Advertisement

Early Diagenesis of Organic Matter and the Nutritional Value of Sediment

  • Donald L. Rice
  • Donald C. Rhoads
Part of the Lecture Notes on Coastal and Estuarine Studies book series (COASTAL, volume 31)

Abstract

The quantity, quality, and spatial distribution of particulate organic matter (POM) in the bioturbated zone of a sedimentary deposit are intimately related to the size and composition of the deposit-feeding community. Fresh allochthonous POM from the water column and autochthonous POM from epibenthic primary production are incorporated into the deposit by burial and through geophysical and biological mixing. Although the quality and quantity of organic materials produced at or settling onto the sediment surface determine benthic secondary production, subsurface particle transport determines how metabolizable POM is distributed within the deposit. Inasmuch as particle transport itself is often dominated by the mechanical activities of deposit-feeding macrofauna (Rhoads 1974; Aller 1982; Rice 1986), the biomass, species composition, and feeding depths of the deposit-feeding community and the standing crop and vertical distribution of metabolizable organic matter are fundamentally interdependent.

Keywords

Particulate Organic Matter Particulate Organic Carbon Deposit Feeder Subsurface Deposit Feeder Total Particulate Organic Carbon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Aller, R. C. 1980. Diagenetic processes near the sediment-water interface of Long Island Sound. I. Decomposition and nutrient element geochemistry (S,N,P). Adv. Geophys. 22: 237–350.CrossRefGoogle Scholar
  2. Aller, R. C. 1982. The effects of macrobenthos on chemical properties of marine sediment and overlying water. In: McCall, P. L. and M. J. S. Tevesz (eds.), Animal-Sediment Relations, Plenum Press, New York. pp. 53–102.Google Scholar
  3. Anderson, F. E., L. Black, L. E. Watling, W. Mook, and L. M. Mayer. 1982. A temporal and spatial study of inudflat erosion and deposition. J. Sed. Pet. 51: 729–736.Google Scholar
  4. Barbaro, J. R. 1985. Early Diagenesis of Particulate Organic Matter in Bioadvective Sediments, Lowes Cove, Maine. Master of Arts Thesis, State University of New York, Binghamton. 78 pp.Google Scholar
  5. Bembia, P. J. 1985. Bioadvective Sediment Mixing and Beryllium-7 Diagenesis in Intertidal Sediments, Lowes Cove, Maine. Master of Arts Thesis, State University of New York, Binghamton. 61 pp.Google Scholar
  6. Berner, R. A. 1980. Early Diagenesis. Princeton Univ. Press, Princeton. 214 pp.Google Scholar
  7. Berner, R. A. 1982. Burial of organic carbon and pyritic sulfur in the modern ocean: its geochemical and environmental significance. Am. J. Sci. 282: 451–473.CrossRefGoogle Scholar
  8. Bianchi, T. S. and J. S. Levinton. 1984. The importance of microalgae, bacteria, and particulate organic matter in the somatic growth of Hydrobia totteni (Gastropoda). J. Mar. Res. 42: 431–443.CrossRefGoogle Scholar
  9. Boudreau, B. P. 1986. Mathematics of tracer mixing in sediments: II. Nonlocal mixing and the biological conveyor-belt phenomenon. Am. J. Sci. 286: 199–238.CrossRefGoogle Scholar
  10. Brown, B. 1982. Spatial and temporal distributions of a deposit-feeding polychaete on a heterogeneous tidal flat. J. Exp. Mar. Biol. Ecol. 65: 213–227.CrossRefGoogle Scholar
  11. Canunen, L. M. 1980. The significance of microbial carbon in the nutrition of the deposit-feeding polychaete Nereis succinea. Mar. Biol. 61: 9–20.Google Scholar
  12. Christian, R. R. and R. L. Wetzel. 1978. Interaction between substrate, microbes, and consumers of Spartina detritus in estuaries. In: M. L. Wiley (ed.), Estuarine Interactions. Academic Press, New York. pp. 93–114.Google Scholar
  13. Dobbs, F. C. and R. B. Whitlatch. 1982. Aspects of deposit-feeding by the polychaete Clymenella torquata. Ophelia 21: 159–166.Google Scholar
  14. Emerson, S. and J. Dymond. 1984. Benthic organic carbon cycling: Toward a balance of fluxes from particle settling and pore water gradients. In: Global Ocean Flux Study. National Academy Press, Washington, D. C. pp. 283–305.Google Scholar
  15. Emerson, S., K. Fischer, C. Reimers, and D. Heggie. 1984. Organic carbon dynamics and preservation in deep-sea sediments. Deep Sea. Res.Google Scholar
  16. Falk, K. In Preparation. Experimental studies of the feeding ecology of Leitoscoloplos sp. (Orbiniidae: Polychaeta) from Barnstable Harbor and Boston Harbor.Google Scholar
  17. Fenchel, T. and T. H. Blackburn. 1979. Bacteria and Mineral Cycling. Academic Press, New York. 225 pp.Google Scholar
  18. Frankenberg, D. and K. L. Smith. 1967. Coprophagy in marine animals. Limnol. Oceanogr. 12: 443–450.CrossRefGoogle Scholar
  19. Gerlach, S. A. 1971. On the importance of marine meiofauna for benthos communities. Oecologia 6: 176–190.CrossRefGoogle Scholar
  20. Hargrave, B. T. 1972. Prediction of egestion by the deposit-feeding amphi-pod Hyalella azteca. Oikos 23: 116–124.CrossRefGoogle Scholar
  21. Hobbie, J. E. and C. Lee. 1980. Microbial production of extracellular material: importance in benthic ecology. In: Tenore, K. R. and B. C. Coull (eds.), Marine Benthic Dynamics. Univ. of S. Carolina Press, Columbia. pp. 341–346.Google Scholar
  22. Hylleberg, J. 1975. Selective feeding by Abarenicola pacifica with selective notes on Abarenicola vagabunda and a concept of gardening in lugworms. Ophelia. 14: 113–137.Google Scholar
  23. Johnson, R. G. 1974. Particulate matter at the sediment-water interface in coastal environments. J. Mar. Res. 33: 313–330.Google Scholar
  24. Johnson, R. G. 1977. Vertical variation in particulate matter in the upper twenty centimeters of marine sediment. J. Mar. Res. 35: 273–282.Google Scholar
  25. Larson and D. C. Rhoads. 1983. The evolution of infaunal communities and sedimentary fabrics. In: M. J. S. Tevesz and P. L. McCall (eds.), Biotic Interactions in Recent and Fossil Benthic Communities. Plenum Press, New York. pp. 627–648.Google Scholar
  26. Levinton, J. S. 1972. Stability and trophic structure in deposit-feeding and suspension-feeding communities. Am. Nat. 106: 472–486.CrossRefGoogle Scholar
  27. Lopez, G. R. and M. A. Crenshaw. 1982. Radiolabelling of sedimentary organic matter with 14C-formaldehyde: preliminary evaluation of a new technique for use in deposit-feeding studies. Mar. Ecol. Prog. Ser. 8: 283–289.CrossRefGoogle Scholar
  28. Lopez, G. R., J. S. Levinton, and L. B. Slobodkin. 1977. The effect of grazing by the detritivore Orchestia grillus on Spartina litter and its associated microbial community. Oecologia (Berl.) 30: 111–127.Google Scholar
  29. Lopez, G. R. and J. S. Levinton. 1987. Ecology of deposit-feeding animals in marine sediments. Quart. Rev. Biol. 62: 235–260.CrossRefGoogle Scholar
  30. Mann, K. H. 1972. Macrophyte production and detritus food chains in coastal waters. Mein. Ist. Ital. Idrobiol. 29: 353–383.Google Scholar
  31. Mayer, L. M. (This Volume)Google Scholar
  32. Mayer, L. M., P. T. Rahaim, W. Guerin, S. A. Macko, L. Watling, and F. E. Anderson. 1985. Biological and granulometric controls on sedimentary organic matter of an intertidal mudflat. Estuar. Coastal. Shelf Sci. 20: 491–503.CrossRefGoogle Scholar
  33. Newell, R. C. 1965. The role of detritus in the nutrition of two marine deposit-feeders, the prosobranch Hydrobia ulvae and the bivalve Ma-coma balthica. Proc. Zool. Soc. Lond. 4: 25–45.Google Scholar
  34. Phillips, N. W. 1984. Role of different microbes and substrates as potential suppliers of specific, essential nutrients to marine detritivores. Bull. Mar. Sci. 35: 283–298.Google Scholar
  35. Rhoads, D. C. 1974. Organism-sediment relations on the muddy sea floor. Oceanogr. Mar. Biol. 12: 263–300.Google Scholar
  36. Rhoads, D. C. and L. F. Boyer. 1982. The effects of marine benthos on physical properties of sediments: A successinal perspective. In: McCall, P. L. and M. J. S. Tevesz (eds.), Animal-Sediment Relations, Plenum Press, New York. pp. 3–43.Google Scholar
  37. Rhoads, D. C. and J. D. Germano. 1986. Interpreting long-term change in benthic communities: a new protocol. Hydrobiologia.Google Scholar
  38. Rhoads, D. C., P. L. McCall, and J. Y. Yingst. 1978. Disturbance and production on the estuarine sea floor. Amer. Sci. 66: 577–586.Google Scholar
  39. Rice, D. L. 1979. Trace element chemistry of aging marine detritus derived from coastal macrophytes. Ph.D. Dissertation, Georgia Institute of Technology, Atlanta. 144 pp.Google Scholar
  40. Rice, D. L. 1982. The detritus nitrogen problem: new observations and perspectives from organic geochemistry. Mar. Ecol. Prog. Ser. 9: 153–162.CrossRefGoogle Scholar
  41. Rice, D. L. 1986. Early diagenesis in bioadvective sediments: relationships between the diagenesis of beryllium-7, sediment reworking rates, and the abundance of conveyor-belt deposit-feeders. J. Mar. Res. 44: 149–184.Google Scholar
  42. Rice, D. L. and Hanson, R. B. 1984. A kinetic model for detritus nitrogen: role of the associated bacteria in nitrogen accumulation. Bull. Mar. Sci. 35: 326–340.Google Scholar
  43. Rice, D. L. and K. R.. Tenore. 1982. Dynamics of carbon and nitrogen during the decomposition of detritus derived from estuarine macrophytes. Estuar. Coastal Shelf Sci. 13: 681–690.CrossRefGoogle Scholar
  44. Rice, D. L. and S. I. Whitlow. 1985a. Early diagenesis of transition metals: a study of metal partitioning between macrofaunal populations and shallow sediments. In: The Fate and Effects of Pollutants. Maryland Seagrant Office, College Park. pp. 21–30.Google Scholar
  45. Rice, D. L. and S. I. Whitlow. 1985b. Diagenesis of transition metals in bioadvective marine sediments. In: Heavy Metals in the Environment, Vol. 2. C. E. C. Consultants, Ltd., Edinburgh. pp. 353–355.Google Scholar
  46. Rice, D. L., T. S. Bianchi, and E. H. Roper. 1986. Experimental studies of sediment reworking and growth of Scoloplos spp. (Orbiniidae: Polychaeta). Mar. Ecol. Prog. Ser. 30: 9–19.Google Scholar
  47. Rosenfeld, J. K. 1981. Nitrogen diagenesis in Long Island Sound sediments. Am. J. Sci. 281: 436–462.CrossRefGoogle Scholar
  48. Russell-Hunter, W. D. 1970. Aquatic Productivity. Macmillan Publ., New York. 306 pp.Google Scholar
  49. Sieburth, J. McN., and J. T. Conover. 1965. Sargassum tannin, an antibiotic that retards fouling. Nature 208: 52–53.Google Scholar
  50. Tenore, K. R. and E. J. Chesney. 1985. The effects of interaction of rate of food supply and population density on the bioenergetics of the opportunistic polychaete Capitella capitata (type 1). Limnol. Oceanogr. 30: 1188–1195.CrossRefGoogle Scholar
  51. Tenore, K. R. and D. L. Rice. 1980. A review of trophic factors affecting secondary production of deposit-feeders. In: Tenore, K. R. and B. C. Coull (eds.), Marine Benthic Dynamics. Univ. of S. Carolina Press, Columbia. pp. 325–340.Google Scholar
  52. Tenore, K. It., R. B. Hansen, B. E. Dornseif, and C. N. Wiederhold. 1979. The effect of organic nitrogen supplement on the utilization of different sources of detritus. Limnol. Oceanogr. 84: 350–355.CrossRefGoogle Scholar
  53. Tenore, K. R., L. Canunen, S. E. G. Findlay, and N. Phillips. 1982. Perspectives of research on detritus: Do factors controlling the availability of detritus to macroconsumers depend on its source? J. Mar. Res. 40: 473–490.Google Scholar
  54. Thayer, C. W. 1979. Biological bulldozing and the evolution of marine benthic communities. Science 203: 458–461.PubMedCrossRefGoogle Scholar
  55. Valiela, I. 1984. Marine Ecological Processes. Springer-Verlag, New York. 546 pp.Google Scholar
  56. Yingst, J. Y. and D. C. Rhoads. 1980. The role of bioturbation in the enhancement of bacterial growth rates in marine sediments. In: Marine Benthic Dynamics, K. R. Tenore and B. C. Coull, eds. Univ. of South Carolina Press, Columbia. pp. 407–421.Google Scholar
  57. Zeitschel, B. 1980. Sediment-water interactions in nutrient dynamics. In: Marine Benthic Dynamics, K. R. Tenore and B. C. Coull, eds. Univ. of S. Carolina Press, Columbia. pp. 195–218.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1989

Authors and Affiliations

  • Donald L. Rice
    • 1
  • Donald C. Rhoads
    • 2
  1. 1.Chesapeake Biological LaboratoryUniversity of MarylandSolomonsUSA
  2. 2.Science Applications International Corp.NewportUSA

Personalised recommendations