L-Matrices and Propagators with Imaginary Parameters

  • Alladi Ramakrishnan


The study of L-matrices leads us naturally to the definition of the matrices
$$Q =L-\lambda I$$
$$R=\frac{1}{L-\lambda I}$$
where Q is a “quaternion-like” object and its reciprocal R is the resolvent which can be interpreted as the propagator associated with L under “suitable” circumstances.


Exponential Decay Function Rest System Quantum Mechanical Equation Local Field Theory Real Exponent 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Ramakrishnan, “L-matrices, quaternions, and propagators,” J. Math Anal. Appl, (in press).Google Scholar
  2. 2.
    Sho. Tanaka, “Theory of matter with superlight velocity,” Progr. Theor. Phys. 24: 171 (1960). E.P. Wigner, “Invariant Quantum Mechanical Equations,” Sec. VII “Case of Imaginary Rest Mass,” p. 76, Proceedings of the International Seminar on Theoretical Physics Trieste, I. A. E.A., Vienna, 1963.ADSCrossRefGoogle Scholar
  3. 3.
    O. M. P. Bilaniuk, V. K. Deshpande, and E. C. G. Sudarshan, “Meta-Rela-tivity,” Am. J. Phys. 30: 718 (1962).MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    M. E. Arons and E. C. G. Sudarshan, “Lorentz invariance,” “Local field theory, faster-than-light-particles,” Syracuse Preprint NYO-3399-133, Su-1206-133.Google Scholar
  5. 5.
    G. Feinberg, “Possibility of faster-than-light particles,” Phys. Rev. 159: 1089 (1967).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press 1969

Authors and Affiliations

  • Alladi Ramakrishnan
    • 1
  1. 1.MatscienceMadrasIndia

Personalised recommendations