Studies of Regulation of Hexose Transport into Cultured Fibroblasts

  • Herman M. Kalckar
  • Donna B. Ullrey


The intent of this review is to discuss some physiological features of cellular regulation of glucose transport into cultured fibroblasts. It will be confined in the following ways:
  1. 1.

    The animal cells under discussion are cultured avian and mammalian fibroblasts in the postlogarithmic growth phase (or in tumorigenic cultures, medium to high density). The cultures are monolayer cultures, not suspension cultures.

  2. 2.

    The main theme will be the effects of carbohydrates and their metabolism in relation to the regulation of uptake or transport of hexoses into cultured fibroblasts, including special metabolic mutants. The downregulation of the hexose transport of the cultures will be called “the glucose-mediated transport curb.”

  3. 3.

    The transport systems discussed are largely the facilitated diffusion of hexoses and its regulation by carbohydrate metabolism. Where amino acid transport systems (such as the A and L systems) are discussed, this is strictly related to carbohydrate transport and metabolism.

  4. 4.

    Since hexose transporters are membrane proteins, aspects of protein recycling will have to be considered, and hence also the effects of inhibitors of protein synthesis.

  5. 5.

    Some stress-related factors, such as glucose starvation, uncouplers of respiration, as well as oncological transformations and their effects on hexose transport regulation, will be discussed.



Chicken Embryo Fibroblast Rous Sarcoma Virus Hexose Transport Glucose Starvation Amino Acid Transport System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amos, H., Christopher, C. W., and Musliner, T. A., 1976, Regulation of glucose transport in chick fibroblasts: Bicarbonate, lactate and ascorbic acid, J. Cell. Physiol. 89: 662–676.CrossRefGoogle Scholar
  2. Amos, H., Mandel, K. G., and Gay, R. 1984, Deprival of nicotinamide leads to enhanced glucose transport in chick embryo fibroblasts, Fed. Proc. 43: 2265–2268.PubMedGoogle Scholar
  3. Bader, J. P., 1976, Sodium: A regulator of glucose uptake in virus-transformed and non-transformed cells, J. Cell. Physiol. 89: 677–682.PubMedCrossRefGoogle Scholar
  4. Banjo, B., and Perdue, J. F., 1976, Increased synthesis of selected membrane polypeptides correlated with increased sugar transport sites in glucose starved chick embryo fibroblasts, J. Cell Biol. 70: 270a.CrossRefGoogle Scholar
  5. Blume, K. G., and Beutler, E., 1975, Galactokinase in human erythrocytes, Methods Enzymol. 42: 47–53.PubMedCrossRefGoogle Scholar
  6. Boos, W., 1974, Bacterial transport, Annu. Rev. Biochem. 43: 123–146.PubMedCrossRefGoogle Scholar
  7. Christensen, H. N., 1975, Biological Transport, 2nd ed., Benjamin, New York.Google Scholar
  8. Christopher, C. W., 1977, Hexose transport regulation in cultured hamster cells, J. Supramol. Struct. 6: 485–494.PubMedCrossRefGoogle Scholar
  9. Christopher, C. W., Kohlbacher, M. S., and Amos, H., 1976a, Transport of sugars in chick-embryo fibroblasts: Evidence for a low affinity system and a high affinity system for glucose transport, Biochem. J. 158: 439–450.PubMedGoogle Scholar
  10. Christopher, C. W., Ullrey, D., Colby, W., and Kalckar, H. M., 1976b, Paradoxical effects of cycloheximide and cytochalasin B on hamster cell cultures, Proc. Natl. Acad. Sci. USA 73: 2429–2433.PubMedCrossRefGoogle Scholar
  11. Christopher, C. W., Colby, W., and Ullrey, D., 1976c, Depression and carrier turnover, evidence for two distinct mechanisms of hexose transport regulation in animal cells, J. Cell. Physiol. 89: 683–692.PubMedCrossRefGoogle Scholar
  12. Christopher, C. W., Colby, W., Ullrey, D., and Kalckar, H. M., 1977, Comparative studies of glucose-fed and glucose-starved hamster cell cultures: Responses in galactose metabolism, J. Cell. Physiol. 90: 387–406.PubMedCrossRefGoogle Scholar
  13. Christopher, C. W., Ullrey, D., and Kalckar, H. M., 1979, Regulation of amino acid and hexose transport in cultured animal cells, In: Structure and Function of Biomembranes ( K. Yagi, ed.), pp. 39–50, Japan Scientific Societies Press, Tokyo.Google Scholar
  14. Colby, C., and Romano, A. H., 1975, Phosphorylation but not transport of sugars is enhanced in virus transformed mouse 3T3 cells, J. Cell. Physiol. 85: 15–24.PubMedCrossRefGoogle Scholar
  15. Cushman, S. W., and Wardzala, L. J., 1980, Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell: Apparent translocation of intracellular transport systems to the plasma membrane, J. Biol. Chem. 255: 4758–4762.PubMedGoogle Scholar
  16. D’Amore, T., and Lo, T. C. Y., 1986, J. Cell. Physiol.,in press.Google Scholar
  17. D’Amore, T., Duronio, V., Cheung, M. O., and Lo, T. C. Y., 1986, Isolation and characterization of hexose transport mutants in L6 rat myoblasts, J. Cell. Physiol. 126: 29–36.PubMedCrossRefGoogle Scholar
  18. Decker, S., and Lipmann, F., 1981, Transport of D-glucose by membrane vesicles from normal and virus-transformed chicken embryo fibroblasts, Proc. Natl. Acad. Sci. USA 78: 5358–5361.PubMedCrossRefGoogle Scholar
  19. DeFrancesco, L., Scheffler, I. E., and Bissell, M. J., 1976, A respiration deficient Chinese hamster cell line with a defect in NADH-coenzyme Q reductase, J. Biol. Chem. 251: 4588–4595.PubMedGoogle Scholar
  20. Donnelly, M., and Scheffler, I. E., 1976, Energy metabolism in respiration-deficient and wild type Chinese hamster fibroblasts in culture, J. Cell. Physiol. 89: 39–51.PubMedCrossRefGoogle Scholar
  21. Foster, D. O., and Pardee, A. B., 1969, Transport of amino acids by confluent and non-confluent 3T3 and polyoma virus-transformed 3T3 cells growing on glass cover slips, J. Biol. Chem. 144: 2675–2681.Google Scholar
  22. Franchi, A., Silvestre, P., and Pouysségur, J., 1978, Camer activation and glucose transport in Chinese hamster fibroblasts, Biochem. Biophys. Res. Commun. 85: 1526–1534.PubMedCrossRefGoogle Scholar
  23. Gammon, M. T., and Isselbacher, K. J., 1976, Neoplastic potentials and regulation of uptake of nutrients. 1. A glutamine independent variant of polyoma BHK with a very high neoplastic potential, J. Cell. Physiol. 89: 759–764.PubMedCrossRefGoogle Scholar
  24. Gatley, S. J., Holden, J. E., Halama, J. R., DeGrado, T. R., Bernstein, D. R., and Ng, C. K., 1984, Phosphorylation of glucose analog 3-O-methyl-D-glucose by rat heart, Biochem. Biophys. Res. Commun. 119: 1008–1014.PubMedCrossRefGoogle Scholar
  25. Gay, R. J., and Amos, H., 1983, Purines as ‘hyperrepressors’ of glucose transport: A role for phosphoribosyl diphosphate, Biochem. J. 214: 133–144.PubMedGoogle Scholar
  26. Germinario, R. J., Ozaki, S., and Kalant, N., 1984, Regulation of insulin binding and stimulation of sugar transport in cultured human fibroblasts by sugar levels in the culture medium, Arch. Biochem. Biophys. 234: 559–566.PubMedCrossRefGoogle Scholar
  27. Germinario, R. J., Chang, Z., Manuel, S., and Oliveira, M., 1985, Control of sugar transport in human fibroblasts independent of glucose metabolism or carrier interaction, Biochem. Biophys. Res. Comm. 128: 1418–1424.PubMedCrossRefGoogle Scholar
  28. Hatanaka, M., 1976, Saturable and nonsaturable process of sugar uptake: Effect of oncogenic transformation in transport and uptake of nutrients, J. Cell. Physiol. 89: 745–749.PubMedCrossRefGoogle Scholar
  29. Howard, B. V., Mott, D. M., Fields, R. M., and Bennett, P. H., 1979, Insulin stimulation of glucose entry in cultured human fibroblasts, J. Cell. Physiol. 101: 129–138.PubMedCrossRefGoogle Scholar
  30. Inui, K.-I., Moller, D. E., Tillotson, L. G., and Isselbacher, K. J., 1979, Stereospecific hexose transport by membrane vesicles from mouse fibroblasts: Membrane vesicles retain increased hexose transport associated with viral transformation, Proc. Natl. Acad. Sci. USA 76: 39723976.Google Scholar
  31. Inui, K.-I., Tillotson, L. G., and Isselbacher, K. J., 1980, Hexose and amino acid transport by chicken embryo fibroblasts infected with temperature-sensitive mutant to Rous sarcoma virus, Biochim. Biophys. Acta 598: 616–627.PubMedCrossRefGoogle Scholar
  32. Isselbacher, K. J., 1972, Increased uptake of amino acids and 2-deoxy-D-glucose by virus-transformed cells in culture, Proc. Natl. Acad. Sci. USA 69: 585–589.PubMedCrossRefGoogle Scholar
  33. Kalckar, H. M., 1976, Cellular regulation of transport and uptake of nutrients: An overview, J. Cell. Physiol. 89: 503–516.PubMedCrossRefGoogle Scholar
  34. Kalckar, H. M., 1983, Regulation of hexose transport-carrier activity in cultured animal fibroblasts: Another confrontation with cellular recycling requiring oxidative energy generation?, Trans. N.Y. Acad. Sci. 41: 83–86.PubMedGoogle Scholar
  35. Kalckar, H. M., and Ullrey, D., 1973, Two distinct types of enhancement of galactose uptake into hamster cells: Tumour virus transformation and hexose starvation, Proc. Natl. Acad. Sci. USA 70: 2502–2504.PubMedCrossRefGoogle Scholar
  36. Kalckar, H. M., and Ullrey, D. B., 1984a, Further clues concerning the vectors essential to regulation of hexose transport as studied in fibroblast cultures from a metabolic mutant, Proc. Natl. Acad. Sci. USA 81: 1126–1129.PubMedCrossRefGoogle Scholar
  37. Kalckar, H. M., and Ullrey, D. B., 1984b, Energy-requiring regulation of hexose transport, as studied in fibroblast cultures of a metabolic mutant, in: Symposium The Cell Membrane, (E. Haber, ed.).Google Scholar
  38. Kalckar, H. M., Christopher, C. W., and Ullrey, D., 1976, Neoplastic potentials and regulation of uptake of nutrients. II. Inverse regulation of uptake of hexose and amino acid analogues in the neoplastic GIV line, J. Cell. Physiol. 89: 765–768.PubMedCrossRefGoogle Scholar
  39. Kalckar, H. M., Christopher, C. W., and Ullrey, D., 1979, Uncouplers of oxidative phosphorylation promote derepression of the hexose transport system in cultures of hamster cells, Proc. Natl. Acad. Sci. USA 76: 6453–6455.PubMedCrossRefGoogle Scholar
  40. Kalckar, H. M., Ullrey, D. B., and Laursen, R. A., 1980a, Effects of combined glutamine and serum deprivation on glucose control of hexose transport in mammalian fibroblast cultures, Proc. Natl. Acad. Sci. USA 77: 5958–5961.PubMedCrossRefGoogle Scholar
  41. Kalckar, H. M., Christopher, C. W., and Ullrey, D. B., 1980, Long-term regulation of amino acid and hexose transport in cultured animal cells, in: Advances in Pathobiology (C. M. Fenoglio and D. W. King, eds.), pp. 350–364, Thieme, Stuttgart.Google Scholar
  42. Kletzien, R. F., and Perdue, J. F., 1975, Induction of sugar transport in chick embryo fibroblasts by hexose starvation, J. Biol. Chem. 250: 593–600.PubMedGoogle Scholar
  43. Kletzien, R. F., and Perdue, J. F., 1976, Regulation of sugar transport in chick embryo fibroblasts and in fibroblasts transformed by a temperature sensitive mutant of the Rous sarcoma virus, J. Cell. Physiol. 89: 723–728.PubMedCrossRefGoogle Scholar
  44. Lee, S. G., and Lipmann, F., 1977, Isolation from normal and Rous sarcoma virus transformed chicken fibroblasts of a factor that binds glucose and stimulates its transport, Proc. Natl. Acad. Sci. USA 74: 163–167.PubMedCrossRefGoogle Scholar
  45. Lee, S. G., and Lipmann, F., 1978, Glucose binding and transport proteins extracted from fast-grown chicken fibroblasts, Proc. Natl. Acad. Sci. USA 75: 5427–5431.PubMedCrossRefGoogle Scholar
  46. Leloir, L. F., 1951, The metabolism of hexosephosphate, in: Phosphorus Metabolism ( W. D. McElroy and B. Glass, eds.), Vol. I, pp. 69–93, Johns Hopkins Press, Baltimore.Google Scholar
  47. Lever, J. E., 1976, Regulation of amino acid and glucose transport activity expressed in isolated membranes from untransformed and SV40-transformed mouse fibroblasts, J. Cell. Physiol. 89: 779–788.PubMedCrossRefGoogle Scholar
  48. Lipmann, F., and Lee, S. G., 1978, A glucose binding transport factor isolated from normal and malignantly transformed chicken fibroblasts, in: Microenvironments and Metabolic Compart- mentation ( P. A. Srera and R. W. Estabrook, eds.), pp. 263–281, Academic Press, New York.Google Scholar
  49. Loten, E. G., Regen, D. M., and Park, C. R., 1976, Transport of D-allose by isolated fat cells: An effect of adenosine triphosphate on insulin stimulated transport, J. Cell. Physiol. 89: 651–660.PubMedCrossRefGoogle Scholar
  50. Lust, W. D., Schwartz, J. P., and Passonneau, J. V., 1975, Glycolytic metabolism in cultured cells of the nervous system. I. Glucose transport and metabolism in CG glioma cell line, Mol. Cell. Biochem. 8: 169–176.PubMedCrossRefGoogle Scholar
  51. Martineau, R., Kohlbacher, M., Shaw, S., and Amos, H., 1972, Enhancement of hexose entry into chick fibroblasts by starvation: Differential effects on galactose and glucose, Proc. Natl. Acad. Sci. USA 69: 3407–3411.PubMedCrossRefGoogle Scholar
  52. Morgan, M. J., and Faik, P., 1980, The regulation of carbohydrate metabolism in animal cells: Isolation of a glycolytic variant of Chinese hamster ovary cells, Cell Biol. Int. Rep. 4: 121–127.Google Scholar
  53. Morgan, M. J., and Faik, P., 1981, Carbohydrate metabolism in cultured animal cells, Biosci. Rep. 1: 669–686.Google Scholar
  54. Nakamura, K. D., and Weber, M. T., 1979, Amino acid transport in normal and Rous sarcoma virus-transformed chicken embryo fibroblasts, J. Cell. Physiol. 99: 15–22.PubMedCrossRefGoogle Scholar
  55. Neville, M. M., Suskind, S. B., and Roseman, S., 1971, A depressible active transport system for glucose in Neurospora crassa, J. Biol. Chem. 246: 1294–1301.PubMedGoogle Scholar
  56. Nishino, H., Christopher, C. W., Schiller, R. M., Gammon, M. T., Ullrey, D., and Isselbacher, K. J., 1978, Sodium dependent amino acid transport by cultured hamster cells: Membrane vesicles retain transport changes due to glucose starvation and cycloheximide, Proc. Natl. Acad. Sci. USA 75: 5048–5051.PubMedCrossRefGoogle Scholar
  57. Pames, J. R., and Isselbacher, K., 1978, Transport alterations in virus-transformed cells, Prog. Exp. Tumor Res. 22: 79–122.Google Scholar
  58. Perdue, J. F., 1976, Loss of post-translational control of nutrient transport in in vitro and in vivo virus-transformed chicken cells, J. Cell. Physiol. 89: 729–736.PubMedCrossRefGoogle Scholar
  59. Perdue, J. F., 1978, Transport across serum-stimulated and virus-transformed cell membranes, in: Virus-Transformed Cell Membranes ( C. Nicolau, ed.), pp. 182–280, Academic Press, New York.Google Scholar
  60. Pessin, J. F., Tillotson, L. G., Yamada, K., Gitomer, W., Carter, S. C., Mora, R., Isselbacher, K. J., and Czech, M. P., 1982, Identification of the stereospecific hexose-transporter from starved and fed chicken embryo fibroblasts, Proc. Natl. Acad. Sci. USA 79: 2286–2290.PubMedCrossRefGoogle Scholar
  61. Plesner, P., Ullrey, D. B., and Kalckar, H. M., 1985, Mutations in the phosphoglucose isomerase gene can lead to marked alterations in cellular ATP levels in cultured fibroblasts exposed to simple nutrient shifts, Proc. Natl. Acad. Sci. USA 82: 2761–2763.PubMedCrossRefGoogle Scholar
  62. Pouysségur, J., Shiu, R. P. C., and Pastan, I., 1977, Induction of two transformation-sensitive membrane polypeptides in normal fibroblasts by a block in glycoprotein synthesis or glucose deprivation, Cell 11: 941–947.PubMedCrossRefGoogle Scholar
  63. Pouysségur, J., Franchi, A., Salomon, J.-C., and Silvestre, P., 1980, Isolation of a Chinese hamster fibroblast mutant defective in hexose transport and aerobic glycolysis: Its use to dissect the malignant phenotype, Proc. Natl. Acad. Sci. USA 77: 2698–2701.PubMedCrossRefGoogle Scholar
  64. Rapaport, E., Christopher, C. W., Svihovec, S., Ullrey, D., and Kalckar, H. M., 1979, Selective high metabolic liability of uridine, guanosine and cytosine triphosphates in response to glucose deprivation and refeeding of untransformed and polyoma virus transformed hamster fibroblasts, J. Cell. Physiol. 104: 229–236.CrossRefGoogle Scholar
  65. Rapaport, E., Plesner, P., Ullrey, D. B., and Kalckar, H. M., 1983, 2,4-Dinitrophenol does not reduce ATP levels in starving hamster fibroblasts although hexose transport is markedly affected, Carlsberg Res. Commun. 48: 317–320.Google Scholar
  66. Reitzer, L. J., Wice, B. M., and Kennell, D., 1979, Evidence that glutamine, not sugar, is the major energy source for cultured Hela cells, J. Biol. Chem. 254: 2669–2676.PubMedGoogle Scholar
  67. Salter, D. W., and Cook, J. S., 1976, Reversible independent alterations in glucose transport and metabolism in cultured human cells deprived of glucose, J. Cell. Physiol. 89: 143–156.PubMedCrossRefGoogle Scholar
  68. Salter, D. W., Baldwin, S. A., Lienhard, G., and Weber, M. J., 1982, Proteins antigenically related to the human erythrocyte glucose transporter in Rous sarcoma virus-transformed cells, Proc. Natl. Acad. Sci. USA 79: 1540–1544.PubMedCrossRefGoogle Scholar
  69. Saunders, S. J., and Isselbacher, K. J., 1965, Inhibition of intestinal amino acid transport by hexoses, Biochim. Biophys. Acta 102: 397–409.PubMedCrossRefGoogle Scholar
  70. Scarborough, G. A., 1970, Sugar transport in Neurospora crassa, J. Biol. Chem. 245: 1694–1698.PubMedGoogle Scholar
  71. Scheffler, I. E., 1974, Conditional lethal mutants of Chinese hamster cells: Mutants requiring exogenous carbon dioxide for growth, J. Cell. Physiol. 83: 219–230.PubMedCrossRefGoogle Scholar
  72. Shanahan, M. F., Olson, S. A., Weber, M. J., Lienhard, G. E., and Gorga, J. C., 1982, Photolabeling of glucose-sensitive cytochalasin B binding proteins in erythrocytes, fibroblasts and adipocyte membranes, Biochem. Biophys. Res. Commun. 107: 38–43.PubMedCrossRefGoogle Scholar
  73. Shiu, R. P. C., Pouysségur, J., and Pastan, I., 1977, Glucose depletion accounts for the induction of two transformation-sensitive membrane proteins in Rous sarcoma virus-transformed chick embryo fibroblasts, Proc. Natl. Acad. Sci. (USA) 74: 3840–3844.CrossRefGoogle Scholar
  74. Singh, M., Singh, V., August, J. T., and Horecker, B. L., 1978, Transport and phosphorylation of hexoses in normal and Rous-sarcoma virus-transformed chicken embryo fibroblasts, J. Cell. Physiol. 97: 285–292.PubMedCrossRefGoogle Scholar
  75. Slein, M. W., 1950, Phosphomannose isomerase, J. Biol. Chem. 186: 753–761.PubMedGoogle Scholar
  76. Tillotson, L. G., Yamada, K., and Isselbacher, K. J., 1984, Regulation of hexose transport of chicken embryo fibroblasts during glucose starvation, Fed. Proc. 43: 2262–2264.PubMedGoogle Scholar
  77. Ullrey, D. B., and Kalckar, H. M., 1981, The nature of regulation of hexose transport in cultured mammalian fibroblasts: Aerobic `repressive’ control by D-glucosamine, Arch. Biochem. Biophys. 209: 168–174.PubMedCrossRefGoogle Scholar
  78. Ullrey, D. B., and Kalckar, H. M., 1982, Schism and complementation of hexose mediated transport regulation as illustrated in a fibroblast mutant lacking phosphoglucose isomerase, Biochem. Biophys. Res. Commun. 107: 1532–1538.PubMedCrossRefGoogle Scholar
  79. Ullrey, D., Gammon, M. T., and Kalckar, H. M., 1975, Uptake patterns and transport enhancements in cultures of hamster cells deprived of carbohydrates, Arch. Biochem. Biophys. 167: 410–418.PubMedCrossRefGoogle Scholar
  80. Ullrey, D. B., Franchi, A., Pouysségur, J., and Kalckar, H. M., 1982, Down regulation of the hexose transport system: Metabolic basis studied with a fibroblast mutant lacking phosphoglucose isomerase, Proc. Natl. Acad. Sci. USA 79: 3777–3779.PubMedCrossRefGoogle Scholar
  81. Ullrey, D. B., and Kalckar, H. M., 1986, D-Allose promotes an energy-requiring transport curb in a fibroblast metabolic mutant, Abstract, Amer. Soc. Microbiology Ann. Meeting, March 1986.Google Scholar
  82. Weber, M., 1973, Hexose transport in normal and in Rous sarcoma virus-transformed cells, J. Biol. Chem. 248: 2978–2983.PubMedGoogle Scholar
  83. Weber, M. J., Evans, P. K., Johnson, M. A., McNair, T. F., Nakamura, K. D., and Salter, D. W., 1984b, Transport of potassium, amino acids, and glucose in cells transformed by Rous sarcoma virus, Fed. Proc. 43: 107–112.PubMedGoogle Scholar
  84. Yamada, K., Tillotson, L. G., Isselbacher, K. J., 1983, Regulation of hexose carriers in chicken embryo fibroblasts: Effect of glucose starvation and role of protein synthesis, J. Biol. Chem. 258: 9786–9792.PubMedGoogle Scholar
  85. Zala, C. A., and Perdue, J. F., 1980, Stereospecific D-glucose transport in mixed membrane and plasma membrane vesicles derived from cultured chick embryo fibroblasts, Biochim. Biophys. Acta 600: 157–172.PubMedCrossRefGoogle Scholar
  86. Zala, C. A., Salas-Prato, M., Yan, W.-T., Banjo, B., and Perdue, J. F., 1980, In cultured chick embryo fibroblasts the hexose transport components are not the 75000 and 95000 dalton polypeptides synthesized following glucose deprivation, Can. J. Biochem. 58: 1179–1188.Google Scholar
  87. Zielke, H. R., Ozand, P. T., Tildon, J. T., Sevdalian, D. A., and Comblath, M., 1978, Reciprocal regulation of glucose and glutamine utilization by cultured human diploid fibroblasts, J. Cell. Physiol. 95: 41–48.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Herman M. Kalckar
    • 1
  • Donna B. Ullrey
    • 1
  1. 1.Chemistry DepartmentBoston UniversityBostonUSA

Personalised recommendations