Time-Dependent Absorption in Deposit Feeders

  • Lars Kofoed
  • Valery Forbes
  • Glenn Lopez
Part of the Lecture Notes on Coastal and Estuarine Studies book series (COASTAL, volume 31)

Abstract

Deposit feeders obtain food from sediments consisting mostly of indigestible mineral grains. In order to procure the required energy and nutrients, these animals must process enormous quantities of sediment (Canunen 1980b). The necessarily rapid processing rates limit the amount of time material may remain in the gut. Many deposit feeders have gut residence times of 30 minutes or less. Juvenile Streblospio benedirti can have gut residence times as low as 4 minutes (T. Forbes, pers. com.). Since digestion is a time-dependent process, gut residence time is likely to control absorption of ingested food, particularly when the food is difficult to digest. While the amount of material absorbed will increase with increasing gut residence time, it is likely to do so at a reducing rate (Sibly and Calow 1986). Therefore there will be a tradeoff between the efficiency and speed of digestion.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Bricelj, V. M., A. E. Bass, and G. R. Lopez. 1984. Absorption and gut passage time of microalgae in a suspension feeder: an evaluation of the 51Cr:14C twin tracer technique. Mar. Ecol. Prog. Ser. 17: 57–63.CrossRefGoogle Scholar
  2. Calow, P. 1975. Defaecation strategies of two freshwater gastropods, Ancylus fluviatilis Mull. and Planorbis contortus Linn. (Pulmonata) with a comparison of field and laboratory estimates of food absorption rate. Oecologia. (Berl.), 20: 51–63.CrossRefGoogle Scholar
  3. Calow, P. and C. R. Fletcher. 1972. A new radiotracer technique involving 14C and “Cr for estimating the assimilation efficiency of aquatic primary producers. Oecologia (Berl.), 9: 155–170.CrossRefGoogle Scholar
  4. Cameron, J. N. 1986. Principles of Physiological Measurement. Academic Press, New York.Google Scholar
  5. Canunen, L. M. 1980a. The significance of microbial carbon in the nutrition of the deposit feeding polychaete Nereis succinea. Mar. Biol., 61: 9–20.Google Scholar
  6. Canunen, L. M. 1980b. Ingestion rate: an empirical model for aquatic deposit feeders and det.ritivores. Oecologia (Berl.), 44: 303–310.Google Scholar
  7. Forbes, V. E. and G. R. Lopez. 1986. Changes in feeding and crawling rates of Hydrobia truncata (Prosobranchia: Hydrobiidae) in response to sedimentary chlorophyll-a and recently egested sediment. Mar. Ecol. Prog. Ser. 33: 287–294.CrossRefGoogle Scholar
  8. Kofoed, L. H. 1975a. The feeding biology of Hydrobia. ventrosa (Montague). I. The assimilation of different components of food. J. Exp. Mar. Biol. Ecol. 19: 233–241.CrossRefGoogle Scholar
  9. Kofoed, L. H. 1975b. The feeding biology of Hydrobia ventrosa (Montague). II. Allocation of the components of the carbon budget and the significance of the secretion of dissolved organic material. J. Exp. Mar. Biol. Ecol. 19:Google Scholar
  10. Lehninger, A. L. 1975. Biochemistry, 2nd ed. Worth Publishers Inc. New York.Google Scholar
  11. Lopez, G. R. and J. S. Levinton. 1987. Ecology of deposit-feeding animals in marine sediments. Quart. Rev. Biol., 62: 235–260.CrossRefGoogle Scholar
  12. Lopez, G. R. and M. A. Crenshaw. 1982. Radiolabelling of sedimentary organic matter with 14C-formaldehyde: preliminary evaluation of a new technique for use in deposit-feeding studies. Mar. Ecol. Prog. Ser., 8: 283–289.CrossRefGoogle Scholar
  13. Phillips, N.W. 1984. Compensatory intake can be consistent with an optimal foraging model. Am. Nat. 123: 867–872.CrossRefGoogle Scholar
  14. Purchon, R. D. 1977. The Biology of the Mollusca, 2nd ed. Pergamon Press, Oxford.Google Scholar
  15. Rice, D. L., T. S. Bianchi, and E. H. Roper. 1986. Experimental studies of sediment reworking and growth of Scoloplos spp. (Orbiniidae: Polychaeta). Mar. Ecol. Prog. Ser. 30: 9–19.CrossRefGoogle Scholar
  16. Shipley, R. A. and R. E. Clark. 1972. Tracer Methods for In Vivo Kinetics. Academic Press, New York.Google Scholar
  17. Sibly, R. M. and P. Calow. 1986. Physiological Ecology of Animals: An Evolutionary Approach. Blackwell Scientific Publications, London.Google Scholar
  18. Taghon, G. L. 1981. Beyond selection: optimal ingestion rate as a function of food value. Am. Nat., 118: 202–214.CrossRefGoogle Scholar
  19. Taghon, G. L., R. F. L. Self, and P. A. Jumars. 1978. Predicting particle selection by deposit feeders: a model and predictions. Limnol. Ocea. nogr., 23: 752–759.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1989

Authors and Affiliations

  • Lars Kofoed
    • 1
  • Valery Forbes
    • 1
  • Glenn Lopez
    • 2
  1. 1.Biology InstituteOdense UniversityOdense MDenmark
  2. 2.Marine Sciences Research CenterState University of New YorkStony BrookUSA

Personalised recommendations