle Scholar
  273. Wu, H. C. P., Boos, W., and Kalckar, H. M., 1969, Role of the galactose transport system in the retention of intracellular galactose in Escherichia coli, J. Mol. Biol. 41: 109–120.PubMedGoogle Scholar
  274. Yazyu, H., Shiota-Niiya, S., Shimamoto, T., Kanazawa, H., Futai, M., and Tsuchiya, T., 1984, Nucleotide sequence of the melB gene and characteristics of deduced amino acid sequence of the melibiose carrier in Escherichia coli, J. Biol. Chem. 259: 4320–4326.PubMedGoogle Scholar
  275. Yazyu, H., Shiota, S., Futai, M., and Tsuchiya, T., 1985, Alteration in cation specificity of the melibiose transport carrier of Escherichia coli due to replacement of proline 122 with serine, J. Bacteriol. 162: 933–937.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Peter J. F. Henderson
    • 1
  1. 1.Department of BiochemistryUniversity of CambridgeCambridgeUK

Personalised recommendations