The Importance of Size-Dependent Processes in the Ecology of Deposit-Feeding Benthos

  • Thomas L. Forbes
Part of the Lecture Notes on Coastal and Estuarine Studies book series (COASTAL, volume 31)


What are the environmental and ontogenetic constraints that control the size-scaling of forni and function, and therefore energy gain and expenditure, in deposit-feeding invertebrates? How do these constraints interact to shape the ontogeny of an organism from larval recruit to reproductive adult.? Evolutionary theory predicts that natural selection can act at any point within the life cycle of an organism in order to increase the fitness of the individual (Calow, 1978). The comprehensive study of developmental changes in functional morphology and critical physiological rate processes should therefore provide valuable insights into the adaptation and design of deposit-feeding benthos.


Body Size Fecal Pellet Carbon Loss Body Volume Allometric Exponent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Banse, K. 1982. Mass-scaled rates of respiration and intrinsic growth in very small invertebrates. Mar. Ecol. Prog. Ser. 9: 281–297.CrossRefGoogle Scholar
  2. Bertalanffy, L. Von. 1960. Principles and theory of growth. Pp. 137–259 in Fundamental Aspects of Normal and Malignant Growth, W.W. Nowinski, ed. Amsterdam.Google Scholar
  3. Bertalanffy, L. Von. 1964. Basic concepts in the quantitative biology of metabolism. Helgolander Wiss. Meeresunters. 9: 5–37.CrossRefGoogle Scholar
  4. Box, G.E.P. and D.A. Pierce. 1970. Distribution of residual autocorrelation in autoregressive–integrated moving average time series models. J. Am. Stat. Assoc. 65: 1509–1526.Google Scholar
  5. Cadée, G.C. 1979. Sediment reworking by the polychaete Arenicola marina in the Dutch Wadden Sea. Neth. J. Sea Res. 13: 441–456.CrossRefGoogle Scholar
  6. Cadée, G.C. 1979. Sediment reworking by the polychaete Arenicola marina in the Dutch Wadden Sea. fluviatilis Mull. and Planorbis contortus Linn. Oecologia 16: 149–161.Google Scholar
  7. Calow, P. 1978. Life’s logic. Pp. 1–18 in Life Cycles: An Evolutionary Approach to the Physiology of Reproduction, Development and Aging. John Wiley and Sons, New York. 164 pp.Google Scholar
  8. Calow, P. 1981. Respiration. Pp. 63–91 in Invertebrate Zoology: A Functional Approach. John Wiley and Sons, New York. 183 pp.Google Scholar
  9. Cainmen, L.M. 1985. Metabolic loss of organic carbon by the polychaete Capitella capitata (Fabricius) estimated from initial weight decrease during starvation, oxygen uptake, and release of 14-C by uniformly labeled animals. Mar. Ecol. Prog. Ser. 21: 163–167.CrossRefGoogle Scholar
  10. Clarke, M.R.B. 1980. The reduced major axis of a bivariate sample. Bionietrika 67: 441–446.CrossRefGoogle Scholar
  11. Cleveland, W. S. 1979. Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc. 74: 829–836.Google Scholar
  12. Cock, A.G. 1966. Genetical aspects of metrical growth and form in animals. Quart. Rev. Biol. 41: 131–190.CrossRefGoogle Scholar
  13. Count, E.W. 1947. Brain and body weight in man: Their antecedents in growth and evolution. Ann. N.Y. Acad. Sci. 46: 993–1122.CrossRefGoogle Scholar
  14. Dobbs, F.C., and T. Scholly. 1986. Sediment processing and selective feeding by Pectinaria koreni (Polychaeta: Pectinariidae). Mar. Ecol. Prog. Ser. 29: 165–176.CrossRefGoogle Scholar
  15. Duncan, A. and R.R. Klekowski. 1975. Parameters of an energy budget. Pp. 97–147 in Methods For Ecological Energetics. IBP Handbook No. 24, W. Grodzinski and A. Duncan, eds. Blackwell Scientific, Oxford. 367 pp.Google Scholar
  16. Famine, P., and L. Kofoed. 1982. Rates of carbon release and oxygen uptake by the mussel, Mytilus edulis L., in response to starvation and oxygen. Mar. Biol. Lett. 3: 241–256.Google Scholar
  17. Famine, P., and J. Knudsen. 1984. Total heat balance study of anaerobiosis in Tubifex (Muller). J. Comp. Physiol. 154(B): 587–591.Google Scholar
  18. Famine, P., and J. Knudsen. 1985. Anoxic survival, growth and reproduction by the freshwater annelid, Tubifex sp., demonstrated using a new simple anoxic chemostat. Comp. Biochein. PhysioI. 81 (A): 251–253.Google Scholar
  19. Fleagle, J.G. 1985. Size and adaptation in primates. Pp. 1–19 in Size and Scaling in Primate Biology, W.L. Jungers, ed. Plenum Press, New York. 491 pp.Google Scholar
  20. Forbes, T.L., and G.R. Lopez. 1987. The allometry of deposit feeding in Capitella species I (Polychaeta:Capitellidae): The role of temperature and pellet weight in the control of egestion. Biol. Bull. 172: 187–201.CrossRefGoogle Scholar
  21. Ford, E.H.R., and G. Horn. 1959. Some problems in the evaluation of differential growth in the rat’s skull. Growth 23: 191–203.PubMedGoogle Scholar
  22. Gnaiger, E. 1980. Energetics of invertebrate anoxibiosis: Direct calorimetry in aquatic oligochaetes. FEBS Letters 112: 239–242.PubMedCrossRefGoogle Scholar
  23. Grassle, J.F. and J.P. Grassle. 1974. Opportunistic life histories and genetic systems in marine benthic polychaetes. J. Mar. Res. 32: 253–284.Google Scholar
  24. Grassle, J.F., and J.P. Grassle. 1977. Temporal adaptations in sibling species of Capitella. Pp. 177–189 in Ecology of Marine Benthos, B.C. Coull, ed. Belle Baruch Library of Marine Science No. 6., University of South Carolina Press, Columbia, South Carolina.Google Scholar
  25. Grassle, J.F., and J.P. Grassle. 1978. Life histories and genetic variation in marine invertebrates. Pp. 347–364 in Marine Organisms: Genetics, Ecology, and Evolution, B. Battaglia and J.A. Beardmore, eds. Plenum Press, New York.Google Scholar
  26. Grassle, J.P. 1979. Polychaete sibling species. Pp. 25–32 in Aquatic Oligochaete Biology, R.O. Brinkhurst and D.G. Cook eds. Plenum Press, New York.Google Scholar
  27. Grassle, J.P., and J.F. Grassle. 1976. Sibling species of the marine pollution indicator Capitella. (Polychaeta). Science 192: 567–569.PubMedCrossRefGoogle Scholar
  28. Gould, S.J. 1966. Allometry and size in ontogeny and phylogeny. Biol. Rev. 41: 587–640.PubMedCrossRefGoogle Scholar
  29. Hamburger, K., F. Mvhlenberg, H. Randlov, and H. U. Riisgaard. 1983. Size, O2 consumption, and growth in the mussel Mytilus edulis. Mar. Biol. 75: 303–306.CrossRefGoogle Scholar
  30. Harel, S., K. Watanabe, I. Linke, and R.J. Scham. 1972. Growth and development of the rabbit brain. Biol. Neonate 21: 381–399.PubMedCrossRefGoogle Scholar
  31. Hargrave, B.T. 1972. Prediction of egestion by the deposit-feeding amphipod Hyalella. azteca. Oikos 23: 116–124.CrossRefGoogle Scholar
  32. Hobson, K.D. 1967. The feeding ecology of two North Pacific Abarenicola species (Arenicolidae,Polychaeta). Biol. Bull. 133: 343–354.CrossRefGoogle Scholar
  33. Huxley, J.S. 1932. Problems of Relative Growth. 2nd ed. Dover Publications, Inc. New York. 312 pp.Google Scholar
  34. Jolicoeur, P. 1975. Linear regressions in fishery research: Some corninents. J. Fish. Res. Board Can. 32: 1491–1494.CrossRefGoogle Scholar
  35. Kabat, A.R. 1985. The allometry of brooding in Transenella tantilla (Gould) ( Mollusca: Bivalvia). J. Exp. Mar. Biol. Ecol. 91: 271–279.CrossRefGoogle Scholar
  36. Kay, D.G., and A.E. Brafield. 1973. The energy relations of the polychaete Neanthes (=Nereis) virens (Sars). J. Anim. Ecol. 42: 673–692.CrossRefGoogle Scholar
  37. Krüger, F. 1964. Versuche über die Abhängigkeit der Atmung von Arenicola marina (Annelides Polychaeta) von Grosse und Temperatur. Helgolander wiss. Meeresunters. 10: 38–63.CrossRefGoogle Scholar
  38. Kudenov, J.D. 1982. Rates of seasonal sediment reworking in Axiothella rubrocincta (Polychaeta:Maldanidae). Mar. Biol. 70: 181–186.CrossRefGoogle Scholar
  39. Kuhry, B., and L.F. Marcus. 1977. Bivariate linear models in biometry. Syst. Zool. 26: 201–209.CrossRefGoogle Scholar
  40. Lande, R. 1985. Genetic and evolutionary aspects of allometry, Pp. 21–32 in Size and Scaling in Primate Biology, W.L. Jungers, ed. Plenum Press, New York. 491 pp.Google Scholar
  41. Mackay, D.C.G. 1942. Relative growth of the European edible crab, Cancer pagurus. I. Growth of the carapace. Growth 6: 251–258.Google Scholar
  42. Mackay, D.C.G. 1943a. Relative growth of the European edible crab, Cancer pagurus. II. Growth of the abdomen. Growth 7: 217–226.Google Scholar
  43. Mackay, D.C.G. 1943b. Relative growth of the European edible crab, Cancer pagurus. III. Growth of the sternum and appendages. Growth 7: 401–412.Google Scholar
  44. Martin, R.D., and P.H. Harvey. 1985. Brain size allometry: Ontogeny and phylogeny, Pp. 147–173 in Size and Scaling in Primate Biology, W.L. Jungers, ed. Plenum Press, New York. 491 pp.Google Scholar
  45. Neter, J., W. Wasserman, W., and M.H. Kutner. 1985. Applied Linear Statistical Models. 2nd. ed., Richard D. Irwin, Inc., Homewood, Illinois.Google Scholar
  46. Neuhoff, H.-G. 1979. Influence of temperature and salinity on food conversion and growth of different Nereis species (Polychaeta, Annelida). Mar. Ecol. Prog. Ser. 1: 255–262.CrossRefGoogle Scholar
  47. Nichols, F.H. 1974. Sediment turnover by a deposit-feeding polychaete. Limnol. Oceanogr. 19: 945–950.CrossRefGoogle Scholar
  48. Olive, P.J.W. 1983. Annelida-Polychaeta, Pp. 357–422 in Reproductive Biology of Invertebrates: Oogenesis, Oviposition, and Oosorption. Vol. I, K.G. and R.G. Adiyodi, eds. John Wiley and Sons, New York. 770 pp.Google Scholar
  49. Pamatmat, M.M. 1980. Facultative anaerobiosis of benthos, Pp. 69–90 in Marine Benthic Dynamics, K.R. Tenore and B.C. Coull, eds. Belle Baruch Library of Marine Science No. 11., University of South Carolina Press, Columbia, South Carolina.Google Scholar
  50. Pamatmat, M.M., and S. Findlay. 1983. Metabolism of microbes, nematodes, polychaetes, and their interactions in sediment, as detected by heat flow measurements. Mar. Ecol. Prog. Ser. 11: 31–38.CrossRefGoogle Scholar
  51. Pauly, D. 1981. The relationships between gill surface area and growth performance in fish: A generalization of von Bertalanffy’s theory of growth. Meeresforschung 28: 251–282.Google Scholar
  52. Peters, R.H. 1983. Metabolism. Pp. 24–44 in The Ecological Implications of Body Size. Cambridge Univ. Press, New York. 329 PP.Google Scholar
  53. Petraitis, P.S. 1985. Females inhibit males propensity to develop into simultaneous hermaphrodites in Capitella. species I (Polychaeta). Biol. Bull. 168: 395–402.CrossRefGoogle Scholar
  54. Prosser, C.L. 1973. Introduction. Pp. xv-xxii in Comparative Animal Physiology, C.L. Prosser, ed. Saunders, Philadelphia. 456 pp.Google Scholar
  55. Prosser, C.L. 1986. Adaptational Biology: Molecules to Organisms. John Wiley and Sons, New York. 784 pp.Google Scholar
  56. Protter, M.H., and C.B. Morrey Jr. 1964. Volumes of solids of revolution. Pp. 245–247 in Modern Mathematical Analysis. Addison-Wesley, Reading, Massachusetts. 790 pp.Google Scholar
  57. Rayner, J.M.V. 1985. Linear relations in biomechanics: The statistics of scaling functions. J. Zool., Lond.(A) 206: 415–439.CrossRefGoogle Scholar
  58. Reeve, E.C.R., and J.S. Huxley. 1945. Some problems in the study of allometric growth. Pp. 121–156 in Essays on Growth and Form, W.E. le Gros Clark and P.B. Medawar eds. Oxford Univ. Press, London.Google Scholar
  59. Ricker, W.E. 1973. Linear regressions in fishery research. J. Fish. Res. Board Can. 30: 409–434.CrossRefGoogle Scholar
  60. Ricker, W.E. 1975. A note concerning Professor Jolicoeur’s comments. J. Fish. Res. Board Can. 32: 1494–1498.CrossRefGoogle Scholar
  61. Ricker, W.E. 1984. Computation and uses of central trend lines. Can. J. Zool. 62: 1897–1905.CrossRefGoogle Scholar
  62. Schmidt-Nielsen, K. 1983. What is physiology? Pp. 1–2 in Animal Physiology. Cambridge University Press, New York. 619 pp.Google Scholar
  63. Sebens, K.P. 1981. The allometry of feeding, energetics, and body size in three sea anemone species. Biol. Bull. 161: 152–171.CrossRefGoogle Scholar
  64. Sehens, K.P. 1982. The limits to indeterminate growth: An optimal size model applied to passive suspension feeders. Ecology 63: 209–222.CrossRefGoogle Scholar
  65. Shuinway, S.E. 1979. The effects of body size, oxygen tension, and mode of life on the oxygen uptake rates of polychaetes. Comp. Biochem. Physiol. 64 (A): 273–278.CrossRefGoogle Scholar
  66. Smith, R.J. 1980. Rethinking allometry. J. theor. Biol. 87: 97–111.PubMedCrossRefGoogle Scholar
  67. Smith, R.J. 1984. Allometric scaling in comparative biology: Problems of concept and method. Am. J. Physiol. 246: R152- R160.PubMedGoogle Scholar
  68. Somerton, D.A. 1980. A computer technique for estimating the size of sexual maturity in crabs. Can. J. Fish. Aquat. Sci. 37: 1488–1494.CrossRefGoogle Scholar
  69. Somerton, D.A. 1981. Regional variation in the size of maturity of two species of Tanner crab (Chionoecetes bairdi and C. opilio) in the Eastern Bering Sea, and its use in defining management subareas. Can. J. Fish. Aquat. Sci. 38: 163–174.Google Scholar
  70. Teissier, G. 1960. Relative growth. Pp. 537–560 in The Physiology of Crustacea: Metabolism and Growth, Vol. I, T.H. Waterman, ed. Academic Press, New York. 670 pp.Google Scholar
  71. Tenore, K.R. 1981. Organic nitrogen and the caloric content of detritus: I. Utilization by the deposit-feeding polychaete Capitella capitata. Estuarine Coastal Shelf Sci. 12: 39–47.CrossRefGoogle Scholar
  72. Tenore, K.R.., and U.K. Gopalan. 1974. Feeding efficiencies of the polychaete Nereis virens cultured on hard-clam tissue and oyster detritus. J. Fish. Res. Board Can. 31: 1675–7678.CrossRefGoogle Scholar
  73. Vogel, Z., A. Zamir, and D. Elson. 1969. The possible involvement of peptidyl transferase in the termination step of protein biosynthesis. Biochemistry 12: 5161–5168.CrossRefGoogle Scholar
  74. Wilde, P.A.J.W. De and E.M. Berghuis. 1979. Laboratory experiments on growth of juvenile lugworms, Arenicola marina. Neth. J. Sea Res. 13: 487–502.Google Scholar
  75. Zar, J.H. 1968. Calculation and miscalculation of the allometric equa- tion as a model in biological data. Bioscience 18: 1118–1120.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1989

Authors and Affiliations

  • Thomas L. Forbes
    • 1
  1. 1.Marine Sciences Research CenterState University of New YorkStony BrookUSA

Personalised recommendations