Skip to main content

Studies of Regulation of Hexose Transport into Cultured Fibroblasts

  • Chapter

Abstract

The intent of this review is to discuss some physiological features of cellular regulation of glucose transport into cultured fibroblasts. It will be confined in the following ways:

  1. 1.

    The animal cells under discussion are cultured avian and mammalian fibroblasts in the postlogarithmic growth phase (or in tumorigenic cultures, medium to high density). The cultures are monolayer cultures, not suspension cultures.

  2. 2.

    The main theme will be the effects of carbohydrates and their metabolism in relation to the regulation of uptake or transport of hexoses into cultured fibroblasts, including special metabolic mutants. The downregulation of the hexose transport of the cultures will be called “the glucose-mediated transport curb.”

  3. 3.

    The transport systems discussed are largely the facilitated diffusion of hexoses and its regulation by carbohydrate metabolism. Where amino acid transport systems (such as the A and L systems) are discussed, this is strictly related to carbohydrate transport and metabolism.

  4. 4.

    Since hexose transporters are membrane proteins, aspects of protein recycling will have to be considered, and hence also the effects of inhibitors of protein synthesis.

  5. 5.

    Some stress-related factors, such as glucose starvation, uncouplers of respiration, as well as oncological transformations and their effects on hexose transport regulation, will be discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amos, H., Christopher, C. W., and Musliner, T. A., 1976, Regulation of glucose transport in chick fibroblasts: Bicarbonate, lactate and ascorbic acid, J. Cell. Physiol. 89: 662–676.

    Article  Google Scholar 

  • Amos, H., Mandel, K. G., and Gay, R. 1984, Deprival of nicotinamide leads to enhanced glucose transport in chick embryo fibroblasts, Fed. Proc. 43: 2265–2268.

    PubMed  CAS  Google Scholar 

  • Bader, J. P., 1976, Sodium: A regulator of glucose uptake in virus-transformed and non-transformed cells, J. Cell. Physiol. 89: 677–682.

    Article  PubMed  CAS  Google Scholar 

  • Banjo, B., and Perdue, J. F., 1976, Increased synthesis of selected membrane polypeptides correlated with increased sugar transport sites in glucose starved chick embryo fibroblasts, J. Cell Biol. 70: 270a.

    Article  Google Scholar 

  • Blume, K. G., and Beutler, E., 1975, Galactokinase in human erythrocytes, Methods Enzymol. 42: 47–53.

    Article  PubMed  CAS  Google Scholar 

  • Boos, W., 1974, Bacterial transport, Annu. Rev. Biochem. 43: 123–146.

    Article  PubMed  CAS  Google Scholar 

  • Christensen, H. N., 1975, Biological Transport, 2nd ed., Benjamin, New York.

    Google Scholar 

  • Christopher, C. W., 1977, Hexose transport regulation in cultured hamster cells, J. Supramol. Struct. 6: 485–494.

    Article  PubMed  CAS  Google Scholar 

  • Christopher, C. W., Kohlbacher, M. S., and Amos, H., 1976a, Transport of sugars in chick-embryo fibroblasts: Evidence for a low affinity system and a high affinity system for glucose transport, Biochem. J. 158: 439–450.

    PubMed  CAS  Google Scholar 

  • Christopher, C. W., Ullrey, D., Colby, W., and Kalckar, H. M., 1976b, Paradoxical effects of cycloheximide and cytochalasin B on hamster cell cultures, Proc. Natl. Acad. Sci. USA 73: 2429–2433.

    Article  PubMed  CAS  Google Scholar 

  • Christopher, C. W., Colby, W., and Ullrey, D., 1976c, Depression and carrier turnover, evidence for two distinct mechanisms of hexose transport regulation in animal cells, J. Cell. Physiol. 89: 683–692.

    Article  PubMed  CAS  Google Scholar 

  • Christopher, C. W., Colby, W., Ullrey, D., and Kalckar, H. M., 1977, Comparative studies of glucose-fed and glucose-starved hamster cell cultures: Responses in galactose metabolism, J. Cell. Physiol. 90: 387–406.

    Article  PubMed  CAS  Google Scholar 

  • Christopher, C. W., Ullrey, D., and Kalckar, H. M., 1979, Regulation of amino acid and hexose transport in cultured animal cells, In: Structure and Function of Biomembranes ( K. Yagi, ed.), pp. 39–50, Japan Scientific Societies Press, Tokyo.

    Google Scholar 

  • Colby, C., and Romano, A. H., 1975, Phosphorylation but not transport of sugars is enhanced in virus transformed mouse 3T3 cells, J. Cell. Physiol. 85: 15–24.

    Article  PubMed  CAS  Google Scholar 

  • Cushman, S. W., and Wardzala, L. J., 1980, Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell: Apparent translocation of intracellular transport systems to the plasma membrane, J. Biol. Chem. 255: 4758–4762.

    PubMed  CAS  Google Scholar 

  • D’Amore, T., and Lo, T. C. Y., 1986, J. Cell. Physiol.,in press.

    Google Scholar 

  • D’Amore, T., Duronio, V., Cheung, M. O., and Lo, T. C. Y., 1986, Isolation and characterization of hexose transport mutants in L6 rat myoblasts, J. Cell. Physiol. 126: 29–36.

    Article  PubMed  Google Scholar 

  • Decker, S., and Lipmann, F., 1981, Transport of D-glucose by membrane vesicles from normal and virus-transformed chicken embryo fibroblasts, Proc. Natl. Acad. Sci. USA 78: 5358–5361.

    Article  PubMed  CAS  Google Scholar 

  • DeFrancesco, L., Scheffler, I. E., and Bissell, M. J., 1976, A respiration deficient Chinese hamster cell line with a defect in NADH-coenzyme Q reductase, J. Biol. Chem. 251: 4588–4595.

    PubMed  CAS  Google Scholar 

  • Donnelly, M., and Scheffler, I. E., 1976, Energy metabolism in respiration-deficient and wild type Chinese hamster fibroblasts in culture, J. Cell. Physiol. 89: 39–51.

    Article  PubMed  CAS  Google Scholar 

  • Foster, D. O., and Pardee, A. B., 1969, Transport of amino acids by confluent and non-confluent 3T3 and polyoma virus-transformed 3T3 cells growing on glass cover slips, J. Biol. Chem. 144: 2675–2681.

    Google Scholar 

  • Franchi, A., Silvestre, P., and Pouysségur, J., 1978, Camer activation and glucose transport in Chinese hamster fibroblasts, Biochem. Biophys. Res. Commun. 85: 1526–1534.

    Article  PubMed  CAS  Google Scholar 

  • Gammon, M. T., and Isselbacher, K. J., 1976, Neoplastic potentials and regulation of uptake of nutrients. 1. A glutamine independent variant of polyoma BHK with a very high neoplastic potential, J. Cell. Physiol. 89: 759–764.

    Article  PubMed  CAS  Google Scholar 

  • Gatley, S. J., Holden, J. E., Halama, J. R., DeGrado, T. R., Bernstein, D. R., and Ng, C. K., 1984, Phosphorylation of glucose analog 3-O-methyl-D-glucose by rat heart, Biochem. Biophys. Res. Commun. 119: 1008–1014.

    Article  PubMed  CAS  Google Scholar 

  • Gay, R. J., and Amos, H., 1983, Purines as ‘hyperrepressors’ of glucose transport: A role for phosphoribosyl diphosphate, Biochem. J. 214: 133–144.

    PubMed  CAS  Google Scholar 

  • Germinario, R. J., Ozaki, S., and Kalant, N., 1984, Regulation of insulin binding and stimulation of sugar transport in cultured human fibroblasts by sugar levels in the culture medium, Arch. Biochem. Biophys. 234: 559–566.

    Article  PubMed  CAS  Google Scholar 

  • Germinario, R. J., Chang, Z., Manuel, S., and Oliveira, M., 1985, Control of sugar transport in human fibroblasts independent of glucose metabolism or carrier interaction, Biochem. Biophys. Res. Comm. 128: 1418–1424.

    Article  PubMed  CAS  Google Scholar 

  • Hatanaka, M., 1976, Saturable and nonsaturable process of sugar uptake: Effect of oncogenic transformation in transport and uptake of nutrients, J. Cell. Physiol. 89: 745–749.

    Article  PubMed  CAS  Google Scholar 

  • Howard, B. V., Mott, D. M., Fields, R. M., and Bennett, P. H., 1979, Insulin stimulation of glucose entry in cultured human fibroblasts, J. Cell. Physiol. 101: 129–138.

    Article  PubMed  CAS  Google Scholar 

  • Inui, K.-I., Moller, D. E., Tillotson, L. G., and Isselbacher, K. J., 1979, Stereospecific hexose transport by membrane vesicles from mouse fibroblasts: Membrane vesicles retain increased hexose transport associated with viral transformation, Proc. Natl. Acad. Sci. USA 76: 39723976.

    Google Scholar 

  • Inui, K.-I., Tillotson, L. G., and Isselbacher, K. J., 1980, Hexose and amino acid transport by chicken embryo fibroblasts infected with temperature-sensitive mutant to Rous sarcoma virus, Biochim. Biophys. Acta 598: 616–627.

    Article  PubMed  CAS  Google Scholar 

  • Isselbacher, K. J., 1972, Increased uptake of amino acids and 2-deoxy-D-glucose by virus-transformed cells in culture, Proc. Natl. Acad. Sci. USA 69: 585–589.

    Article  PubMed  CAS  Google Scholar 

  • Kalckar, H. M., 1976, Cellular regulation of transport and uptake of nutrients: An overview, J. Cell. Physiol. 89: 503–516.

    Article  PubMed  CAS  Google Scholar 

  • Kalckar, H. M., 1983, Regulation of hexose transport-carrier activity in cultured animal fibroblasts: Another confrontation with cellular recycling requiring oxidative energy generation?, Trans. N.Y. Acad. Sci. 41: 83–86.

    PubMed  CAS  Google Scholar 

  • Kalckar, H. M., and Ullrey, D., 1973, Two distinct types of enhancement of galactose uptake into hamster cells: Tumour virus transformation and hexose starvation, Proc. Natl. Acad. Sci. USA 70: 2502–2504.

    Article  PubMed  CAS  Google Scholar 

  • Kalckar, H. M., and Ullrey, D. B., 1984a, Further clues concerning the vectors essential to regulation of hexose transport as studied in fibroblast cultures from a metabolic mutant, Proc. Natl. Acad. Sci. USA 81: 1126–1129.

    Article  PubMed  CAS  Google Scholar 

  • Kalckar, H. M., and Ullrey, D. B., 1984b, Energy-requiring regulation of hexose transport, as studied in fibroblast cultures of a metabolic mutant, in: Symposium The Cell Membrane, (E. Haber, ed.).

    Google Scholar 

  • Kalckar, H. M., Christopher, C. W., and Ullrey, D., 1976, Neoplastic potentials and regulation of uptake of nutrients. II. Inverse regulation of uptake of hexose and amino acid analogues in the neoplastic GIV line, J. Cell. Physiol. 89: 765–768.

    Article  PubMed  CAS  Google Scholar 

  • Kalckar, H. M., Christopher, C. W., and Ullrey, D., 1979, Uncouplers of oxidative phosphorylation promote derepression of the hexose transport system in cultures of hamster cells, Proc. Natl. Acad. Sci. USA 76: 6453–6455.

    Article  PubMed  CAS  Google Scholar 

  • Kalckar, H. M., Ullrey, D. B., and Laursen, R. A., 1980a, Effects of combined glutamine and serum deprivation on glucose control of hexose transport in mammalian fibroblast cultures, Proc. Natl. Acad. Sci. USA 77: 5958–5961.

    Article  PubMed  CAS  Google Scholar 

  • Kalckar, H. M., Christopher, C. W., and Ullrey, D. B., 1980, Long-term regulation of amino acid and hexose transport in cultured animal cells, in: Advances in Pathobiology (C. M. Fenoglio and D. W. King, eds.), pp. 350–364, Thieme, Stuttgart.

    Google Scholar 

  • Kletzien, R. F., and Perdue, J. F., 1975, Induction of sugar transport in chick embryo fibroblasts by hexose starvation, J. Biol. Chem. 250: 593–600.

    PubMed  CAS  Google Scholar 

  • Kletzien, R. F., and Perdue, J. F., 1976, Regulation of sugar transport in chick embryo fibroblasts and in fibroblasts transformed by a temperature sensitive mutant of the Rous sarcoma virus, J. Cell. Physiol. 89: 723–728.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S. G., and Lipmann, F., 1977, Isolation from normal and Rous sarcoma virus transformed chicken fibroblasts of a factor that binds glucose and stimulates its transport, Proc. Natl. Acad. Sci. USA 74: 163–167.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S. G., and Lipmann, F., 1978, Glucose binding and transport proteins extracted from fast-grown chicken fibroblasts, Proc. Natl. Acad. Sci. USA 75: 5427–5431.

    Article  PubMed  CAS  Google Scholar 

  • Leloir, L. F., 1951, The metabolism of hexosephosphate, in: Phosphorus Metabolism ( W. D. McElroy and B. Glass, eds.), Vol. I, pp. 69–93, Johns Hopkins Press, Baltimore.

    Google Scholar 

  • Lever, J. E., 1976, Regulation of amino acid and glucose transport activity expressed in isolated membranes from untransformed and SV40-transformed mouse fibroblasts, J. Cell. Physiol. 89: 779–788.

    Article  PubMed  CAS  Google Scholar 

  • Lipmann, F., and Lee, S. G., 1978, A glucose binding transport factor isolated from normal and malignantly transformed chicken fibroblasts, in: Microenvironments and Metabolic Compart- mentation ( P. A. Srera and R. W. Estabrook, eds.), pp. 263–281, Academic Press, New York.

    Google Scholar 

  • Loten, E. G., Regen, D. M., and Park, C. R., 1976, Transport of D-allose by isolated fat cells: An effect of adenosine triphosphate on insulin stimulated transport, J. Cell. Physiol. 89: 651–660.

    Article  PubMed  CAS  Google Scholar 

  • Lust, W. D., Schwartz, J. P., and Passonneau, J. V., 1975, Glycolytic metabolism in cultured cells of the nervous system. I. Glucose transport and metabolism in CG glioma cell line, Mol. Cell. Biochem. 8: 169–176.

    Article  PubMed  CAS  Google Scholar 

  • Martineau, R., Kohlbacher, M., Shaw, S., and Amos, H., 1972, Enhancement of hexose entry into chick fibroblasts by starvation: Differential effects on galactose and glucose, Proc. Natl. Acad. Sci. USA 69: 3407–3411.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, M. J., and Faik, P., 1980, The regulation of carbohydrate metabolism in animal cells: Isolation of a glycolytic variant of Chinese hamster ovary cells, Cell Biol. Int. Rep. 4: 121–127.

    Google Scholar 

  • Morgan, M. J., and Faik, P., 1981, Carbohydrate metabolism in cultured animal cells, Biosci. Rep. 1: 669–686.

    Google Scholar 

  • Nakamura, K. D., and Weber, M. T., 1979, Amino acid transport in normal and Rous sarcoma virus-transformed chicken embryo fibroblasts, J. Cell. Physiol. 99: 15–22.

    Article  PubMed  CAS  Google Scholar 

  • Neville, M. M., Suskind, S. B., and Roseman, S., 1971, A depressible active transport system for glucose in Neurospora crassa, J. Biol. Chem. 246: 1294–1301.

    PubMed  CAS  Google Scholar 

  • Nishino, H., Christopher, C. W., Schiller, R. M., Gammon, M. T., Ullrey, D., and Isselbacher, K. J., 1978, Sodium dependent amino acid transport by cultured hamster cells: Membrane vesicles retain transport changes due to glucose starvation and cycloheximide, Proc. Natl. Acad. Sci. USA 75: 5048–5051.

    Article  PubMed  CAS  Google Scholar 

  • Pames, J. R., and Isselbacher, K., 1978, Transport alterations in virus-transformed cells, Prog. Exp. Tumor Res. 22: 79–122.

    Google Scholar 

  • Perdue, J. F., 1976, Loss of post-translational control of nutrient transport in in vitro and in vivo virus-transformed chicken cells, J. Cell. Physiol. 89: 729–736.

    Article  PubMed  CAS  Google Scholar 

  • Perdue, J. F., 1978, Transport across serum-stimulated and virus-transformed cell membranes, in: Virus-Transformed Cell Membranes ( C. Nicolau, ed.), pp. 182–280, Academic Press, New York.

    Google Scholar 

  • Pessin, J. F., Tillotson, L. G., Yamada, K., Gitomer, W., Carter, S. C., Mora, R., Isselbacher, K. J., and Czech, M. P., 1982, Identification of the stereospecific hexose-transporter from starved and fed chicken embryo fibroblasts, Proc. Natl. Acad. Sci. USA 79: 2286–2290.

    Article  PubMed  CAS  Google Scholar 

  • Plesner, P., Ullrey, D. B., and Kalckar, H. M., 1985, Mutations in the phosphoglucose isomerase gene can lead to marked alterations in cellular ATP levels in cultured fibroblasts exposed to simple nutrient shifts, Proc. Natl. Acad. Sci. USA 82: 2761–2763.

    Article  PubMed  CAS  Google Scholar 

  • Pouysségur, J., Shiu, R. P. C., and Pastan, I., 1977, Induction of two transformation-sensitive membrane polypeptides in normal fibroblasts by a block in glycoprotein synthesis or glucose deprivation, Cell 11: 941–947.

    Article  PubMed  Google Scholar 

  • Pouysségur, J., Franchi, A., Salomon, J.-C., and Silvestre, P., 1980, Isolation of a Chinese hamster fibroblast mutant defective in hexose transport and aerobic glycolysis: Its use to dissect the malignant phenotype, Proc. Natl. Acad. Sci. USA 77: 2698–2701.

    Article  PubMed  Google Scholar 

  • Rapaport, E., Christopher, C. W., Svihovec, S., Ullrey, D., and Kalckar, H. M., 1979, Selective high metabolic liability of uridine, guanosine and cytosine triphosphates in response to glucose deprivation and refeeding of untransformed and polyoma virus transformed hamster fibroblasts, J. Cell. Physiol. 104: 229–236.

    Article  Google Scholar 

  • Rapaport, E., Plesner, P., Ullrey, D. B., and Kalckar, H. M., 1983, 2,4-Dinitrophenol does not reduce ATP levels in starving hamster fibroblasts although hexose transport is markedly affected, Carlsberg Res. Commun. 48: 317–320.

    Google Scholar 

  • Reitzer, L. J., Wice, B. M., and Kennell, D., 1979, Evidence that glutamine, not sugar, is the major energy source for cultured Hela cells, J. Biol. Chem. 254: 2669–2676.

    PubMed  CAS  Google Scholar 

  • Salter, D. W., and Cook, J. S., 1976, Reversible independent alterations in glucose transport and metabolism in cultured human cells deprived of glucose, J. Cell. Physiol. 89: 143–156.

    Article  PubMed  CAS  Google Scholar 

  • Salter, D. W., Baldwin, S. A., Lienhard, G., and Weber, M. J., 1982, Proteins antigenically related to the human erythrocyte glucose transporter in Rous sarcoma virus-transformed cells, Proc. Natl. Acad. Sci. USA 79: 1540–1544.

    Article  PubMed  CAS  Google Scholar 

  • Saunders, S. J., and Isselbacher, K. J., 1965, Inhibition of intestinal amino acid transport by hexoses, Biochim. Biophys. Acta 102: 397–409.

    Article  PubMed  CAS  Google Scholar 

  • Scarborough, G. A., 1970, Sugar transport in Neurospora crassa, J. Biol. Chem. 245: 1694–1698.

    PubMed  CAS  Google Scholar 

  • Scheffler, I. E., 1974, Conditional lethal mutants of Chinese hamster cells: Mutants requiring exogenous carbon dioxide for growth, J. Cell. Physiol. 83: 219–230.

    Article  PubMed  CAS  Google Scholar 

  • Shanahan, M. F., Olson, S. A., Weber, M. J., Lienhard, G. E., and Gorga, J. C., 1982, Photolabeling of glucose-sensitive cytochalasin B binding proteins in erythrocytes, fibroblasts and adipocyte membranes, Biochem. Biophys. Res. Commun. 107: 38–43.

    Article  PubMed  CAS  Google Scholar 

  • Shiu, R. P. C., Pouysségur, J., and Pastan, I., 1977, Glucose depletion accounts for the induction of two transformation-sensitive membrane proteins in Rous sarcoma virus-transformed chick embryo fibroblasts, Proc. Natl. Acad. Sci. (USA) 74: 3840–3844.

    Article  CAS  Google Scholar 

  • Singh, M., Singh, V., August, J. T., and Horecker, B. L., 1978, Transport and phosphorylation of hexoses in normal and Rous-sarcoma virus-transformed chicken embryo fibroblasts, J. Cell. Physiol. 97: 285–292.

    Article  PubMed  CAS  Google Scholar 

  • Slein, M. W., 1950, Phosphomannose isomerase, J. Biol. Chem. 186: 753–761.

    PubMed  CAS  Google Scholar 

  • Tillotson, L. G., Yamada, K., and Isselbacher, K. J., 1984, Regulation of hexose transport of chicken embryo fibroblasts during glucose starvation, Fed. Proc. 43: 2262–2264.

    PubMed  CAS  Google Scholar 

  • Ullrey, D. B., and Kalckar, H. M., 1981, The nature of regulation of hexose transport in cultured mammalian fibroblasts: Aerobic `repressive’ control by D-glucosamine, Arch. Biochem. Biophys. 209: 168–174.

    Article  PubMed  CAS  Google Scholar 

  • Ullrey, D. B., and Kalckar, H. M., 1982, Schism and complementation of hexose mediated transport regulation as illustrated in a fibroblast mutant lacking phosphoglucose isomerase, Biochem. Biophys. Res. Commun. 107: 1532–1538.

    Article  PubMed  CAS  Google Scholar 

  • Ullrey, D., Gammon, M. T., and Kalckar, H. M., 1975, Uptake patterns and transport enhancements in cultures of hamster cells deprived of carbohydrates, Arch. Biochem. Biophys. 167: 410–418.

    Article  PubMed  CAS  Google Scholar 

  • Ullrey, D. B., Franchi, A., Pouysségur, J., and Kalckar, H. M., 1982, Down regulation of the hexose transport system: Metabolic basis studied with a fibroblast mutant lacking phosphoglucose isomerase, Proc. Natl. Acad. Sci. USA 79: 3777–3779.

    Article  PubMed  CAS  Google Scholar 

  • Ullrey, D. B., and Kalckar, H. M., 1986, D-Allose promotes an energy-requiring transport curb in a fibroblast metabolic mutant, Abstract, Amer. Soc. Microbiology Ann. Meeting, March 1986.

    Google Scholar 

  • Weber, M., 1973, Hexose transport in normal and in Rous sarcoma virus-transformed cells, J. Biol. Chem. 248: 2978–2983.

    PubMed  CAS  Google Scholar 

  • Weber, M. J., Evans, P. K., Johnson, M. A., McNair, T. F., Nakamura, K. D., and Salter, D. W., 1984b, Transport of potassium, amino acids, and glucose in cells transformed by Rous sarcoma virus, Fed. Proc. 43: 107–112.

    PubMed  CAS  Google Scholar 

  • Yamada, K., Tillotson, L. G., Isselbacher, K. J., 1983, Regulation of hexose carriers in chicken embryo fibroblasts: Effect of glucose starvation and role of protein synthesis, J. Biol. Chem. 258: 9786–9792.

    PubMed  CAS  Google Scholar 

  • Zala, C. A., and Perdue, J. F., 1980, Stereospecific D-glucose transport in mixed membrane and plasma membrane vesicles derived from cultured chick embryo fibroblasts, Biochim. Biophys. Acta 600: 157–172.

    Article  PubMed  CAS  Google Scholar 

  • Zala, C. A., Salas-Prato, M., Yan, W.-T., Banjo, B., and Perdue, J. F., 1980, In cultured chick embryo fibroblasts the hexose transport components are not the 75000 and 95000 dalton polypeptides synthesized following glucose deprivation, Can. J. Biochem. 58: 1179–1188.

    Google Scholar 

  • Zielke, H. R., Ozand, P. T., Tildon, J. T., Sevdalian, D. A., and Comblath, M., 1978, Reciprocal regulation of glucose and glutamine utilization by cultured human diploid fibroblasts, J. Cell. Physiol. 95: 41–48.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Kalckar, H.M., Ullrey, D.B. (1986). Studies of Regulation of Hexose Transport into Cultured Fibroblasts. In: Morgan, M.J. (eds) Carbohydrate Metabolism in Cultured Cells. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7679-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7679-8_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7681-1

  • Online ISBN: 978-1-4684-7679-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics