Advertisement

Modeling Deposit Feeding

  • Gary L. Taghon
Part of the Lecture Notes on Coastal and Estuarine Studies book series (COASTAL, volume 31)

Abstract

Models are simplifications of reality. An important goal of modeling is to determine how sensitive the results of the model are to variations in the input terms. Models of the feeding and behavior of deposit feeders are a recent addition to benthic ecology (e.g., Calow, 1975; Jumars et al., 1982; Levinton and Lopez, 1977; Taghon et al., 1978; Taghon, 1981). This chapter discusses models that fall under the general heading of optimal foraging theory.

Keywords

Food Selection Deposit Feeder Natural Sediment Optimal Forage Grey Mullet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Anderson, N.H. 1976. Carnivory by an aquatic detritivore, Clistoronia magnifica (Trichoptera: Linmephilidae). Ecology 57: 1081–1085.Google Scholar
  2. Anderson, N.H. and E. Grafius 1975. Utilization and processing of allochthonous material by stream Trichoptera. Verh. Int. Ver. Limnol. 19: 3083–3088.Google Scholar
  3. Barbosa, P. and J. Greenblatt 1979. Suitability, digestibility and assimilation of various host plants of the gypsy moth Lymantria dispar L. Oecologia 43: 111–119.Google Scholar
  4. Belovsky, G.E. 1986. Optimal foraging and community structure: implications for a guild of generalist grassland herbivores. Oecologia 70: 35–52.Google Scholar
  5. Bolton, P.J. and J. Phillipson 1976. Burrowing, feeding, egestion and energy budgets of Allolobophora. rosea (Savigny)(Lumbricidae). Oecologia 23: 225–245.Google Scholar
  6. Bongaarts, J. 1980. Does malnutrition affect fecundity? A summary of evidence. Science 208: 564–569.PubMedGoogle Scholar
  7. Box, G.E.P. 1976. Science and statistics. J. Am. Stat. Assoc. 71: 791–799.Google Scholar
  8. Bubnova, N.P. 1972. The nutrition of the detritus-feeding mollusks Macoma balthica (L.) and Portlandia arctica. (Gray) and their influence on bottom sediments. Oceanology 12: 899–905.Google Scholar
  9. Cadee, G.C. 1976. Sediment reworking by Arenicola marina on tidal flats in the Dutch Wadden Sea. Neth. J. Sea. Res. 10: 440–460.Google Scholar
  10. Caine, E.A. 1975. Feeding and masticatory structures of six species of the crayfish genus Procambarus (Decapoda, Astacidae). Forma Functio 8: 49–66.Google Scholar
  11. Calow, P. 1975. The feeding strategies of two freshwater gastropods, Ancylus fluviatilis Mull and Planorbis contortus Linn., in terms of ingestion rates and absorption efficiencies. Oecologia 20: 33–49.Google Scholar
  12. Calow, P. 1977. Evolution, ecology, and energetics: a study in metabolic adaptation. Adv. Ecol. Res. 10: 1–62.Google Scholar
  13. Calow, P. 1982. Homeostasis and fitness. Am. Nat. 120: 416–419.Google Scholar
  14. Canunen, L.M. 1980. Ingestion rate: an empirical model for aquatic deposit feeders and detritivores. Oecologia. 44: 303–310.Google Scholar
  15. Cannon, W.B. 1929. Organization for physiological homeostasis. Physiol. Rev. 9: 399–431.Google Scholar
  16. Charnov, E.L. 1976. Optimal foraging: the marginal value theorem. Theor. Pop. Biol. 9: 129–136.Google Scholar
  17. Ching, C.V. 1977. Studies on the small grey mullet Liza malinoptera (Valenciennes). J. Fish. Biol. 11: 293–308.Google Scholar
  18. Clements, L.A.J. and S.E. Stancyk 1984. Particle selection by the burrowing brittlestar Micropholis gracillima (Stimpson)(Echinodermata: Ophiuroidea). J. Exp. Mar. Biol. Ecol. 84: 1–13.Google Scholar
  19. Connor, M.S., J.M. Teal and I. Valiela 1982. The effect of feeding by mud snails, Ilyanassa. obsoleta (Say), on the structure and metabolism of a laboratory benthic algal community. J. Exp. Mar. Biol. Ecol. 65: 29–45.Google Scholar
  20. Cowie, R.J. and J.R. Krebs 1979. Optimal foraging in patchy environments. In R.M. Anderson, B.D. Turner, and L.R. Taylor (eds), Population dynamics. Blackwell, Oxford, pp. 183–205.Google Scholar
  21. Cummins, K.W., R.C. Peterson, F.O. Howard, J.C. Wuycheck and V.I. Holt 1973. The utilization of leaf litter by stream detritivores. Ecology 54: 336–345.Google Scholar
  22. Dadd, R.H. 1960. Observations on the palatability and the utilisation of food by locusts, with particular reference to the interpretation of performances in growth trials using synthetic diets. Entomo]. Exp. Appl. 3: 283–304.Google Scholar
  23. Dalton, D.C. 1963. Effects of dilution of the diet with an indigestible filler on feed intake in the mouse. Nature 197: 909–910.PubMedGoogle Scholar
  24. Dalton, D.C. 1965. Dilution of the diet and feed intake in the mouse. Nature 205: 807.Google Scholar
  25. Dauer, D.M. 1985. Functional morphology and feeding behavior of Paraprionospio pinnata (Polychaeta: Spionidae). Mar. Biol. 85: 143–151.Google Scholar
  26. Davis, R.B. 1974. Stratigraphic effects of tubificids in profundal lake sediments. Limnol. Oceanogr. 19: 466–488.Google Scholar
  27. DeSilva, S.S. and M.J.S. Wijeyaratine 1977. Studies on the biology of young grey mullet, Mugil cephalus L. II. Food and feeding. Aquaculture 12: 157–167.Google Scholar
  28. Dobbs, F.C. and T.A. Scholly 1986. Sediment processing and selective feeding by Pectinaria koreni (Polychaeta: Pectinariidae). Mar. Ecol. Prog. Ser. 29: 165–176.Google Scholar
  29. Doucet, P.G. and N.M. vanStraalen 1980. Analysis of hunger from feeding rate observations. Anim. Behay. 28: 913–921.Google Scholar
  30. Eckman, J.E. 1985. Flow disruption by an animal-tube mimic affects sediment bacterial colonization. J. Mar. Res. 43: 419–435.Google Scholar
  31. Eckman, J.E. and A.R.M. Nowell 1984. Boundary skin friction and sediment transport about an animal-tube mimic. Sedimentology 31: 851–862.Google Scholar
  32. Ellers, O. and M. Telford 1984. Collection of food by oral surface podia in the sand dollar, Echinarachnius parma (Lamarck). Biol. Bull. 166: 574–582.Google Scholar
  33. Falk, K. 1986. Experimental studies of the feeding ecology of Scoloplos spp. (Orbiniidae: Polychaete) from Barnstable Harbor and Boston Harbor. Biol. Bull. 117: 479–480.Google Scholar
  34. Fenchel, T., L.H. Kofoed and A. Lappalainen 1975. Particle size-selection of two deposit feeders: the amphipod Corophium volutator and the prosobranch Hydrobia. ulvae. Mar. Biol. 30: 119–128.Google Scholar
  35. Forbes, V.E. and G.R. Lopez 1986. Changes in feeding and crawling rates of Hydrobia truncata (Prosobranchia: Hydrobiidae) in response to sedimentary chlorophyll-a and recently egested sediment. Mar. Ecol. Prog. Ser. 33: 287–294.Google Scholar
  36. Frankenberg, D. and K.L. Smith 1967. Coprophagy in marine animals. Limnol. Oceanogr. 12: 443–450.Google Scholar
  37. Gelperin, A. 1971. Regulation of feeding. Ann. Rev. Entomol. 16: 365–378.Google Scholar
  38. George, J.D. 1964. Organic matter available to the polychaete Cirriforniia tentaculata (Montagu) living in an intertidal mudflat. Limnol. Oceanogr. 9: 453–455.Google Scholar
  39. Ghiold, J. 1979. Spine morphology and its significance in feeding and burrowing in the sand dollar Mellita. quinquiesperforata (Echinodermata: Echinoidea). Bull. Mar. Sci. 29: 481–490.Google Scholar
  40. Goodbody, I. 1960. The feeding mechanism in the sand dollar Mellita sexiesperforata. (Leske). Biol. Bull. 119: 80–86.Google Scholar
  41. Gordon, D.C. 1966. The effects of the deposit feeding polychaete Pectinaria gouldii on the intertidal sediments at Barnstable Harbor. Limnol. Oceanogr. 11: 327–332.Google Scholar
  42. Grafius, E. and N.H. Anderson 1979. Population dynamics, bioenergetics, and role of Lepidostoma. quercina. Ross (Trichoptera: Lepidostomatidae) in an Oregon woodland stream. Ecology 60: 433–441.Google Scholar
  43. Guidi, L.D. 1986. The feeding response of the epibenthic amphipod Siphonoecetes dellavallei Stebbing to varying food particle sizes and concentrations. J. Exp. Mar. Biol. Ecol. 98: 51–63.Google Scholar
  44. Hainsworth, F.R., M.F. Tardiff and L.L. Wolf 1981. Proportional control for daily energy regulation in hummingbirds. Physiol. Zool. 54: 452–462.Google Scholar
  45. Hammond, L.S. 1982. Analysis of grain-size selection by deposit-feeding holothurians and echinoids (Echinodermata) from a shallow reef lagoon, Discovery Bay, Jamaica. Mar. Ecol. Prog. Ser. 8: 25–36.Google Scholar
  46. Hargrave, B.T. 1970. The utilization of benthic microflora by Hyalella azteca. J. Anim. Ecol. 39: 427–437.Google Scholar
  47. Hart, D.D. and S.C. Latta 1986. Determinants of ingestion rates in filter-feeding larval blackflies (Diptera: Simuliidae). Freshwat. Biol. 16: 1–14.Google Scholar
  48. Hart, T.J. 1930. Preliminary notes on the bionomics of the amphipod, Corophium volutator Pallas. J. Mar. Biol. Assoc. U.K. 16: 761–789.Google Scholar
  49. Hauksson, E. 1979. Feeding biology of Stichopus tremulus, a deposit-feeding holothurian. Sarsia 64: 155–160.Google Scholar
  50. Hickman, C.S. 1981. Selective deposit feeding by the deep-sea archaeogastropod Bathybembix aeola. Mar. Ecol. Prog. Ser. 6: 339–342.Google Scholar
  51. Hobson, K.D. 1967. The feeding and ecology of two north Pacific Abarenicola species (Arenicolidae, Polychaeta). Biol. Bull. 133: 343–354.Google Scholar
  52. Hofer, R. 1982. Protein digestion and proteolytic activity in the digestive tract of an omnivorous cyprinid. Conip. Biochem. Physiol. 72A: 55–63.Google Scholar
  53. Hofer, R., H. Forstner and R. Rettenwander 1982. Duration of gut passage and its dependence on temperature and food consumption in roach, Rutilus: laboratory and field experiments. J. Fish. Biol. 20: 289–299.Google Scholar
  54. Hughes, R.N. 1979. Optimal diets under the energy maximization premise: the effects of recognition time and learning. Am. Nat. 113: 209–221.Google Scholar
  55. Hughes, R.N. 1980. Optimal foraging theory in the marine context. Oceanogr. Mar. Biol. Ann. Rev. 18: 423–481.Google Scholar
  56. Hughes, T.G. 1973. Deposit feeding in Abra tenais (Bivalvia: Tellinacea). J. Zool. 171: 499–512.Google Scholar
  57. Hughes, T.G. 1975. The sorting of food particles by Abra. sp. (Bivalvia: Tellinacea). J. Exp. Mar. Biol. Ecol. 20: 137–156.Google Scholar
  58. Hughes, T.G. 1979. Mode of life and feeding in maldanid polychaetes from St. Margaret’s Bay, Nova Scotia. J. Fish. Res. Board Can. 36: 1503–1507.Google Scholar
  59. Hylleberg, J. 1975. Selective feeding by Abarenicola pacifica with notes on Abarenicola vagabonda and a concept of gardening in lugworms. Ophelia 14: 113–137.Google Scholar
  60. Hylleberg, J. and V.F. Gallucci 1975. Selectivity in feeding by the deposit-feeding bivalve Macoma nasuta. Mar. Biol. 32: 167–178.Google Scholar
  61. Iverson, T.M. 1974. Ingestion and growth in Sericostoma. personatum (Trichoptera) in relation to the nitrogen content of ingested leaves. Oikos 25: 278–282.Google Scholar
  62. Jaccarini, V. and P.J. Schembri 1977. Feeding and particle selection in the echiuran worm Bonellia viridis Rolands (Echiura: Bonelliidae). J. Exp. Mar. Biol. Ecol. 28: 163–181.Google Scholar
  63. Jaeger, R.G. and A.M. Rubin 1982. Foraging tactics of a terrestrial salamander: judging prey profitability. J. Anim. Ecol. 51: 167–176.Google Scholar
  64. Jumars, P.A. and R.F.L. Self 1986. Gut-marker and gut-fullness methods for estimating field and laboratory effects of sediment transport on ingestion rates of deposit feeders. J. Exp. Mar. Biol. Ecol. 98: 293–310.Google Scholar
  65. Jumars, P.A., R.F.L. Self and A.R.M. Nowell 1982. Mechanics of particle selection by tentaculate deposit feeders. J. Exp. Mar. Biol. Ecol. 64: 47–70.Google Scholar
  66. Khripounoff, A. and M. Sibuet 1980. La nutrition d’echinodermes abyssaux. I. Alimentation des holothuries. Mar. Biol. 60: 17–26.Google Scholar
  67. Kikuchi, E. and Y. Kurihara 1977. In vitro studies on the effects of tubificids on the biological, chemical and physical characteristics of submerged ricefield soil and overlying water. Oikos 29: 348–356.Google Scholar
  68. Kislalioglu, M. and R.N. Gibson 1976. Prey ‘handling time’ and its importance in food selection by the 15-spined stickleback, Spinachia (L.). J. Exp. Mar. Biol. Ecol. 25: 151–158.Google Scholar
  69. Kitchell, J.A. 1979. Deep-sea foraging pathways: an analysis of randomness and resource exploitation. Paleobiology 5: 107–125.Google Scholar
  70. Lane, J.M. and J.M. Lawrence 1982. Food, feeding and absorption efficiencies of the sand dollar, McIlita. quinquiesperforata (Leske). Estuar. Coast. Shelf Sci. 14: 421–431.Google Scholar
  71. Lee, K.E. 1985. Earthworms-Their Ecology and Relationships With Soil and Land Use. Academic Press, Sydney, 411 pp.Google Scholar
  72. Levinton, J.S. 1979. Deposit-feeders, their resources, and the study of resource limitation. In R.J. Livingston (ed), Ecological processes in coastal and marine systems. Plenum Press, New York, pp. 117–141.Google Scholar
  73. Levinton, J.S. 1987. The body size-prey size hypothesis and Hydrobia. Ecology 68: 229–231.Google Scholar
  74. Levinton, J.S. and G.R. Lopez 1977. A model of renewable resources and limitations of deposit-feeding benthic populations. Oecologia 31: 177–190.Google Scholar
  75. Lopez, G.R. and L.H. Kofoed 1980. Epipsammic browsing and deposit-feeding in mud snails (Hydrobiidae). J. Mar. Res. 38: 585–599.Google Scholar
  76. MacArthur, R.H. and E.R. Pianka 1966. On optimal use of a patchy environment. Am. Nat. 100: 603–609.Google Scholar
  77. Marais, J.F.K. 1980. Aspects of food intake, food selection, and alimentary canal morphology of Mugil cephalus (Linnaeus, 1958 [sic]), Liza. tricuspidens (Smith, 1935), L. richardsoni (Smith, 1846), and L. dumerili (Steindachner, 1869). J. Exp. Mar. Biol. Ecol. 44: 193–209.Google Scholar
  78. Martin, N.A. 1982. The interaction between organic matter in the soil and the burrowing activity of three species of earthworms (Oligochaeta: Lumbricidae). Pedobiologia 24: 1885–190.Google Scholar
  79. Massin, C. 1980. The sediment ingested by Holothuria tubulosa Gmel (Holothuroidea: Echinoderinata). In M. Jangoux (ed), Echinoderms: present and past. A.A. Balkema, Rotterdam, pp. 205–208.Google Scholar
  80. McGinnis, A.J. and R. Kasting 1967. Dietary cellulose: effect on food consumption and growth of a grasshopper. Can. J. Zool. 45: 365–367.Google Scholar
  81. McNair, J.N. 1981. A stochastic foraging model with predator training effects. II. Optimal diets. Theor. Pop. Biol. 19: 147–162.Google Scholar
  82. Meadows, P.S. and A.H. Bird 1974. Behaviour and local distribution of the freshwater oligochaete Nais pardalis Piguet (Family Naididae). Hydrobiologia 44: 265–275.Google Scholar
  83. Merson, M.H. and R.L. Kirkpatrick 1983. Role of energy intake in the maintenance of reproduction in female white-footed mice. Am. Midl. Nat. 109: 206–208.Google Scholar
  84. Miller, D.C. 1984. Mechanical post-capture particle selection by suspension-and deposit-feeding Corophium. J. Exp. Mar. Biol. Ecol. 82: 59–76.Google Scholar
  85. Miller, D.C. and P.A. Jumars 1986. Pellet accumulation, sediment supply, and crowding as determinants of surface deposit-feeding rate in Pseudopolydora kempi japonica Imajima and Hartman (Polychaeta: Spionidae.). J. Exp. Mar. Biol. Ecol. 99: 1–17.Google Scholar
  86. Mitchell, M.J. 1979. Functional relationships of inacroinvertebrates in heterotrophic systems with emphasis on sewage sludge decomposition. Ecology 60: 1270–1283.Google Scholar
  87. Monakov, A.V. 1972. Review of studies on feeding of aquatic invertebrates conducted at the Institute if Biology of Inland Waters, Academy of Sciences, USSR.. J. Fish. Res. Board Can. 29: 363–383.Google Scholar
  88. Montague, C.L. 1980. A natural history of temperate Western Atlantic fiddler crabs (genus [Ica) with reference to their impact on the salt marsh. Contrib. Mar. Sci. 23: 25–55.Google Scholar
  89. Moodie, G.E.E. and C.C. Lindsey 1972. Life-history of a unique cyprinid fish, the chiselmouth (Acrocheilus alutaceus), in British Columbia. Syesis 5: 55–61.Google Scholar
  90. Moriarty, D.J.W. 1977. Quantification of carbon, nitrogen, and bacterial biomass in the food of some penaeid prawns. Aust. J. Mar. Freshwat. Res. 28: 113–118.Google Scholar
  91. Moriarty, D.J.W. 1982. Feeding of Holothuria atra and Stichopus chloronotus on bacteria, organic carbon and organic nitrogen in sediments of the Great Barrier Reef. Aust. J. Mar. Freshwat. Res. 33: 255–263.Google Scholar
  92. Nichols, F.H. 1974. Sediment turnover by a deposit-feeding polychaete. Lirnnol. Oceanogr. 19: 945–950.Google Scholar
  93. Nielsen, M.V. and L.H. Kofoed 1982. Selective feeding and epipsammic browsing by the deposit-feeding amphipod Corophiurn volutator. Mar. Ecol. Prog. Ser. 10: 81–88.Google Scholar
  94. Odum, W.E. 1968. The ecological significance of fine particle selection by the striped mullet Mugil cephalus. Lirnnol. Oceanogr. 13: 92–98.Google Scholar
  95. Orians, G.H. and N.E. Pearson 1979. On the theory of central place foraging. In D.J. Horn, G.R. Stairs, and R.D. Mitchell (eds), Analysis of ecological systems. Ohio State University Press, Columbus, pp. 155–177.Google Scholar
  96. Otto, C. and B.J. Svensson 1981. A comparison between food, feeding and growth of two mayflies, Ephemera da.nica. and Siphlonurus aestivalis (Ephemeroptera) in a South Swedish stream. Arch. Hydrobiol. 91: 341–350.Google Scholar
  97. Payne, A.I. 1976. The relative abundance and feeding habits of the grey mullet species occurring in an estuary in Sierra Leone, West Africa. Mar. Biol. 35: 277–286.Google Scholar
  98. Penry, D.L. and P.A. Jumars 1987. Modeling animal guts as chemical reactors. Am. Nat. 129: 69–96.Google Scholar
  99. Petch, D.A. 1986. Selective deposit-feeding by Lumbrineris cflatreilli (Polychaeta: Lumbrineridae), with a new method for assessing selectivity by deposit-feeding organisms. Mar. Biol. 93: 443–448.Google Scholar
  100. Phillips, N.W. 1984. Compensatory intake can be consistent with an optimal foraging model. Am. Nat. 123: 867–872.Google Scholar
  101. Pianka, E.R. 1976. Natural selection of optimal reproductive tactics. Am. Zool. 16: 775–784.Google Scholar
  102. Pierce, G.J. and J.G. Ollason 1987. Eight reasons why optimal foraging theory is a complete waste of time. Oikos 49: 111–118.Google Scholar
  103. Powell, E.N. 1977. Particle size selection and sediment reworking in a funnel feeder, Leptosynapta tenuis (Holothuroidea, Synaptidae). Int. Revue Ges. Hydrobiol. 62: 385–408.Google Scholar
  104. Price, H.J. and G.-A. Paffenhöfer 1984. Effects of feeding experience in the copepod Eucalanus pileatus: a cinematographic study. Mar. Biol. 84: 35–40.Google Scholar
  105. Putnam, R.J. 1980. Consumption, protein and energy intake of fallow deer fawns on diets of differing nutritional quality. Acta Theriologica 25: 403–413.Google Scholar
  106. Pyke, G.H. 1984. Optimal foraging theory: a critical review. Ann. Rev. Ecol. Syst. 15: 523–575.Google Scholar
  107. Reading, C.J. 1979. Changes in the downshore distribution of Macoma balthica (L.) in relation to shell length. Estuar. Coast. Mar. Sci. 8: 1–13.Google Scholar
  108. Roberts, D. and C. Bryce 1982. Further observations on tentacular feeding mechanisms in holothurians. J. Exp. Mar. Biol. Ecol. 59: 151–163.Google Scholar
  109. Roberts, M.H. 1968. Functional morphology of mouth parts of the hermit crabs, Pagurus longicarpus and Pagurus pollicaris. Ches. Sci. 9: 9–20.Google Scholar
  110. Robertson, J.R., K. Bancroft, G. Vermeer and K. Plaisier 1980. Experimental studies on the foraging behavior of the sand fiddler crab Uca pugilator (Bose, 1802). J. Exp. Mar. Biol. Ecol. 44: 67–83.Google Scholar
  111. Robertson, J.R., J.A. Fudge and G.K. Vermeer 1981. Chemical and live feeding stimulants of the sand fiddler crab, Uca pugilator (Bosc). J. Exp. Mar. Biol. Ecol. 53: 47–64.Google Scholar
  112. Robertson, J.R. and S.Y. Newell 1982. Experimental studies of particle ingestion by the sand fiddler crab Uca pugilator (Bosc). J. Exp. Mar. Biol. Ecol. 59: 1–21.Google Scholar
  113. Savory, C.J. 1980. Meal occurrence in Japanese quail in relation to particle size and nutrient density. Anim. Behay. 28: 160–171.Google Scholar
  114. Scheibling, R.E. 1980. The microphagous feeding behavior of Oreaster reticulatus (Echinodermata: Asteroidea). Mar. Behay. Physiol. 7: 225–232.Google Scholar
  115. Scriber, J.M. and P. Feeny 1979. Growth of herbivorous caterpillars in relation to feeding specialization and to the growth form of their food plants. Ecology 60: 829–850.Google Scholar
  116. Self, R.F.L. and P.A. Jumars 1978. New resource axes for deposit feeders? J. Mar. Res. 36: 627–641.Google Scholar
  117. Shick, J.M., K.C. Edwards and J.H. Dearborn 1981. Physiological ecology of the deposit-feeding sea star Ctenodiscus crispatus: ciliated surfaces and animal-sediment interactions. Mar. Ecol. Prog. Ser. 5: 165–184.Google Scholar
  118. Sibbald, I.R., S.J. Slinger and G.C. Ashton 1960. The weight gain and feed intake of chicks fed a ration diluted with cellulose or kaolin. J. Nutrition 72: 441–446.Google Scholar
  119. Sibly, R.M. 1981. Strategies of digestion and defecation. In C.R. Townsend and P. Calow (eds), Physiological ecology: an evolutionary approach to resource use. Sinauer Associates, Sunderland, pp. 109–139.Google Scholar
  120. Slansky, F. and P. Feeny 1977. Stabilization of the rate of nitrogen accumulation by larvae of the cabbage butterfly on wild and cultivated food plants. Ecol. Monogr. 47: 209–228.Google Scholar
  121. Speakman, J.R. 1986. The optimum search speed of terrestrial predators when feeding on sedentary prey: a predictive model. J. Theor. Biol. 122: 401–407.Google Scholar
  122. Stearns, S.C. and P. Schmid-Hempel 1987. Evolutionary insights should not be wasted. Oikos 49: 118–125.Google Scholar
  123. Streit, B. 1978. A note on the nutrition of Stylaria. lacustris (Oligochaeta: Naididae). Hydrobiologia 61: 273–276.Google Scholar
  124. Taghon, G.L. 1981. Beyond selection: optimal ingestion rate as a function of food value. Am. Nat. 118: 202–214.Google Scholar
  125. Taghon, G.L. 1982. Optimal foraging by deposit-feeding invertebrates: roles of particle size and organic coating. Oecologia 52: 295–304.Google Scholar
  126. Taghon, G.L. and P.A. Jumars 1984. Variable ingestion rate and its role in optimal foraging behavior of narine deposit feeders. Ecology 65: 549–558.Google Scholar
  127. Taghon, G.L., A.R.M. Nowell and P.A. Jumars 1984. Transport and breakdown of fecal pellets: biological and sedimentological implications. Limnol. Oceanogr. 29: 64–72.Google Scholar
  128. Taghon, G.L., R.F.L. Self and P.A. Jumars 1978. Predicting particle selection by deposit feeders: a model and its implications. Limnol. Oceanogr. 23: 752–759.Google Scholar
  129. Tanzen, S. and C.L. Gass 1986. Energy intake rates and nectar concentration preferences by hummingbirds. Oecologia 70: 20–23.Google Scholar
  130. Tevesz, M.J.S., F.M. Soster and P.L. McCall 1980. The effects of size-selective feeding by oligochaetes on the physical properties of river sediments. J. Sed. Petrol. 50: 561–568.Google Scholar
  131. Tietjen, J.H. and J.J. Lee 1975. Axenic culture and uptake of dissolved organic substances by the marine nematode, R. habditis marina Bastian. Cah. Biol. Mar. 16: 685–694.Google Scholar
  132. Townsend, C.R. and P. Calow (eds) 1981. Physiological ecology: an evolutionary approach. Sinauer Associates, Sunderland, Mass.Google Scholar
  133. Tsuchiya, T. and Y. Kurihara 1979. The feeding habits and food sources of the deposit-feeding polychaete, Neanthes japonica. (Izuka). J. Exp. Mar. Biol. Ecol. 36: 79–89.Google Scholar
  134. Valiela, I., D.F. Babiec, W. Atherton, S. Seitzinger and C. Krebs 1974. Some consequences of sexual dimorphism: feeding in male and female fiddler crabs, Ica pugnax (Smith). Biol. Bull. 147: 652–660.Google Scholar
  135. Valiela, I., L. Koumjian, T. Swain, J.M. Teal and J.E. Hobbie 1979. Cinnamic acid inhibition of detritus feeding. Nature 280: 55–57.Google Scholar
  136. Valiela, I., J. Wilson, R. Buchsbaum, C. Rietsma, D. Bryant, K. Foreman and J. Teal 1984. Importance of chemical composition of salt marsh litter on decay rates and feeding by detritivores. Bull. Mar. Sci. 35: 261–269.Google Scholar
  137. Venkatesh, K. and P.E. Morrison 1980. Crop filling and crop emptying by the stable fly Stomoxys calcitrans L. Can J. Zool. 58: 57–63.Google Scholar
  138. Warner, G.F. 1977. The biology of crabs. Elek, London, 202 pp.Google Scholar
  139. Weingarten, H.P. 1983. Conditioned cues elicit feeding in sated rats: a role for learning in meal inhibition. Science 220: 431–433.PubMedGoogle Scholar
  140. White, T.C.R. 1978. The importance of a relative shortage of food in animal ecology. Oecologia 33: 71–86.Google Scholar
  141. Whitlatch, R.B. 1974. Food-resource partitioning in the deposit-feeding polychaete Pectinaria gouldii. Biol. Bull. 147: 227–235.Google Scholar
  142. Whitlatch, R.B. and J.R. Weinberg 1982. Factors influencing particle selection and feeding rate in the polychaete Cistenides (Pectinaria) gouldii. Mar. Biol. 71: 33–40.Google Scholar
  143. Williams, J.P.G. and P.C.R. Hughes 1975. Catch-up growth in rats undernourished for different periods during the suckling period. Growth 39: 179–193.PubMedGoogle Scholar
  144. Yingst, J.Y. 1982. Factors influencing rates of sediment ingestion by Parastichopus parvimensis (Clark), an epibenthic deposit-feeding holothurian. Estuar. Coast. Shelf Sci. 14: 119–134.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1989

Authors and Affiliations

  • Gary L. Taghon
    • 1
  1. 1.College of OceanographyOregon State UniversityCorvallisUSA

Personalised recommendations