The Nature and Determination of Non-Living Sedimentary Organic Matter as a Food Source for Deposit Feeders

  • Lawrence M. Mayer
Part of the Lecture Notes on Coastal and Estuarine Studies book series (COASTAL, volume 31)


Several lines of evidence imply that deposit feeders can and do use non-living food resources in marine sediments. Indeed, non-living food may comprise the bulk of the food for many species. The ability to use such food is indicated by feeding experiments which have shown ingestion selectivity by deposit feeders for protein-coated beads (Taghon 1982; Taghon and Jumars 1984) and demonstrated an ability to absorb non-living organic matter (Lopez et al., this volume). Tenore and coworkers (e.g. Tenore 1983) have also demonstrated the ability of polychaetes to utilize non-living detrital material. The actual use of non-living material in situ has been implied primarily via budgetary calculations (e.g. Canunen 1980; Rice et al. 1986), which show that the required assimilation efficiency of sedimentary organic matter indicates a bioavailable organic pool larger than can be provided by the living component.


Sedimentary Organic Matter Deposit Feeder Organic Detritus Macoma Balthica Pyridinium Bromide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Arnold, J.D. and C.Y.C. Pak. 1962. Protein-protein interaction at the air-water interface. J. Coll. Sci. 17: 348–362.CrossRefGoogle Scholar
  2. Baird, B.H. and D. Thistle. 1986. Uptake of bacterial extracellular polymer by a deposit-feeding holothurian (Isostichopus badionotus). Mar. Biol. 92: 183–187.CrossRefGoogle Scholar
  3. Benoit, G.J., K.K. Turekian, and L.K. Benninger. 1979. Radiocarbon dating of a core from Long Island Sound. Est. Coastal Mar. Sci. 9: 171–180.Google Scholar
  4. Berner, R.A. 1982. Burial of organic carbon and pyrite sulfur in the modern ocean: its geochemical and environmental significance. Am. J. Sci. 282: 451–473.CrossRefGoogle Scholar
  5. Bordovskiy, O.K. 1965. Accumulation and transformation of organic substance in marine sediments. 3. Accumulation of organic matter in bottom sediments. Mar. Geol. 3: 33–82.Google Scholar
  6. Boysen-Jensen, P. 1914. Studies concerning the organic matter of the sea bottom. Rept. Danish Biol. Sta. 22: 5–49.Google Scholar
  7. Canunen, L.M. 1980. The significance of microbial carbon in the nutrition of the deposit feeding polychaete Nereis succinea. Mar. Biol. 61: 9–20.Google Scholar
  8. Christensen, D. and T.H. Blackburn. 1980. Turnover of tracer (14C, 3H labeled) alanine in inshore marine sediments. Mar. Biol. 58: 97–103.Google Scholar
  9. Christensen, D. and T.H. Blackburn. 1982. Turnover of 14C-labeled acetate in marine sediments. Mar. BioI. 71: 113–119.Google Scholar
  10. Craven, D.B. and D. M. Karl. 1984. Microbial RNA and DNA synthesis in marine sediments. Mar. Biol. 83: 129–139.Google Scholar
  11. Ertel, J.R. and J.I. Hedges. 1985. Sources of sedimentary humic substances: vascular plant debris. Geochim. Cosmochim. Acta 49: 2097–2107.CrossRefGoogle Scholar
  12. Garber, J. 1984. 15N tracer study of the short-term fate of particulate organic nitrogen at the surface of coastal marine sediments. Mar. Ecol. Prog. Ser. 16: 89–104.CrossRefGoogle Scholar
  13. George, J.D. 1964. Organic matter available to the polychaete Cirriformia tentacula.ta (Montagu) living in an intertidal mud flat. Limnol. Oceanogr. 9: 453–455.CrossRefGoogle Scholar
  14. Harvey, R.W. and S.N. Luoma. 1984. The role of bacterial exopolymer and suspended bacteria in the nutrition of the deposit-feeding clam, Macoma balthica. J. Mar. Res. 42: 957–968.CrossRefGoogle Scholar
  15. Hobbie, J.E. and C. Lee. 1980. Microbial production of extracellular material: importance in benthic ecology. In: Marine Benthic Dynamics ( Tenore, K.R. and B.C. Coull, Eds.) Univ. So. Carolina Press, pp. 341–346.Google Scholar
  16. Hylleberg Kristensen, J. 1972. Carbohydrases of marine invertebrates with notes on their food and on the natural occurrence of the carbohydrates studied. Mar. Biol. 14: 130–142.Google Scholar
  17. Krom, M.D. and J.T. Westrich. 1980. Dissolved organic matter in the pore waters of recent marine sediments; a review. Colloques Internationaux du C.N.R.S. 294: 103–111.Google Scholar
  18. Marshman, N.A. and K.C. Marshall. 1981. Bacterial growth on proteins in the presence of clay minerals. Soil Biol. Biochein. 13: 127–134.CrossRefGoogle Scholar
  19. Mayer, L.M., S.A. Macko, W.H. Mook, and S. Murray. 1981. The distribution of bromine in coastal sediments and its use as a source indicator for organic matter. Org. Geochem. 3: 37–42.CrossRefGoogle Scholar
  20. Mayer, L.M., P.T. Rahaim, W. Guerin, S.A. Macko, L. Watling, and F.E. Anderson. 1985. Biological and granulometric controls on sedimentary organic matter of an intertidal mudflat. Est. Coast. Shelf Sci. 20: 491–503.CrossRefGoogle Scholar
  21. Mayer, L.M., L.L. Schick, and F.W. Setchell. 1986. Measurement of protein in nearshore marine sediments. Mar. Ecol.-Prog. Ser. 30: 159–165.CrossRefGoogle Scholar
  22. Menzies, R..J., R.Y. George, and G.T. Rowe. 1973. Abyssal Environment,and Ecology of the World Oceans. Wiley-Interscience, 488 pp..Google Scholar
  23. Meyer-Reil, L.-A. 1978. Uptake of glucose by bacteria in the sediment. Mar. Biol. 44: 293–298.CrossRefGoogle Scholar
  24. Murdoch, M.H., F. BS.rlocher, and M.L. Laltoo. 1986. Population dynamics and nutrition of Corophium volutator (Pallas) in the Cumberland Basin (Bay of Fundy). J. Exp. Mar. Biol. Ecol. 103: 235–249.Google Scholar
  25. Neurath, H. and H.B. Bull. 1938. The surface activity of proteins. Chem. Rev. 23: 391–435.CrossRefGoogle Scholar
  26. Parsons, R.T., M.N. Takahashi, and B. Hargrave. 1977. Biological Oceanographic Processes. Pergamon Press, 332 pp.Google Scholar
  27. Phillips, N. 1984. Role of different microbes and substrates as potential suppliers of specific, essential nutrients to marine detritivores. Bull. Mar. Sci. 35: 283–298.Google Scholar
  28. Prahl, F.G. and R. Carpenter. 1983. Polycyclic aromatic hydrocarbon (PAH)-phase associations in Washington coastal sediment. Geothun. Cosmochim. Acta 47: 1013–1023.Google Scholar
  29. Preinuzic, E.T., C.M. Benkovitz, J.S. Gaffney, and J.J. Walsh. 1982. The nature and distribution of organic matter in the surface sediments of world oceans and seas. Org. Geochem. 4: 63–77.CrossRefGoogle Scholar
  30. Rice, D.L. and R.B. Hanson. 1984. A kinetic model for detritus nitrogen: Role of the associated bacteria in nitrogen accumulation. Bull. Mar. Sci. 35: 326–340.Google Scholar
  31. Rice, D.L., T.S. Bianchi, and E.H. Roper. 1986. Experimental studies of sediment reworking and growth of Scoloplos spp. (Orbiniidae: Polychaeta). Mar. Ecol. Prog. Ser. 30: 9–19.CrossRefGoogle Scholar
  32. Sansone, F.J., C.C. Andrews, and M.Y. Okamoto. 1987. Adsorption of short-chain organic acids onto nearshore marine sediments. Geochim. Cosmochim. Acta 51: 1889–1896.CrossRefGoogle Scholar
  33. Self, R.F.L. and P.A. Juinars. 1978. New resource axes for deposit feeders? J. Mar. Res. 36: 627–641.Google Scholar
  34. Suess, E. 1973. Interaction of organic compounds with calcium carbonate. II. Organo-carbonate association in Recent sediments. Geochim. Cosmochim. Acta 37: 2435–2447.CrossRefGoogle Scholar
  35. Taghon, G.L. 1982. Optimal foraging by deposit-feeding invertebrates: roles of particle size and organic coating. Oecologia 52: 295–304.CrossRefGoogle Scholar
  36. Taghon, G.L. and P.A. Jumars. 1984. Variable ingestion rate and its role in optimal foraging behavior of marine deposit feeders. Ecology 65.: 549–558.CrossRefGoogle Scholar
  37. Tanoue, E. and N. Handa. 1979. Differential sorption of organic matter by various sized sediment particles in recent sediment from the Bering Sea. J. Oceanogr. Soc. Japan 35: 199–208.CrossRefGoogle Scholar
  38. Tenore, K.R. 1983. Organic nitrogen and caloric content of detritus III. Effect on growth of a deposit-feeding polychaete, Capitella capitata. Est. Coast. Shelf Sci. 17: 733–742.CrossRefGoogle Scholar
  39. Waksman, S.A. and M. Hotchkiss. 1938. On the oxidation of organic matter in marine sediments by bacteria. J. Mar. Res. 1: 101–118.Google Scholar
  40. Weiler, R.R. and A. A. Mills 1965. Surface properties and pore structure of marine sediments. Deep-Sea Res. 12: 511–529.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1989

Authors and Affiliations

  • Lawrence M. Mayer
    • 1
  1. 1.Oceanography Program Ira C. Darling CenterUniversity of MaineWalpoleUSA

Personalised recommendations