Advertisement

The Bacterial Phosphoenolpyruvate: Sugar Phosphotransferase System of Escherichia coli and Salmonella typhimurium

  • Pieter W. Postma

Abstract

Bacteria such as Escherichia coli and Salmonella typhimurium can grow in simple defined media consisting of inorganic salts and any one of a wide variety of carbon sources. But the cells must be able to respond to internal and external variations, including the depletion of nutrients, since they face continuous changes in the external environment and changing internal needs. One of the most challenging problems for a cell is to regulate and integrate its metabolism.

Keywords

Adenylate Cyclase Sugar Transport Sugar Phosphate Phosphoryl Group Suppressor Mutation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adhya, S., and Echols, H., 1966, Glucose effect and the galactose enzymes of Escherichia coli: Correlation between glucose inhibition of induction and inducer exclusion, J. Bacteriol. 92: 601–608.PubMedGoogle Scholar
  2. Adler, J., and Epstein, W., 1974, Phosphotransferase-system enzymes as chemoreceptors for certain sugars in Escherichia coli chemotaxis, Proc. Natl. Acad. Sci. USA 71: 2895–2899.PubMedCrossRefGoogle Scholar
  3. Alaeddinoglu, N. G., and Charles, H. P., 1979, Transfer of a gene for sucrose utilization into Escherichia coli K12, and consequent failure of expression of genes for D-serine utilization, J. Gen. Microbiol. 110: 47–59.PubMedGoogle Scholar
  4. Alexander, J. K., 1980, Suppression of defects in cyclic adenosine 3’,5’-monophosphate metabolism in Escherichia coli, J. Bacteriol. 144: 205–209.PubMedGoogle Scholar
  5. Alexander, J. K., and Tyler, B., 1975, Genetic analysis of succinate utilization of enzyme I mutants of the phosphoenolpyruvate: sugar phosphotransferase system in Escherichia coli, J. Bacteriol. 124: 252–261.PubMedGoogle Scholar
  6. Alper, M. D., and Ames, B. N., 1978, Transport of antibiotics and metabolite analogs by systems under cyclic AMP control: Positive selection of Salmonella typhimurium cya and crp mutants, J. Bacteriol. 133: 149–157.PubMedGoogle Scholar
  7. Amaral, D., and Kornberg, H. L., 1975, Regulation of fructose uptake by glucose in Escherichia coli, J. Gen. Microbiol. 90: 157–168.PubMedGoogle Scholar
  8. Bachmann, B. J., 1983, Linkage map of Escherichia coli K-12, edition 7, Microbiol. Rev. 47:180-230.Google Scholar
  9. Bankaitis, V. A., and Bassford, P. J., Jr., 1982, Regulation and adenylate cyclase synthesis in Escherichia coli: Studies with cya-lac operon and protein fusion strains, J. Bacteriol. 151: 1346–1357.PubMedGoogle Scholar
  10. Begley, G. S., Hansen, D. E., Jacobson, G. R., and Knowles, J. R., 1982, Stereochemical course of the reactions catalyzed by the bacterial phosphoenolpyruvate: glucose phosphotransferase system, Biochemistry 21: 5552–5556.PubMedCrossRefGoogle Scholar
  11. Beneski, D. A., Misko, T. P., and Roseman, S., 1982, Sugar transport by the bacterial phosphotransferase system. Preparation and characterization of membrane vesicles from mutant and wild type Salmonella typhimurium, J. Biol. Chem. 257: 14565–14575.PubMedGoogle Scholar
  12. Berman, M., and Lin, E. C. C., 1971, Glycerol-specific revertants of a phosphoenolpyruvatephosphotransferase mutant: Suppression by desensitization of glycerol kinase to feedback inhibition, J. Bacteriol. 105: 113–120.PubMedGoogle Scholar
  13. Berman, M., Zwaig, N., and Lin, E. C. C., 1970, Suppression of a pleiotropic mutant affecting glycerol dissimilation, Biochem. Biophys. Res. Commun. 38: 272–278.PubMedCrossRefGoogle Scholar
  14. Beyreuther, K., Raufuss, H., Schrecker, O., and Hengstenberg, W., 1977, The phosphoenolpyruvate—dependent phosphotransferase system of Staphylococcus aureus. 1. Amino-acid sequence of the phosphocarrier protein HPr, Eur. J. Biochem. 75: 275–286.PubMedCrossRefGoogle Scholar
  15. Bitoun, R., de Reuse, H., Touati-Schwartz, D., and Danchin, A., 1983, The phosphoenolpyruvate dependent carbohydrate phosphotransferase system of Escherichia coli: Cloning of the ptsHlcrr region and studies with a pts-lac operon fusion, FEMS Microbiol. Lett. 16: 163–167.Google Scholar
  16. Bolshakova, T. N., Gabrielyan, T. R., Bourd, G. I., and Gershanovitch, V. N., 1978, Involvement of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system in regulation of transcription of catabolic enzymes, Eur. J. Biochem. 89: 483–490.PubMedCrossRefGoogle Scholar
  17. Botsford, J. L., 1981, Cyclic nucleotides in prokaryotes, Microbiol. Rev. 45: 620–642.PubMedGoogle Scholar
  18. Botsford, J. L., and Drexler, M., 1978, The cyclic 3’,5’-adenosine monophosphate receptor protein and regulation of cyclic 3’,5’-adenosine monophosphate synthesis in Escherichia coli, Mol. Gen. Genet. 165: 47–56.PubMedCrossRefGoogle Scholar
  19. Bourd, G. I., Erlagaeva, R. S., Bolshakova, T. N., and Gershanovitch, V. N., 1975, Glucose catabolite repression in Escherichia coli K12 mutants defective in methyl-a-D-glucoside transport, Eur. J. Biochem. 53: 419–427.PubMedCrossRefGoogle Scholar
  20. Britton, P., Boronat, A., Hartley, D. A., Jones-Mortimer, M. C., Kornberg, H. L., and Pana, F., 1983, Phosphotransferase-mediated regulation of carbohydrate utilization in Escherichia coli K12: Location of the gsr (tgs) and iex (crr) genes by specialized transduction, J. Gen. Microbiol. 129: 349–358.PubMedGoogle Scholar
  21. Britton, P., Lee, L. G., Murfitt, D., Boronat, A., Jones-Mortimer, M. C., and Kornberg, H. L., 1984, Location and direction of the ptsH and pis genes on the Escherichia coli K12 genome, J. Gen. Microbiol. 130: 861–868.PubMedGoogle Scholar
  22. Brouwer, M., Elferink, M. G. L., and Robillard, G. T., 1982, Phosphoenolpyruvate-dependent fructose phosphotransferase system of Rhodopseudomonas sphaeroides: Purification and physicochemical and immunochemical characterization of a membrane-associated enzyme I, Biochemistry 21: 82–88.PubMedCrossRefGoogle Scholar
  23. Clark, B., and Holms, W. H., 1976, Control of the sequential utilization of glucose and fructose by Escherichia coli, J. Gen. Microbiol. 95: 191–201.Google Scholar
  24. Cohn, M., and Horibata, K., 1959, Inhibition by glucose of the induced synthesis of the ß-galac-toside enzyme system of Escherichia coli: Analysis of maintenance, J. Bacteriol. 78: 601–612.PubMedGoogle Scholar
  25. Cordaro, C., 1976, Genetics of the bacterial phosphoenolpyruvate: glycose phosphotransferase system, Annu. Rev. Genet. 10: 341–359.PubMedCrossRefGoogle Scholar
  26. Cordaro, J. C., and Roseman, S., 1972, Deletion mapping of the genes coding for HPr and enzyme I of the phosphoenolpyruvate: sugar phosphotransferase system in Salmonella typhimurium, J. Bacteriol. 112: 17–29.PubMedGoogle Scholar
  27. Cordaro, J. C., Anderson, R. P., Grogran, E. W., Wenzel, D. J., Engler, M., and Roseman, S., 1974, Promoter-like mutation affecting HPr and enzyme I of the phosphoenolpyruvate: sugar phosphotransferase system in Salmonella typhimurium, J. Bacteriol. 120: 245–252.PubMedGoogle Scholar
  28. Cordaro, J. C., Melton, T., Stratis, J. P., Atagün, M., Gladding, C., Hartman, P. E., and Roseman, S., 1976, Fosfomycin resistance: Selection method for internal and extended deletions of the phosphoenolpyruvate: sugar phosphotransferase genes of Salmonella typhimurium, J. Bacteriol. 128: 785–793.PubMedGoogle Scholar
  29. Curtis, S. J., and Epstein, W., 1975, Phosphorylation of D-glucose in Escherichia coli mutants defective in glucose phosphotransferase, mannose phosphotransferase, and glucokinase, J. Bacteriol. 122: 1189–1199.PubMedGoogle Scholar
  30. Deutscher, J., and Saier, M. H., Jr., 1983, ATP-dependent protein kinase-catalyzed phosphorylation of a seryl residue in HPr, a phosphate carrier protein of the phosphotransferase system in Streptococcus pyogenes, Proc. Natl. Acad. Sci. USA 80: 6790–6794.PubMedCrossRefGoogle Scholar
  31. Deutscher, J., Kessler, U., Alpert, C. A., and Hengstenberg, W., 1984, The bacterial phosphoenolpyruvate dependent phosphotransferase system: P-ser—HPr and its possible regulatory function, Biochemistry 23: 4455–4460.PubMedCrossRefGoogle Scholar
  32. Dills, S. S., Apperson, A., Schmidt, M. R., and Saier, M. H., Jr., 1980, Carbohydrate transport in bacteria, Microbiol. Rev. 44: 385–418.PubMedGoogle Scholar
  33. Dobrogosz, W. J., Hall, G. W., Sherba, D. K., Silva, D. O., Harman, J. G., and Melton, T., 1983, Regulatory interactions among the cya, crp and pts gene products in Salmonella typhimurium, Mol. Gen. Genet. 192: 477–486.PubMedCrossRefGoogle Scholar
  34. Durham, D. R., and Phibbs, P. V., Jr., 1982, Fractionation and characterization of the phosphoenolpyruvate: fructose 1-phosphotransferase system from Pseudomonas aeruginosa, J. Bacteriol. 149: 534–541.PubMedGoogle Scholar
  35. Edwards, V. H., 1969, Correlations of lags in the utilization of mixed sugars in continuous fermentation, Biotechnol. Bioeng. 11: 99–102.PubMedCrossRefGoogle Scholar
  36. Elvin, C. M., and Kornberg, H. L., 1982, A mutant ß-D-glucoside transport system of Escherichia coli resistant to catabolite inhibition, FEBS Leu. 147: 137–142.CrossRefGoogle Scholar
  37. Entian, K.-D., 1980, Genetic and biochemical evidence for hexokinase PII as a key enzyme involved in carbon catabolite repression in yeast, Mol. Gen. Genet. 178: 633–637.PubMedCrossRefGoogle Scholar
  38. Entian, K.-D., 1981, A carbon catabolite repression mutant of Saccharomyces cerevisiae with elevated hexokinase activity: Evidence for regulatory control of hexokinase PII synthesis, Mol. Gen. Genet. 184: 278–282.PubMedGoogle Scholar
  39. Entian, K.-D., and Fröhlich, K.-U., 1984, Saccharomyces cerevisiae mutants provide evidence of hexokinase PII as a bifunctional enzyme with catalytic and regulatory domains for triggering carbon catabolite repression, J. Bacteriol. 158: 29–35.PubMedGoogle Scholar
  40. Entian, K.-D., and Mecke, D., 1982, Genetic evidence for a role of hexokinase isoenzyme PII in carbon catabolite repression in Saccharomyces cerevisiae, J. Biol. Chem. 257: 870–874.PubMedGoogle Scholar
  41. Epstein, W., Jewett, S., and Fox, C. F., 1970, Isolation and mapping of phosphotransferase mutants in Escherichia coli, J. Bacteriol. 104: 793–797.PubMedGoogle Scholar
  42. Erni, B., Trachsel, H., Postma, P. W., and Rosenbuch, J. P., 1982, Bacterial phosphotransferase system. Solubilization and purification of the glucose-specific enzyme II from membranes of Salmonella typhimurium, J. Biol. Chem. 257: 13726–13730.PubMedGoogle Scholar
  43. Ferenci, T., and Kornberg, H. L., 1974, The role of phosphotransferase syntheses of fructose 1-phosphate and fructose 6-phosphate in the growth of Escherichia coli on fructose, Proc. R. Soc. London Ser. B 187: 105–119.CrossRefGoogle Scholar
  44. Feucht, B. U., and Saier, M. H., Jr., 1980, Fine control of adenylate cyclase by the phosphoenolpyruvate: sugar phosphotransferase system in Escherichia coli and Salmonella typhimurium, J. Bacteriol. 141: 603–610.PubMedGoogle Scholar
  45. Fox, C. F., and Wilson, G., 1968, The role of a phosphoenolpyruvate dependent kinase system in (3-glucoside catabolism in Escherichia coli, Proc. Natl. Acad. Sci. USA 59: 988–995.PubMedCrossRefGoogle Scholar
  46. Fraser, A. D. E., and Yamazaki, H., 1982, Significance of 3-galactosidase repression in glucose inhibition of lactose utilization in Escherichia coli, Curr. Microbiol. 7: 241–244.CrossRefGoogle Scholar
  47. Gachelin, G., 1970, Studies on the a-methylglucoside permease of Escherichia coli. A two-step mechanism for the accumulation of a-methylglucoside 6-phosphate, Eur. J. Biochem. 16: 342–357.PubMedCrossRefGoogle Scholar
  48. Garnak, M., and Reeves, H. C., 1979, Purification and properties of phosphorylated isocitrate dehydrogenase from Escherichia coli, J. Biol. Chem. 254: 7915–7920.PubMedGoogle Scholar
  49. Gay, P., Cordier, P., Marquet, M., and Delobbe, A„ 1973, Carbohydrate metabolism and transport in Bacillus subtilis. A study of ctr mutations, Mol. Gen. Genet. 121: 355–368.PubMedCrossRefGoogle Scholar
  50. Gershanovitch, V. N., Bourd, G. I., Jurovitzkaya, N. V., Skavronskaya, A. G., Klyutchova, V. V., and Shabolenko, V. P., 1967, ß-Galactosidase induction in cells of Escherichia coli not utilizing glucose, Biochim. Biophys. Acta 134: 188–190.Google Scholar
  51. Gershanovitch, V. N., Ilyina, T. S., Rusina, O. Y., Yourovitskaya, N. V., and Bolshakova, T. N., 1977, Repression of inducible enzyme synthesis in a mutant of Escherichia coli K12 deleted for the ptsH gene, Mol. Gen. Genet. 153: 185–190.PubMedCrossRefGoogle Scholar
  52. Gilman, A. G., 1984, G proteins and dual control of adenylate cyclase, Cell 36: 577–579.PubMedCrossRefGoogle Scholar
  53. Glesyna, M. L., Bolshakova, T. N., and Gershanovitch, V. N., 1983, Effect of ptsl and ptsH mutations on initiation of transcription of the Escherichia coli lactose operon, Mol. Gen. Genet. 190: 417–420.PubMedCrossRefGoogle Scholar
  54. Goldbeter, A., and Koshland, D. E., Jr., 1981, An amplified sensitivity arising from covalent modification in biological systems, Proc. Natl. Acad. Sci. USA 78: 6840–6844.PubMedCrossRefGoogle Scholar
  55. Guidi-Rontani, C., and Gicquel-Sanzey, B., 1981, Expression of the maltose regulon in strain lacking the cyclic AMP receptor protein, FEMS Microbiol. Lett. 10: 383–387.CrossRefGoogle Scholar
  56. Guidi-Rontani, C., Danchin, A., and Ullmann, A., 1980, Catabolite repression in Escherichia coli mutants lacking cyclic AMP receptor protein, Proc. Natl. Acad. Sci. USA 77: 5799–5801.PubMedCrossRefGoogle Scholar
  57. Guiso, N., and Blazy, B., 1980, Regulatory aspects of the cyclic AMP receptor protein in Escherichia coli K-12, Biochem. Biophys. Res. Commun. 94: 278–283.PubMedCrossRefGoogle Scholar
  58. Hagihara, H., Wilson, T. H., and Lin, E. C. C., 1963, Studies on the glucose-transport system in Escherichia coli with a-methylglucoside as substrate, Biochim. Biophys. Acta 78: 505–515.CrossRefGoogle Scholar
  59. Haguenauer, R., and Kepes, A., 1971, The cycle of renewal of intracellular a-methyl glucoside accumulation by the glucose permease of E. coli, Biochimie 53: 99–107.CrossRefGoogle Scholar
  60. Harman, J. G., and Botsford, J. L., 1979, Synthesis of 3’:5’-cyclic monophosphate in Salmonella typhimurium growing in continuous culture, J. Gen. Microbiol. 110: 243–246.PubMedGoogle Scholar
  61. Harte, M. J., and Webb, F. C., 1967, Utilization of mixed sugars in continuous fermentation. II, Biotechnol. Bioeng. 9: 205–221.CrossRefGoogle Scholar
  62. Harwood, J. P., and Peterkofsky, A., 1975, Glucose-sensitive adenylate cyclase in toluene-treated cells of Escherichia coil B, J. Biol. Chem. 250: 4656–4662.PubMedGoogle Scholar
  63. Harwood, J. P., Gazdar, C., Prasad, C., Peterkofsky, A., Curtis, S. J., and Epstein, W., 1976, Involvement of the glucose enzymes II of the sugar phosphotransferase system in the regulation of adenylate cyclase by glucose in Escherichia coil, J. Biol. Chem. 251: 2462–2468.PubMedGoogle Scholar
  64. Heller, K. B., Lin, E. C. C., and Wilson, T. H., 1980, Substrate specificity and transport properties of the glycerol facilitator of Escherichia coli, J. Bacteriol. 144, 274–278.PubMedGoogle Scholar
  65. Hoffee, P., Englesberg, E., and Lamy, F., 1964, The glucose permease system in bacteria, Biochim. Biophys. Acta 79: 337–350.PubMedCrossRefGoogle Scholar
  66. Hommes, R. W. J., Postma, P. W., Neijssel, O. M., Tempest, D. W., Dokter, P., and Duine, J. A., 1984, Evidence of a quinoprotein glucose dehydrogenase apoenzyme in several strains of Escherichia coli, FEMS Microbiol. Lett. 24: 329–333.CrossRefGoogle Scholar
  67. Huber, R. E., Pisko-Dubienski, R., and Hurlburt, K. L., 1980, Immediate stoichiometric appearance of ß-galactosidase products in the medium of Escherichia coli incubated with lactose, Biochem. Biophys. Res. Commun. 96: 656–661.PubMedCrossRefGoogle Scholar
  68. Hudig, H., and Hengstenberg, W., 1980, The bacterial phosphoenolpyruvate dependent phosphotransferase system (PTS). Solubilisation and kinetic parameters of the glucose-specific membrane-bound enzyme II component of Streptococcus faecalis, FEBS Lett. 114: 103–106.PubMedCrossRefGoogle Scholar
  69. Ingebritsen, T. S., and Cohen, P., 1983, Protein phosphatases: Properties and role in cellular regulation, Science 221: 331–338.PubMedCrossRefGoogle Scholar
  70. Jablonski, E. G., Brand, L., and Roseman, S., 1983, Sugar transport by the bacterial phosphotransferase system. Preparation of a fluorescein derivative of the glucose-specific phosphocarrier protein IIIGIC and its binding to the phosphocarrier protein HPr, J. Biol. Chem. 258: 9690–9699.PubMedGoogle Scholar
  71. Jacobson, G. R., Lee, C. A., and Saier, M. H., Jr., 1979, Purification of the mannitol-specific enzyme II of the Escherichia coli phosphoenolpyruvate: sugar phosphotransferase system, J. Biol. Chem. 254: 249–252.PubMedGoogle Scholar
  72. Jacobson, G. R., Lee, C. A., Leonard, J. E., and Saier, M. H., Jr., 1983a, Mannitol-specific enzyme II of the bacterial phosphotransferase system. I. Properties of the purified permease, J. Biol. Chem. 258: 10748–10756.PubMedGoogle Scholar
  73. Jacobson, G. R., Kelly, D. M., and Finlay, D. R., 1983b, The intramembrane topography of the mannitol-specific enzyme II of the Escherichia coli phosphotransferase system, J. Biol. Chem. 258: 2955–2959.PubMedGoogle Scholar
  74. Jin, R. Z., and Lin, E. C. C., 1984, An inducible phosphoenolpyruvate: dihydroxyacetone phosphotransferase system in Escherichia coil, J. Gen. Microbiol. 130: 83–88.PubMedGoogle Scholar
  75. Jones-Mortimer, M. C., and Kornberg, H. L., 1974, Genetical analysis of fructose utilization by Escherichia coli, Proc. R. Soc. London Ser. B 187: 121–131.CrossRefGoogle Scholar
  76. Jones-Mortimer, M. C., and Kornberg, H. L., 1980, Amino-sugar transport systems of Escherichia coli K12, J. Gen. Microbiol. 117: 369–376.PubMedGoogle Scholar
  77. Joseph, E., Bernsley, C., Guiso, N., and Ullmann, A., 1982, Multiple regulation of the activity of adenylate cyclase in Escherichia coli, Mol. Gen. Genet. 185: 262–268.PubMedCrossRefGoogle Scholar
  78. Kaback, H. R., 1968, The role of the phosphoenolpyruvate-phosphotransferase system in the transport of sugars by isolated membrane preparations of Escherichia coli, J. Biol. Chem. 243: 3711–3724.PubMedGoogle Scholar
  79. Kalachev, I. Y., Gershanovitch, V. N., and Bourd, G. I., 1980, Transmembrane phosphorylation of a-methylglucoside and regulation of the activity of 3-galactoside permease in the bacterium E. coli K12, Biokhimiya 45: 873–882.Google Scholar
  80. Kalachev, I. Y., Umyaroz, A. M., and Bourd, G. I., 1981, Interaction of membrane transport proteins in E. coil K12, Biokhimiya 46: 732–743.Google Scholar
  81. Kalbitzer, H. R., Hengstenberg, W., Rösch, P., Muss, P., Bernsmann, P., Engelmann, R., Dörschug, M., and Deutscher, J., 1982, HPr proteins of different microorganisms studied by hydrogen-1 high-resolution nuclear resonance: Similarities of structures and mechanism, Biochemistry 21: 2879–2885.PubMedCrossRefGoogle Scholar
  82. Kepes, A., 1960, Etudes cinétiques sur la galactoside-permease d’Escherichia coli, Biochim. Biophys. Acta 40: 70–84.PubMedCrossRefGoogle Scholar
  83. Koch, A. L., 1964, The role of permease in transport, Biochim. Biophys. Acta 79: 177–200.PubMedGoogle Scholar
  84. Kolb, A., Spassky, A., Chapon, C., Blazy, B., and Buc, H., 1983, On the different binding affinities of CRP at the lac, gal and malT promoter regions, Nucleic Acids Res. 11: 7833–7852.PubMedCrossRefGoogle Scholar
  85. Konings, W. N., and Robillard, G. T., 1982, Physical mechanism for regulation of proton solute transport in Escherichia coli, Proc. Natl. Acad. Sci. USA 79: 5480–5484.PubMedCrossRefGoogle Scholar
  86. Koop, A. H., Hartley, M., and Bourgeois, S., 1984, Analysis of the cya locus of Escherichia coli, Gene 28: 133–146.PubMedCrossRefGoogle Scholar
  87. Komberg, H. L., and Reeves, R. E., 1972. Inducible phosphoenolpyruvate-dependent hexose phosphotransferase activities in Escherichia coli, Biochem. J. 128: 1339–1344.Google Scholar
  88. Komberg, H. L., and Riordan, C., 1976, Uptake of galactose into Escherichia coli by facilitated diffusion, J. Gen. Microbiol. 94: 75–89.Google Scholar
  89. Kornberg, H. L., and Watts, P. D., 1978, Roles of crr-gene products in regulating carbohydrate uptake by Escherichia coli, FEBS Lett. 89: 329–332.CrossRefGoogle Scholar
  90. Kornberg, H. L., and Watts, P. D., 1979, tgs and crr: Genes involved in catabolite inhibition and inducer exclusion in Escherichia coli, FEBS Lett. 104: 313–316.Google Scholar
  91. Komberg, H. L., Watts, P. D., and Brown, K., 1980, Mechanisms of “inducer exclusion” by glucose, FEBS Lett. 117 (Suppl.): K28 - K36.CrossRefGoogle Scholar
  92. Koshland, D. E., Jr., Goldbeter, A., and Stock, J. B., 1982, Amplification and adaptation in regulatory and sensory systems, Science 217: 220–225.PubMedCrossRefGoogle Scholar
  93. Kubota, Y., Iuchi, S., Fujisawa, A., and Tanaka, S., 1979, Separation of four components of the phosphoenolpyruvate: glucose phosphotransferase system in Vibrio parahaemolyticus, Microbiol. Immunol. 23: 131–146.PubMedGoogle Scholar
  94. Kukuruzinska, M. A., Harrington, W. F., and Roseman, S., 1982, Sugar transport by the bacterial phosphotransferase system. Studies on the molecular weight and association of enzyme I, J. Biol. Chem. 257: 14470–14476.PubMedGoogle Scholar
  95. Kundig, W., and Roseman, S., 1971, Sugar transport. II. Characterization of constitutive membrane-bound enzymes II of the Escherichia coli phosphotransferase system, J. Biol. Chem. 246: 1407–1418.PubMedGoogle Scholar
  96. Kundig, W., Ghosh, S., and Roseman, S., 1964, Phosphate bound to histidine in a protein as an intermediate in a novel phosphotransferase system, Proc. Natl. Acad. Sci. USA 52: 1067–1074.PubMedCrossRefGoogle Scholar
  97. Lee, C. A., and Saier, M. H., Jr., 1983, Mannitol-specific enzyme II of the bacterial phosphotransferase system. III. The nucleotide sequence of the permease gene, J. Biol. Chem. 258: 10761–10767.PubMedGoogle Scholar
  98. Lee, C. A., Jacobson, G. R., and Saier, M. H., Jr., 1981, Plasmid-directed synthesis of enzymes required for D-mannitol transport and utilization in Escherichia coli, Proc. Natl. Acad. Sci. USA 78: 7336–7340.PubMedCrossRefGoogle Scholar
  99. Lee, L. G., Britton, P., Pana, F., Boronat, A., and Kornberg, H. L., 1982, Expression of the ptsH+ gene of Escherichia coli cloned on plasmid pBR322: A convenient means for obtaining the histidine-containing carrier protein HPr, FEBS Lett. 149: 288–292.PubMedCrossRefGoogle Scholar
  100. Lengeler, J., 1975a, Mutations affecting transport of the hexitols D-mannitol, o-glucitol, and galactitol in Escherichia coli K-12: Isolation and mapping, J. Bacteriol. 124: 26–38.PubMedGoogle Scholar
  101. Lengeler, J., 1975b, Nature and properties of hexitol transport systems in Escherichia coli, J. Bacteriol. 124: 39–47.PubMedGoogle Scholar
  102. Lengeler, J., and Steinberger, H., 1978a, Analysis of the regulatory mechanisms controlling the activity of the hexitol transport systems in Escherichia coli K12, Mol. Gen. Genet. 167: 75–82.PubMedGoogle Scholar
  103. Lengeler, J., and Steinberger, H., 1978b, Analysis of the regulatory mechanisms controlling the synthesis of the hexitol transport systems in Escherichia coli K12, Mol. Gen. Genet. 164: 163–169.PubMedCrossRefGoogle Scholar
  104. Lengeler, J., Auburger, A.-M., Mayer, R., and Pecher, A., 1981, The phosphoenolpyruvatedependent carbohydrate: phosphotransferase system enzymes II as chemoreceptors in chemotaxis of Escherichia coli K12, Mol. Gen. Genet. 183: 163–170.PubMedCrossRefGoogle Scholar
  105. Lengeler, J., Mayer, R. J., and Schmid, K., 1982, The phosphoenolpyruvate-dependent phosphotransferase system enzyme III and plasmid-encoded sucrose transport in Escherichia coli, J. Bacteriol. 151: 468–471.PubMedGoogle Scholar
  106. Leonard, J. E., and Saier, M. H., Jr., 1983, Mannitol-specific enzyme II of the bacterial phosphotransferase system. II. Reconstitution of vectorial transphosphorylation in phospholipid vesicles. J. Biol. Chem. 258: 10757–10760.PubMedGoogle Scholar
  107. Lin, E. C. C., 1970, The genetics of bacterial transport systems, Annu. Rev. Genet. 4: 225–262.PubMedCrossRefGoogle Scholar
  108. Link, C. D., and Reiner, A., 1982, Inverted repeats surround the ribitol—arabitol genes of E. coli C, Nature 298: 94–96.PubMedCrossRefGoogle Scholar
  109. Link, C. D., and Reiner, A. M., 1983, Genotypic exclusion: A novel relationship between the ribitol—arabitol and galactitol genes of E. coli, Mol. Gen. Genet. 189: 337–339.PubMedCrossRefGoogle Scholar
  110. Magasanik, B., 1970, Glucose effects: Inducer exclusion and repression, in: The Lactose Operon ( J. R. Beckwith and D. Zipser, eds.), pp. 189–219, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  111. Mattoo, R. L., and Waygood, E. B., 1983, Determination of the levels of HPr and enzyme I of the phosphoenolpyruvate—sugar phosphotransferase system in Escherichia coli and Salmonella typhimurium, Can. J. Biochem. Cell. Biol. 61: 29–37.PubMedCrossRefGoogle Scholar
  112. Mattoo, R. L., Khandelval, R. L., and Waygood, E. B., 1984, Isoelectrophoretic separation and the detection of soluble proteins containing acid-labile phosphate: Use of the phosphoenolpyruvate: sugar phosphotransferase system as a model system for N’-P-histidine-and N3-P-histidinecontaining proteins, Anal. Biochem. 139: 1–16.PubMedCrossRefGoogle Scholar
  113. Meadow, N. D., and Roseman, S., 1982, Sugar transport by the bacterial phosphotransferase system. Isolation and characterization of a glucose-specific protein (IIIGIc) from Salmonella typhimurium, J. Biol. Chem. 257: 14526–14537.PubMedGoogle Scholar
  114. Meadow, N. D., Saffen, D. W., Dottin, R. P., and Roseman, S., 1982a, Molecular cloning of the crr gene and evidence that it is the structural gene for IIIGac, a phosphocarrier protein of the bacterial phosphotransferase system, Proc. Natl. Acad. Sci. USA 79: 2528–2532.PubMedCrossRefGoogle Scholar
  115. Meadow, N. D., Rosenberg, J. M., Pinkert, H. M., and Roseman, S., 1982b, Sugar transport by the bacterial phosphotransferase system. Evidence that crr is the structural gene for the Salmonella typhimurium glucose-specific phosphocarrier protein IIIG1c, J. Biol. Chem. 257: 14538–14542.PubMedGoogle Scholar
  116. Misset, O., and Robillard, G. T., 1982, Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system: Mechanism of phosphoryl-group transfer from phosphoenolpyruvate to HPr, Biochemistry 21: 3136–3142.Google Scholar
  117. Misset, O., Brouwer, M., and Robillard, G. T., 1980, Escherichia coli phosphoenolpyruvatedependent phosphotransferase system. Evidence that the dimer is the active form of enzyme I, Biochemistry 19: 883–890.PubMedCrossRefGoogle Scholar
  118. Misset, O., Blaauw, M., Postma, P. W., and Robillard, G. T., 1983, Bacterial phosphoenolpyruvate-dependent phosphotransferase system. Mechanisms of the transmembrane sugar translocation and phosphorylation, Biochemistry 22: 6163–6170.PubMedCrossRefGoogle Scholar
  119. Mitchell, W. J., Misko, T. P., and Roseman, S., 1982, Sugar transport by the bacterial phosphotransferase system. Regulation of other transport systems (lactose and melibiose), J. Biol. Chem. 257: 14553–14564.PubMedGoogle Scholar
  120. Nelson, S. O., and Postma, P. W., 1984, Interactions in vivo between of the phosphoenolpyru-vate: sugar phosphotransferase system and the glycerol and maltose uptake systems of Salmonella typhimurium, Eur. J. Biochem. 139: 29–34.PubMedCrossRefGoogle Scholar
  121. Nelson, S. O., Scholte, B. J., and Postma, P. W., 1982, Phosphoenolpyruvate: sugar phosphotransferase system-mediated regulation of carbohydrate metabolism in Salmonella typhimurium, J. Bacteriol. 150: 604–615.PubMedGoogle Scholar
  122. Nelson, S. O., Wright, J. K., and Postma, P. W., 1983, The mechanism of inducer exclusion: Direct interaction between purified IIIGIc of the phosphoenolpyruvate: sugar phosphotransferase system and the lactose carrier of Escherichia coli, EMBO J. 2: 715–720.Google Scholar
  123. Nelson, S. O., Schuitema, A. R. J., Benne, R., van der Ploeg, L. H. T., Plijter, J. J., Aan, F., and Postma, P. W., 1984a, Molecular cloning, sequencing and expression of the crr gene: The structural gene for IIIGIc of the bacterial PEP: glucose phosphotransferase system, EMBO J. 3: 1587–1593.Google Scholar
  124. Nelson, S. O., Lengeler, J., and Postma, P. W., 1984b, The role of of the PEP: glucose phosphotransferase system in inducer exclusion in Escherichia coli, J. Bacteriol. 160: 360–364.Google Scholar
  125. Nestler, E. J., and Greengard, P., 1983, Protein phosphorylation in the brain, Nature 305: 583–588.PubMedCrossRefGoogle Scholar
  126. Neuhaus, J. M., and Wright, J. K., 1983, Chemical modification of the lactose carrier of Escherichia coli by plumbagin, phenyl arsinoxide or diethylpyrocarbonate affects the binding of galactoside, Eur. J. Biochem. 137: 615–621.PubMedCrossRefGoogle Scholar
  127. Newman, M. J., Foster, D. L., Wilson, T. H., and Kaback, H. R., 1981, Purification and reconstitution of functional lactose carrier from Escherichia coli, J. Biol. Chem. 256: 11804–11808.Google Scholar
  128. Neyssel, O. M., Tempest, D. W., Postma, P. W., Duine, J. A., and Frank Jzn, J., 1983, Glucose metabolism by K ± -limited Klebsiella aerogenes: Evidence for the involvement of a quinoprotein glucose dehydrogenase, FEMS Microbiol. Lett. 20: 35–39.CrossRefGoogle Scholar
  129. Niaudet, B., Gay, P., and Dedonder, R., 1975, Identification of the structural gene of the PEPphosphotransferase enzyme I in Bacillus subtilis Marburg, Mol. Gen. Genet. 136: 337–349.PubMedCrossRefGoogle Scholar
  130. Niwano, M., and Taylor, B. L., 1982, Novel sensory adaptation mechanism in bacterial chemotaxis to oxygen and phosphotransferase substrates, Proc. Natl. Acad. Sci. USA 79: 11–15.PubMedCrossRefGoogle Scholar
  131. O’Brien, R. W., Neyssel, O. M., and Tempest, D. W., 1980, Glucose phosphoenolpyruvate phosphotransferase activity and glucose uptake rate of Klebsiella aerogenes growing in chemostat cultures, J. Gen. Microbiol. 116: 305–314.PubMedGoogle Scholar
  132. Okada, T., Ueyama, K., Niiya, S., Kanazawa, H., Futai, M., and Tsuchiya, T., 1981, Role of inducer exclusion in preferential utilization of glucose over melibiose in diauxic growth of Escherichia coli, J. Bacteriol. 146: 1030–1037.Google Scholar
  133. Osumi, T., and Saier, M. H., Jr., 1982, Regulation of lactose permease activity by the phosphoenolpyruvate: sugar phosphotransferase system: Evidence for direct binding of the glucose-specific enzyme III to the lactose permease, Proc. Natl. Acad. Sci. USA 79: 1457–1461.PubMedCrossRefGoogle Scholar
  134. Paigen, K., and Williams, B., 1970, Catabolite repression and other control mechanisms in carbohydrate utilization, Adv. Microbiol. Physiol. 4: 251–324.CrossRefGoogle Scholar
  135. Pana, F., Jones-Mortimer, M. C., and Kornberg, H. L., 1983, Phosphotransferase-mediated regulation of carbohydrate utilization in Escherichia coli K12: The nature of the iex (crr) and gsr (tgs) mutations, J. Gen. Microbiol. 129: 337–348.Google Scholar
  136. Pastan, I., and Perlman, R. L., 1969, Repression of {3-galactosidase synthesis by glucose in phosphotransferase mutants of Escherichia coli: Repression in the absence of glucose phosphorylation, J. Biol. Chem. 244: 5836–5842.PubMedGoogle Scholar
  137. Peri, K. G., Kornberg, H. L., and Waygood, E. B., 1984, Evidence for the phosphorylation of enzyme IlGucose of the phosphoenolpyruvate sugar phosphotransferase system of Escherichia coli and Salmonella typhimurium, FEBS Leu. 178: 55–58.CrossRefGoogle Scholar
  138. Perret, J., and Gay, P., 1979, Kinetic study of a phosphoryl exchange reaction between fructose and fructose 1-phosphate catalyzed by the membrane-bound enzyme II of the phosphoenolpyruvatefructose 1-phosphotransferase system of Bacillus subtilis, Eur. J. Biochem. 102: 237–246.CrossRefGoogle Scholar
  139. Peterkofsky, A., and Gazdar, C., 1973, Measurements of rates of adenosine 3’:5’-cyclic monophosphate synthesis in intact Escherichia coli B, Proc. Natl. Acad. Sci. USA 70: 2149–2152.PubMedCrossRefGoogle Scholar
  140. Peterkofsky, A., and Gazdar, C., 1975, Interaction of enzyme I of the phosphoenolpyruvate: sugar phosphotransferase system with adenylate cyclase of Escherichia coli, Proc. Natl. Acad. Sci. USA 72: 2920–2924.CrossRefGoogle Scholar
  141. Postma, P. W., 1976, Involvement of the phosphotransferase system in galactose transport in Salmonella typhimurium, FEBS Leu. 61: 49–53.CrossRefGoogle Scholar
  142. Postma, P. W., 1977, Galactose transport in Salmonella typhimurium, J. Bacteriol. 129: 630–639.Google Scholar
  143. Postma, P. W., 1981, Defective enzyme II-BGlue°se of the phosphoenolpyruvate: sugar phosphotransferase system leading to uncoupling of transport and phosphorylation in Salmonella typhimurium, J. Bacteriol. 147: 382–389.Google Scholar
  144. Postma, P. W., 1982, Regulation of sugar transport in Salmonella ryphimurium, Ann. Microbiol. 133A: 261–267.Google Scholar
  145. Postma, P. W., and Lengeler, J. W., 1985, Phosphoenolpyruvate: carbohydrate phosphotransferase system of bacteria, Microbiol Rev. 49: 232–269.PubMedGoogle Scholar
  146. Postma, P. W., and Roseman, S., 1976, The bacterial phosphoenolpyruvate:sugar phosphotransferase system, Biochim. Biophys. Acta 457: 213–257.Google Scholar
  147. Postma, P. W., and Scholte, B. J., 1979, Regulation of sugar transport in Salmonella typhimurium, in: Function and Molecular Aspects of Biomembrane Transport ( E. Quagliariello, F. Palmieri, S. Papa, and M. Klingenberg, eds.), pp. 249–257, Elsevier, Amsterdam.Google Scholar
  148. Postma, P. W., and Stock, J. B., 1980, Enzymes II of the phosphotransferase system do not catalyze sugar transport in the absence of phosphorylation, J. Bacteriol. 141: 476–484.PubMedGoogle Scholar
  149. Postma, P. W., and van Thienen, G. M., 1978, Energization of sugar transport in Salmonella typhimurium, in: The Proton and Calcium Pumps ( M. Avron, G. F. Azzone, J. C. Metcalfe, E. Quagliariello, and N. Siliprandi, eds.), pp. 149–159, Elsevier, Amsterdam.Google Scholar
  150. Postma, P. W., Schuitema, A., and Kwa, C., 1981, Regulation of methyl ß-galactoside permease activity in pts and crr mutants of Salmonella typhimurium, Mol. Gen. Genet. 181: 448–453.CrossRefGoogle Scholar
  151. Postma, P. W., Neyssel, O. M., and van Ree, R., 1982, Glucose transport in Salmonella typhimurium and Escherichia coli, Eur. J. Biochem. 123: 113–119.Google Scholar
  152. Postma, P. W., Epstein, W., Schuitema, A. R. J., and Nelson, S. O., 1984, Interaction between IIIG’. of the PEP: sugar phosphotransferase system and glycerol kinase of Salmonella typhimurium, J. Bacteriol. 158: 351–353.Google Scholar
  153. Reizer, J., and Saier, M. H., Jr., 1983, Involvement of lactose enzyme II of the phosphotransferase system in rapid expulsion of free galactosides from Streptococcus pyogenes, J. Bacteriol. 156: 236–242.Google Scholar
  154. Reizer, J., Novotny, M. J., Panos, C., and Saier, M. H., Jr., 1983, Mechanism of inducer expulsion in Streptococcus pyogenes: A two-step process activated by ATP, J. Bacteriol. 156: 354–361.PubMedGoogle Scholar
  155. Reizer, J., Novotny, M. J., Stuiver, I., and Saier, M. H., Jr., 1984, Regulation of glycerol uptake by the phosphoenolpyruvate: sugar phosphotransferase system in Bacillus subtilis, J. Bacteriol. 159: 243–250.Google Scholar
  156. Rephaeli, A. W., and Saier, M. H., Jr., 1978, Kinetic analyses of the sugar phosphate: sugar transphosphorylation reaction catalyzed by the glucose enzyme II complex of the bacterial phosphotransferase system, J. Biol. Chem. 253: 7595–7597.PubMedGoogle Scholar
  157. Rephaeli, A. W., and Saier, M. H., Jr., 1980a, Substrate specificity and kinetic characterization of sugar uptake and phosphorylation, catalyzed by the phosphotransferase system in Salmonella typhimurium, J. Biol. Chem. 255: 8585–8591.Google Scholar
  158. Rephaeli, A. W., and Saier, M. H., Jr., 1980b, Regulation of genes coding for enzyme constituents of the bacterial phosphotransferase system, J. Bacteriol. 141: 658–663.PubMedGoogle Scholar
  159. Reynolds, A. E., Felton, J., and Wright, A., 1981, Insertion of DNA activates the cryptic bgl operon in E. coli K12, Nature 293: 625–629.PubMedCrossRefGoogle Scholar
  160. Robillard, G. T., 1982, The enzymology of the bacterial phosphoenolpyruvate-dependent sugar transport system, Mol. Cell. Biochem. 46: 3–24.PubMedCrossRefGoogle Scholar
  161. Robillard, G. T., and Konings, W. N., 1981, Physical mechanism for regulation of phosphoenolpyruvate-dependent glucose transport activity in Escherichia coli, Biochemistry, 20: 5025–5032.Google Scholar
  162. Robillard, G. T., and Konings, W. N., 1982, A hypothesis for the role of dithiol—disulfide interchange in solute transport and energy-transducing processes, Eur. J. Biochem. 127: 597–604.PubMedCrossRefGoogle Scholar
  163. Robillard, G. T., Dooyewaard, G., and Lolkema, J., 1979, Escherichia coli phosphoenolpyruvate dependent phosphotransferase system. Complete purification of enzyme I by hydrophobic interaction chromatography, Biochemistry 18: 2984–2989.Google Scholar
  164. Roehl, R. A., and Vinopal, T., 1980, Genetic locus, distant from ptsM, affecting enzyme IIA/IIB function in Escherichia coli K-12, J. Bacteriol. 142: 120–130.PubMedGoogle Scholar
  165. Rose, S. P., and Fox, C. F., 1971, The 3-glucoside system of Escherichia coli. II. Kinetic evidence for a phosphoryl-enzyme II intermediate. Biochem. Biophys. Res. Commun. 45: 376–380.PubMedCrossRefGoogle Scholar
  166. Rotman, B., Ganesan, A. K., and Guzman, R., 1968, Transport systems for galactose and galactosides in Escherichia coli. II. Substrate and inducer specificities, J. Mol. Biol. 36: 247–260.PubMedCrossRefGoogle Scholar
  167. Roy, A., Haziza, C., and Danchin, A., 1983a, Regulation of adenylate cyclase synthesis in Escherichia coli: Nucleotide sequence of the control region, EMBO J. 2: 791–797.Google Scholar
  168. Roy, A., Danchin, A., Joseph, E., and Ullmann, A., 1983b, Two functional domains in adenylate cyclase of Escherichia coli, J. Mol. Biol. 165: 197–202.Google Scholar
  169. Rusina, O. Y., and Gershanovitch, V. N., 1983, Mapping of mutations within genes coding for enzyme I and HPr protein of the phosphoenolpyruvate-dependent phosphotransferase system of Escherichia coli K-12. II. Mapping of ptsH mutations within the gene, Genetika 19: 397–405.PubMedGoogle Scholar
  170. Rusina, O. Y., and Gershanovitch, V. N., 1983, Mapping of mutations within genes coding for enzyme I and HPr protein of the phosphoenolpyruvate-dependent phosphotransferase system of Escherichia coli K-12. II. Mapping of ptsH mutations within the gene, Genetika 19: 397405.Google Scholar
  171. Saier, M. H., Jr., 1977, Bacterial phosphoenolpyruvate: sugar phosphotransferase systems: Structural, functional and evolutionary interrelationships, Bacteriol. Rev. 41: 856–871.PubMedGoogle Scholar
  172. Saier, M. H., Jr., and Feucht, B. U., 1975, Coordinate regulation of adenylate cyclase and carbohydrate permeases by the phosphoenolpyruvate: sugar phosphotransferase system in Salmonella typhimurium, J. Biol. Chem. 250: 7078–7080.Google Scholar
  173. Saier, M. H., Jr., and Roseman, S., 1972, Inducer exclusion and repression of enzyme synthesis in mutants of Salmonella typhimurium defective in enzyme I of the phosphoenolpyruvate: sugar phosphotransferase system, J. Biol. Chem. 247: 972–975.PubMedGoogle Scholar
  174. Saier, M. H., Jr., and Roseman, S., 1976a, Sugar transport. The crr mutation: Its effect on repression of enzyme synthesis, J. Biol. Chem. 251: 6598–6605.PubMedGoogle Scholar
  175. Saier, M. H., Jr., and Roseman, S., 1976b, Sugar transport. Inducer exclusion and regulation of the melibiose, maltose, glycerol, and lactose transport systems by the phosphoenolpyruvate: sugar phosphotransferase system, J. Biol. Chem. 251: 6606–6615.PubMedGoogle Scholar
  176. Saier, M. H., Jr., and Stiles, C. D., 1975, Molecular Dynamics in Biological Membranes, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  177. Saier, M. H., Jr., Simoni, R. D., and Roseman, S., 1970, The physiological behaviour of enzyme I and heat-stable protein mutants of a bacterial phosphotransferase system, J. Biol. Chem. 245: 5870–5873.PubMedGoogle Scholar
  178. Saier, M. H., Jr., Young, W. S., and Roseman, S., 1971a, Utilization and transport of hexoses by mutant strains of Salmonella typhimurium lacking enzyme I of the phosphoenolpyruvate-dependent phosphotransferase system, J. Biol. Chem. 246: 5838–5840.PubMedGoogle Scholar
  179. Saier, M. H., Jr., Feucht, B. U., and Roseman, S., 1971b, Phosphoenolpyruvate-dependent fructose phosphorylation in photosynthetic bacteria, J. Biol. Chem. 246: 7819–7821.PubMedGoogle Scholar
  180. Saier, M. H., Jr., Bromberg, F. G., and Roseman, S., 1973, Characterization of constitutive galactose permease mutants in Salmonella typhimurium, J. Bacteriol, 113: 512–514.Google Scholar
  181. Saier, M. H., Jr., Feucht, B. U., and McCaman, M. T., 1975, Regulation of intracellular adenosine cyclic 3’:5’-monophosphate levels in Escherichia coli and Salmonella typhimurium: Evidence for energy-dependent excretion of the cyclic nucleotide, J. Biol. Chem. 250: 7593–7601.PubMedGoogle Scholar
  182. Saier, M. H., Jr., Simoni, R. D., and Roseman, S., 1976, Sugar transport. Properties of mutant bacteria defective in proteins of the phosphoenolpyruvate: sugar phosphotransferase system, J. Biol. Chem. 251: 6584–6597.PubMedGoogle Scholar
  183. Saier, M. H., Jr., Feucht, B. U., and Mora, W. K., 1977a, Sugar phosphate: sugar transphosphorylation and exchange group translocation catalyzed by the enzyme II complexes of the bacterial phosphoenolpyruvate: sugar phosphotransferase system, J. Biol. Chem. 252: 8899–8907.PubMedGoogle Scholar
  184. Saier, M. H., Jr., Cox, D. F., and Moczydlowski, E. G., 1977b, Sugar phosphate: sugar transphosphorylation coupled to exchange group translocation catalyzed by the enzyme II complexes of the phosphoenolpyruvate: sugar phosphotransferase system in membrane vesicles of Escherichia coli, J. Biol. Chem. 252: 8908–8916.Google Scholar
  185. Saier, M. H., Jr., Straud, H., Massman, L. S., Judice, J. J., Newman, M. J., and Feucht, B. U., 1978, Permease-specific mutations in Salmonella typhimurium and Escherichia coli that release the glycerol, maltose, melibiose and lactose transport systems from regulation by the phosphoenolpyruvate: sugar phosphotransferase system, J. Bacteriol. 133: 1358–1367.PubMedGoogle Scholar
  186. Saier, M. H., Jr., Keeler, D. K., and Feucht, B. U., 1982, Physiological desensitization of carbohydrate permeases and adenylate cyclase to regulation by the phosphoenolpyruvate: sugar phosphotransferase system in Escherichia coli and Salmonella typhimurium, J. Biol. Chem. 257: 2509–2517.Google Scholar
  187. Saier, M. H., Jr., Novotny, M. J., Comeau-Fuhrman, D., Osumi, T., and Desai, J. D., 1983, Cooperative binding of the sugar substrates and allosteric regulatory protein (enzyme IIIoc of the phosphotransferase system) to the lactose and melibiose permeases in Escherichia coli and Salmonella typhimurium, J. Bacteriol. 155: 1351–1357.Google Scholar
  188. Sanderson, K. E., and Roth, J. R., 1983, Linkage map of Salmonella typhimurium: Edition VI, Microbiol. Rev. 47: 410–453.PubMedGoogle Scholar
  189. Sarno, N. V., Tenn, L. G., Desai, A., Chin, A. M., Grenier, F. C., and Saier, M. H., Jr., 1984, Genetic evidence for glucitol-specific enzyme III, an essential phosphocarrier protein of the Salmonella typhimurium glucitol phosphotransferase system, J. Bacteriol. 157: 953–955.PubMedGoogle Scholar
  190. Schaefler, S., 1967, Inducible system for the utilization of 0-glucoside in Escherichia coli, J. Bacteriol. 93: 254–263.Google Scholar
  191. Scholte, B. J., and Postma, P. W., 1980, Mutation in the crp gene of Salmonella typhimurium which interferes with inducer exclusion, J. Bacteriol. 141: 751–757.PubMedGoogle Scholar
  192. Scholte, B. J., and Postma, P. W., 1981, Competition between two pathways for sugar uptake by the phosphoenolpyruvate-dependent sugar phosphotransferase system in Salmonella typhimurium, Eur. J. Biochem. 114: 51–58.CrossRefGoogle Scholar
  193. Scholte, B. J., Schuitema, A. R., and Postma, P. W., 1981, Isolation of IIIGIC of the phosphoenolpyruvate-dependent glucose phosphotransferase system of Salmonella typhimurium, J. Bacteriol. 148: 257–264.Google Scholar
  194. Scholte, B. J., Schuitema, A. R., and Postma, P. W., 1982, Characterization of factor in catabolite repression resistant (crr) mutants of Salmonella typhimurium, J. Bacteriol. 149: 576–586.Google Scholar
  195. Simoni, R. D., Nakazawa, T., Hays, J. B., and Roseman, S., 1973, Sugar transport. IV. Isolation and characterization of the lactose phosphotransferase system in Staphylococcus aureus, J. Biol. Chem. 248: 932–940.Google Scholar
  196. Slater, A. C., Jones-Mortimer, M. C., and Kornberg, H. L., 1981, L-Sorbose phosphorylation in Escherichia coli K-12, Biochim. Biophys. Acta 646: 365–367.PubMedCrossRefGoogle Scholar
  197. Solomon, E., Miyai, K., and Lin, E. C. C., 1973, Membrane translocation of mannitol in Escherichia coli without phosphorylation, J. Bacteriol. 114: 723–728.PubMedGoogle Scholar
  198. Stock, J. B., Waygood, E. B., Meadow, N. D., Postma, P. W., and Roseman, S., 1982, Sugartransport by the bacterial phosphotransferase system. The glucose receptors of the Salmonella typhimurium phosphotransferase system, J. Biol. Chem. 257: 14543–14552.PubMedGoogle Scholar
  199. Tanaka, S., and Lin, E. C. C., 1967, Two classes of pleiotropic mutants of A. aerogenes lacking components of a PEP phosphotransferase system, Proc. Natl. Acad. Sci. USA 57: 913–919.PubMedCrossRefGoogle Scholar
  200. Tanaka, S., Lerner, S. A., and Lin, E. C. C., 1967, Replacement of a phosphoenolpyruvatedependent phosphotransferase by a nicotinamide adenine dinucleotide-linked dehydrogenase for the utilization of mannitol. J. Bacteriol. 93: 642–648.PubMedGoogle Scholar
  201. Tyler, B., and Magasanik, B., 1970, Physiological basis of transient repression of catabolic enzymes in Escherichia coli, J. Bacteriol. 102: 411–422.Google Scholar
  202. Ullmann, A., and Danchin, A., 1983, Role of cyclic AMP in bacteria, Adv. Cyclic Nucleotide Res. 15: 32–53.Google Scholar
  203. Umyarov, A. M., Voloshin, A. G., Bolshakova, T. N., and Gershanovitch, V. N., 1978, Effect of ptsl and ptsH gene dosages on manifestation of glucose catabolite repression of ß-galactosidase synthesis in Escherichia coli K12, FEBS Lett. 96: 31–33.PubMedCrossRefGoogle Scholar
  204. Voloshin, A. G., Shulgina, M. V., and Bourd, G. I., 1981, Insensitivity of the Escherichia coli K12 adenylate cyclase to mannose under the conditions of catabolite repression, FEMS Microbiol. Lett. 10: 291–293.CrossRefGoogle Scholar
  205. Wagner, E. F., Fabricant, J. D., and Schweiger, M., 1979, A novel ATP-driven glucose transport system in Escherichia coli, Eur. J. Biochem. 102: 231–236.Google Scholar
  206. Walter, R. W., Jr., and Anderson, R. L., 1973, Evidence that the inducible phosphoenolpyruvate: D-fructose 1-phosphate phosphotransferase system of Aerobacter aerogenes does not require “HPr, ” Biochem. Biophys. Res. Commun. 52: 93–97.PubMedCrossRefGoogle Scholar
  207. Wang, J. Y. J., and Koshland, D. E., Jr., 1978, Evidence for protein kinase activities in the prokaryote Salmonella typhimurium, J. Biol. Chem. 253: 7605–7608.Google Scholar
  208. Wang, J. Y. J., and Koshland, D. E., Jr., 1981, The identification of distinct protein kinases and phosphatases in the prokaryote Salmonella typhimurium, J. Biol. Chem. 256: 4640–4648.Google Scholar
  209. Wang, R. J., and Morse, M. L., 1968, Carbohydrate accumulation and metabolism in Escherichia coli. I. Description of pleiotropic mutants, J. Mol. Biol. 32: 59–66.PubMedCrossRefGoogle Scholar
  210. Wang, R. J., Morse, H. G., and Morse, M. L., 1970, Carbohydrate accumulation and metabolism in Escherichia coli: Characterization of the reversions of ctr mutations, J. Bacteriol. 104: 1318–1324.PubMedGoogle Scholar
  211. Waygood, E. B., 1980, Resolution of the phosphoenolpyruvate: fructose phosphotransferase system of Escherichia coli into two components; enzyme IIFn,ctose and fructose-induced HPr-like protein (FPr), Can. J. Biochem. 58: 1144–1146.PubMedGoogle Scholar
  212. Waygood, E. B., and Steeves, T., 1980, Enzyme I of the phosphoenolpyruvate: sugar phosphotransferase system (PTS) of Escherichia coli—Purification to homogeneity and some properties. Can. J. Biochem. 58: 40–48.PubMedCrossRefGoogle Scholar
  213. Waygood, E. B., Meadow, N.D., and Roseman, S., 1979, Modified assay procedures for the phosphotransferase system in enteric bacteria, Anal. Biochem. 95: 293–304.PubMedCrossRefGoogle Scholar
  214. Weigel, N., Waygood, E. B., Kukuruzinska, M. A., Nakazawa, A., and Roseman, S., 1982a, Sugar transport by the bacterial phosphotransferase system. Isolation and characterization of enzyme I from Salmonella typhimurium, J. Biol. Chem. 257: 14461–14469.Google Scholar
  215. Weigel, N., Kukuruzinska, M. A., Nakazawa, A., Waygood, E. B., and Roseman, S., 1982b, Sugar transport by the bacterial phosphotransferase system. Phosphoryl transfer reactions catalyzed by enzyme I of Salmonella typhimurium, J. Biol. Chem. 257: 14477–14491.Google Scholar
  216. Weigel, N., Powers, D. A., and Roseman, S., 1982c, Sugar transport by the bacterial phosphotransferase system. Primary structure and active site of a general phosphocarrier protein (HPr) from Salmonella typhimurium, J. Biol. Chem. 257: 14499–14509.Google Scholar
  217. White, R. J., 1970, The role of the phosphoenolpyruvate phosphotransferase system in the transport of N-acetyl-D-glucosamine by Escherichia coli, Biochem. J. 118: 89–92.Google Scholar
  218. Woodward, M. J., and Charles, H. P., 1983, Polymorphism in Escherichia coil: rtl, atl and gat regions behave as chromosomal alternatives, J. Gen. Microbiol. 129: 75–84.PubMedGoogle Scholar
  219. Wright, J. K., Teather, R. M., and Overath, P., 1983, Lactose permease of Escherichia coil, Methods Enzymol. 97: 158–175.Google Scholar
  220. Yang, J. K., and Epstein, W., 1983, Purification and characterization of adenylate cyclase from Escherichia coil K12, J. Biol. Chem. 258: 3750–3758.PubMedGoogle Scholar
  221. Yang, J. K., Bloom, R. W., and Epstein, W., 1979, Catabolite and transient repression in Escherichia coil do not require enzyme I of the phosphotransferase system, J. Bacteriol. 138: 275–279.PubMedGoogle Scholar
  222. Zimmerman, F. K., and Scheel, I., 1979, Mutants of Saccharomyces cerevisiae resistant to carbon catabolite repression, Mol. Gen. Genet. 154: 75–82.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Pieter W. Postma
    • 1
  1. 1.Laboratory of Biochemistry, B.C.P. Jansen InstituteUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations