Deposit Feeding and Coastal Oceanography

  • Jeffrey S. Levinton
Part of the Lecture Notes on Coastal and Estuarine Studies book series (COASTAL, volume 31)


Deposit feeders satisfy their nutritional requirements from the organic fraction of ingested sediment. This nonconunittal statement masks a number of problems and controversies that have occupied the efforts of nutritional biologists, biological oceanographers, and sedimentologists. The exact mode of nutrition of deposit feeders is of great interest to those working on nutrient recycling in the water column. Deposit feeders may ingest and assimilate phytodetritus and they may influence the rate of mineralization and return of dissolved nutrients to the water column. In some cases detritus is probably digested and assimilated directly. but sonic detritus is relatively indigestible and may have to be cycled through the microbiota before it becomes available to deposit feeders. The effects of deposit feeders on the physical and chemical properties of sediments can strongly influence sediment resuspension and transport. These interactions explain why deposit feeders are of central importance in coastal oceanography and why the resolution of certain specific problems may take oceanographic research in alternate directions. It is the purpose of this introductory chapter to outline the major issues and to place them in perspective.


Salt Marsh Benthic Diatom Suspension Feeder Deposit Feeder Macoma Balthica 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Allen, J.A. and H.L. Sanders. 1966. Adaptations to abyssal life as shown by the bivalve Abra profundorum Deep-Sea Res. 13: 1175–1184.Google Scholar
  2. Baker, J.H. and L.A. Bradnam. 1976. The role of bacteria in the nutrition of aquatic detritivores. Oecologia. (Berl.) 24: 95–104.CrossRefGoogle Scholar
  3. Bianchi, T.S. and J.S. Levinton. 1981. Nutrition and food limitation of deposit feeders. II. Differential effects of Hydrobia totteni and Ilyanassa obsoleta on the microbial conununity. J. Mar. Res. 39: 547–556.Google Scholar
  4. Bianchi, T.S. and J.S. Levinton. 1984. The importance of microalgae, bacteria, and particulate organic matter in the nutrition of Hydrobia totteni. J. Mar. Res. 39: 547–556.Google Scholar
  5. Blegvad, H. 1914. Food and conditions of nourishment among the communities of invertebrate animals on the sea bottom in Danish waters. Rep. Danish Biol. Stat. 22: 41–78.Google Scholar
  6. Calow, P. 1975a. The feeding strategies of two freshwater gastropods, Ancylus fluviatilis Mull. and Planorbis contortus Linn. (Pulmonata) in terms of ingestion rates and absorption efficiencies. Oecologia (Berl.) 20: 33–49.CrossRefGoogle Scholar
  7. Calow, P. 1975b. Defaecation strategies of two freshwater gastropods, Ancylus fluviatilis Mull. and Planorbis contortus Linn. (Pulmonata with a comparison of field and laboratory estimates of food absorption rate. Oecologia (Berl.) 20: 51–63.)CrossRefGoogle Scholar
  8. Cammen, L.M. 1980a. The significance of microbial carbon in the nutrition of the deposit feeding polychaete Nereis succinea. Mar. Biol. 61: 9–20.CrossRefGoogle Scholar
  9. Cammen, L.M. 1980b. Ingestion rate: an empirical model for aquatic deposit feeders and detritivores. Oecologia 44: 303–310.CrossRefGoogle Scholar
  10. Cammen, L.M. 1982. Effect of particle size on organic content and microbial abundance within four marine sediments. Mar. Ecol. Prog. Ser. 9: 273–280.CrossRefGoogle Scholar
  11. Carman, K.R. and D. Thistle. 1985. Microbial food partitioning by three species of benthic copepods. Mar. Biol. 88: 143–148.CrossRefGoogle Scholar
  12. Christensen, H. and E. Kanneworff. 1986. Sedimentation of phytoplankton during a spring bloom in the Oresund. Ophelia 26: 109–122.Google Scholar
  13. Connor, M.S., J.M. Teal, and I. Valiela. 1982. The effect of feeding by mud snails, Ilyanassa obsoleta, on the structure and metabolism of a laboratory benthic algal community. J. Exp. Mar. Biol. Ecol. 65: 29–45.CrossRefGoogle Scholar
  14. Crosby, N.D. and R.G.B. Reid. 1971. Relationships between food, phylogeny, and cellulose digestion in the bivalvia. Can. J. Zool. 49: 617–622.PubMedCrossRefGoogle Scholar
  15. Dale, N.G. 1974. Bacteria in intertidal sediments: factors related to their distribution. Limnol. Oceanogr. 19: 509–518.CrossRefGoogle Scholar
  16. Dauer, D.M. 1983. Functional morphology and feeding behavior of Scolelepis squamata (Polychaeta: Spionidae). Mar. Biol. 77: 279–285.CrossRefGoogle Scholar
  17. DeFlaun, M.F. and L.M. Mayer. 1983. Relationships between bacteria and grain surfaces in intertidal sediments. Limnol. Oceanogr. 28: 873–881.CrossRefGoogle Scholar
  18. Doris, V.E. 1984. Feeding selectivity in the deposit-feeding gastropod, Hydrobia totteni with regard to mineral grain surface area and sedimentary diatom abundance. Masters thesis, State Univ. of New York at Stony Brook, 51 pp.Google Scholar
  19. Fenchel, T. 1970. Studies on the decomposition of organic detritus from the turtle grass Thalassia testudinum. Limnol. Oceanogr. 15: 14–20.Google Scholar
  20. Fenchel, T., and L.H. Kofoed. 1976. Evidence for exploitative interspecific competition in mud snails (Hydrobiidae). Oikos 27: 367–376.CrossRefGoogle Scholar
  21. Fenchel, T., C.P. McRoy, J.C. Ogden, P. Parker, and W.E. Rainey. 1979. Symbiotic cellulose degradation in green turtles. Appl. Environ. Microbiol. 37: 348–350.PubMedGoogle Scholar
  22. Findlay, S. and J.L. Meyer. 1984. Significance of bacterial biomass and production as an organic carbon source in lotit detrital systems. Bull. Mar. Sci. 25: 318–325.Google Scholar
  23. Findlay, S. and K.R. Tenore. 1982. Nitrogen source for a detritivore: detritus substrate vs. associated microbes. Science 218: 371–373.PubMedCrossRefGoogle Scholar
  24. Gilbert, M.A. 1977. The behavior and functional morphology of deposit feeding in Macoma balthica (Linne 1758), in New England. J. Moll. Stud. 43: 18–27.Google Scholar
  25. Grassle, J.F., J.P. Grassle, L.S. Brown-Leger, R.F. Petrecca and N.J. Copley. 1985. Subtidal macrobenthos of Narragansett Bay. Field and mesocosm studies of the effects of eutrophication and organic input on benthic populations. IN J.S. Gray and M.E. Christiansen, eds., Marine Biology of Polar Regions and Effects of Stress on Marine Organisms. pp. 421–434. New York: John Wiley and Sons.Google Scholar
  26. Haines, E.B. 1975. Nutrient inputs to the coastal zone: the Georgia and South Carolina shelf. IN Estuarine Research, L.E. Cronin, ed., vol. 1, pp. 303–324. New York: Academic Press.Google Scholar
  27. Haines, E.B. 1977. The origins of detritus in Georgia salt marsh estuaries. Oikos 29: 254–260.CrossRefGoogle Scholar
  28. Hammond, L.S. 1982. Analysis of grain-size selection by deposit-feeding holothurians and echinoids (Echinodermata) from a shallow reef lagoon, Discovery Bay, Jamaica. Mar. Ecol. Progr. Ser. 8: 25–36.CrossRefGoogle Scholar
  29. Hargrave, B.T. 1970. The utilization of benthic microflora by Hyalella azteca (Amphipoda). J. Anim. Ecol. 39: 427–437.CrossRefGoogle Scholar
  30. Hargrave, B.T. 1976. The central role of invertebrate faeces in sediment decomposition. IN The Role of Terrestrial and Aquatic Organisms in Decomposition Processes, J.M. Anderson and A. MacFadyen, eds., pp. 301–321. Oxford, U.K.: Blackwell Scientific Publications.Google Scholar
  31. Harrison, P.D. and K.H. Mann. 1975. Detritus formation from eelgrass (Zostera marina) the relative effects of fragmentation, leaching and decay. Limnol. Oceanogr. 20: 924–934.CrossRefGoogle Scholar
  32. Holme, N.A. 1950. Population dispersion in Tellina tenuis da Costa. J. Mar. Biol. Ass. U.K. 29: 267–280.CrossRefGoogle Scholar
  33. Hughes, R.N. 1969. A study of feeding in Scrobicularia plana. J. Mar. Biol. Ass. U.K. 49: 805–823.CrossRefGoogle Scholar
  34. Hylleberg, J. 1976. Resource partitioning on basis of hydrolytic enzymes in deposit-feeding mud snails (Hydrobiidae). II. Studies on niche overlap. Oecologia (Berl.) 23: 115–125.CrossRefGoogle Scholar
  35. Hylleberg, J. and V. Gallucci. 1975. Selectivity in feeding by the deposit feeding bivalve Macoma nasuta. Mar. Biol. 32: 167–178.CrossRefGoogle Scholar
  36. Kermack, D.M. 1955. The anatomy and physiology of the gut of the polychaete Arenicola marina L. Proc. Zool. Soc. London 125: 347–381.CrossRefGoogle Scholar
  37. Levinton, J.S. 1972a. Spatial distribution of Nucula proxima (Protobranchia): an experimental approach. Biol. Bull. 143: 175–183.CrossRefGoogle Scholar
  38. Levinton, J.S. 1972b. Stability and trophic structure in deposit-feeding and suspension-feeding conuuunities. Am. Nat. 106: 472–486.CrossRefGoogle Scholar
  39. Levinton, J.S. 1977. The ecology of deposit-feeding communities: Quisset Harbor, Massachusetts. IN Ecology of Marine Benthos, B.C. Coull, ed., pp. 191–228. Columbia, S.C.: Univ. South Carolina Press.Google Scholar
  40. Levinton, J.S. 1979. Particle feeding by deposit-feeders: models, data, and a prospectus. Pages 423–439 in Marine Benthic Dynamics, ed. B.C. Coull and K.R. Tenore, Univ. South Carolina Press, Columbia, South Carolina USA.Google Scholar
  41. Levinton, J.S. 1985. Complex interactions of a deposit feeder with its resources: roles of density,a competitor, and detrital addition in the growth and survival of the mudsnail Hydrobia totteni. Mar. Ecol.–Prog. Ser. 22: 31–40.CrossRefGoogle Scholar
  42. Levinton, J.S. 1987. The body-size-prey-size hypothesis and Hydrobia. Ecology 68: 229–231.CrossRefGoogle Scholar
  43. Levinton, J.S., and T.S. Bianchi. 1981. Nutrition and food limitation of deposit feeders. I. The role of microbes in the growth of mud snails (Hydrobiidae). J. Mar. Res. 39: 531–545.Google Scholar
  44. Levinton, J.S., T.S. Bianchi, and S. Stewart. 1984. What is the role particulate organic matter in benthic invertebrate nutrition? Bull. Mar. Sci. 35: 270–282.Google Scholar
  45. Levinton, J.S., and G.R. Lopez. 1977. A model of renewable resources and limitation of deposit-feeding benthic populations. Oecologia (Berl.) 31: 177–190.CrossRefGoogle Scholar
  46. Levinton, J.S. and S. Stewart. 1982. Marine succession: the effect of two deposit-feeding gastropod species on the population growth of Paranais litoralis Muller 1784 (Oligochaeta). J. Exp. Mar. Biol. Ecol. 59: 231–241.CrossRefGoogle Scholar
  47. Levinton, J.S., and S. Stewart. 1988. Effects of sediment organics, detrital input, and temperature on demography, production, and body size of a deposit feeder. Mar. Ecol. Prog. Ser. in press.Google Scholar
  48. Lewin, J.C., T. Hruby, and D. Mackas. 1975. Blooms of surf-zone diatoms along the coast of the Olympic peninsula, Washington. V. Environmental conditions associated with blooms (1971 and 1972). Estuar. Coast. Mar. Sci. 3: 229–242.CrossRefGoogle Scholar
  49. Lopez, G.R., and I-J. Cheng. 1982. Ingestion selectivity of sedimentary organic matter by the deposit-feeder Nucula annulata (Bivalvia: Nuculidae). Mar. Ecol. Prog. Ser. 8: 279–282.CrossRefGoogle Scholar
  50. Lopez, G.R., and L.H. Kofoed. 1980. Epipsammic browsing and deposit-feeding in mud snails (Hydrobiidae). J. Mar. Res. 38: 585–599.Google Scholar
  51. Lopez, G.R., and J.S. Levinton. 1978. The availability of microorganisms attached to sediment particles as food for Hydrobia ventrosa. Oecologia (Berlin) 32: 263–275.CrossRefGoogle Scholar
  52. Lopez, G.R.., and J.S. Levinton. 1987. Ecology of deposit-feeding animals in marine sediments. Quart. Rev. Biol. 62: 235–260.CrossRefGoogle Scholar
  53. Lopez, G.R., J.S. Levinton, and L.B. Slobodkin. 1977. The effects of grazing by the detritivore Orchestia grillus on Spartina litter and its associated microbial community. Oecologia (Berl.) 20: 111–127.CrossRefGoogle Scholar
  54. Mann, K.H. 1975. Relationship between morphometry and biological functioning in three coastal inlets of Nova Scotia. IN: Estuarine Research, L.E. Cronin, ed., vol. 1, pp. 634–644. New York: Academic Press.Google Scholar
  55. Marais, J.F.K. 1980. Aspects of food intake, food selection, and alimentary canal morphology of Mugil cephalus (Linnaeus, 1958). Liza tricuspidens (Smith, 1935), L. richardsoni (Smith, 1846), and L. dumerili (Steindachner, 1869). J. Exp. Mar. Biol. Ecol. 44: 193–209.CrossRefGoogle Scholar
  56. Miller, D.C., P.A. Jumars, and A.R.M. Nowell. 1984. Effects of sediment transport on deposit feeding: scaling arguments. Limnol. Oceanogr. 29: 1202–1217.CrossRefGoogle Scholar
  57. Newell, R.C. 1965. The role of detritus in the nutrition of two marine deposit feeders, the prosobranch Hydrobia ulvae and the bivalve Macoma balthica. Proc. Zool. Soc. Lond. 144: 25–45.Google Scholar
  58. Nixon, S. W. 1980. Between coastal marshes and coastal waters–a review of twenty years of speculation and research on the role of salt marshes in estuarine productivity and water chemistry. IN Estuarine and Wetland Processes, E. Hamilton and K.B. MacDonald, eds., pp. 437–525. New York: Plenum.Google Scholar
  59. Nixon, S.W., C.W. Oviatt, and S.S. Hale. 1976. Nitrogen regeneration and the metabolism of coastal marine bottom communities. IN: The Role of Terrestrial and Aquatic Organisms in DecGmposition Processes, J.M. Anderson and A. MacFadyen, eds., pp. 269–283. Oxford, U.K.: Blackwell Scientific Publ.Google Scholar
  60. Nowell, A.R.M., P.A. Jumars, and K. Fauchald. 1984. The foraging strategy of a subtidal and deep-sea deposit feeder. Limnol. Oceanogr. 25: 645–649.CrossRefGoogle Scholar
  61. Odum, E.P. 1980. The status of three ecosystem-level hypotheses regarding salt marsh estuaries: tidal subsidy, outwelling, and detritus-based food chains. IN: Estuarine Perspectives, V.S. Kennedy, ed., pp. 485–495. New York: Academic Press.Google Scholar
  62. Odum, E.P. and A.A. De La Cruz. 1967. Particulate organic detritus in Georgia salt marsh-estuarine ecosystem. IN: Estuaries, G.H. Lauff, ed., pp. 383–388. Washington D.C.: Amer. Assoc. Adv. Sci.Google Scholar
  63. Olafsson, E.B. 1986. Density dependence in suspension-feeding and deposit-feeding populations of the bivalve Macoma balthica: a field experiment. J. Animal Ecol. 55: 517–526.CrossRefGoogle Scholar
  64. Pace, M.L., S. Shinunel, and W.M. Darley. 1979. The effect of grazing by a gastropod, Nassarius obsoletus, on the benthic microbial community of a salt marsh. Est. Coast. Mar. Sci. 9: 121–134.CrossRefGoogle Scholar
  65. Peinert, R., A. Sayre, P. Stegman, C. Stienen, H. Haardt, and V. Smetacek. 1982. Dynamics of primary production and sedimentation in a coastal ecosystem. Neth. J. Sea Res. 16: 276–289.CrossRefGoogle Scholar
  66. Petersen, C. G. J. 1918. The sea bottom and its production of fishfood. A survey of the work done in connection with the valuation of the Danish waters from 1883–1917. Rept. Danish Biol. Stat. 25: 1–62.Google Scholar
  67. Petersen, C. G. J. and P. Boysen Jensen. 1911. Valuation of the sea. I. Animal life of the sea bottom, its food and quantity. Rep. Danish Biol. Stat. 20: 2–77.Google Scholar
  68. Peterson, B.J., R.W. Howarth, and R.H. Garritt. 1986. Sulfur and carbon isotopes as tracers of salt-marsh organic matter flow. Ecology 67: 865–874.CrossRefGoogle Scholar
  69. Peterson, C.H. 1982. The importance of predation and intra-and inter-specific competition in the population biology of two infaunal suspension-feeding bivalves, Protothaca staminea and Chione undatella. Ecol. Monogr. 52: 437–475.CrossRefGoogle Scholar
  70. Pohlo, R. 1969. Confusion concerning deposit-feeding in the Tellinacea. Proc. Malacol. Soc. London 38: 361–364.Google Scholar
  71. Race, M.S. 1982. Competitive displacement and predation between introduced and native mud snails. Oecologia (Berl.) 54: 337–347.CrossRefGoogle Scholar
  72. Rasmussen, E. 1973. Systematics and ecology of the Isefjord marine fauna (Denmark). With a survey of the eelgrass (Zostera) vegetation and its communities. Ophelia 11: 1–495.Google Scholar
  73. Reid, R.G.B., and K. Rauchert. 1972. Protein digestion in members of the genus Macoma (Mollusca: Bivalvia). Comp. Biochem. Physiol. 41A: 887–895.CrossRefGoogle Scholar
  74. Rhoads, D.C. 1967. Biogenic reworking of intertidal and subtidal sediments in Barnstable Harbor and Buzzards Bay, Massachusetts. J. Geol. 75: 461–474.CrossRefGoogle Scholar
  75. Rhoads, D.C. and D.K. Young. 1970. The influence of deposit-feeding organisms on sediment stability and community trophic structure. J. Mar. Res. 28: 150–178.Google Scholar
  76. Rice, D.L., T.S. Bianchi, and E.H. Roper. 1986. Experimental studies of sediment reworking and growth of Scoloplos spp. (Orbiniidae: Polychaeta). Mar. Ecol.-Progr. Ser. 30: 9–19.CrossRefGoogle Scholar
  77. Riley, G.A. 1956. Oceanography of Long Island Sound. 1952–1954. IX. Production and utilization of organic matter. Bull. Bingham Oceanogr. Coll. 15: 324–344.Google Scholar
  78. Rowe, G.T., S. Smith, P. Falkowski. T. Whitledge, R. Theroux, W. Phoel, and H.W. Ducklow. 1986. Do continental shelves export organic matter. Nature 325: 559–561.CrossRefGoogle Scholar
  79. Rudnick, D.T., R. Elmgren, and J.B. Frithsen. 1985. Meiofaunal prominence and benthic seasonality in a coastal marine ecosystem. Oecologia 67: 157–168.CrossRefGoogle Scholar
  80. Sanders, H.L. 1958. Benthic studies in Buzzards Bay. I. Animal-sediment relationships. Limnol. Oceanogr. 3: 245–258.CrossRefGoogle Scholar
  81. Self, R.F.L. and P.A. Jumars. 1978. New resource axes for deposit feeders ? J. Mar. Res. 36: 627–641.Google Scholar
  82. Taghon, G.L. 1981. Beyond selection: optimal ingestion rate as a function of food value. Am. Nat. 118: 202–214.CrossRefGoogle Scholar
  83. Taghon, G.L. 1982. Optimal foraging by deposit-feeding invertebrates: roles of particle size and organic coating. Oecologia (Berl.) 52: 295–304.CrossRefGoogle Scholar
  84. Taghon, G.L., and P.A. Jumars. 1984. Variable ingestion rate and its role in optimal foraging behavior of deposit feeders. Ecology 65: 549–558.CrossRefGoogle Scholar
  85. Taghon, G.L., A.R.M. Nowell, and P.A. Juinars. 1980. Induction of suspension feeding in spionid polychaetes by high particulate fluxes. Science 210: 562–564.PubMedCrossRefGoogle Scholar
  86. Taghon, G.L., R.F.L. Self, and P.A. Juinars. 1978. Predicting particle selection by deposit-feeders: a model and predictions. Limnol. Oceanogr. 23: 752–759.CrossRefGoogle Scholar
  87. Tenore, K.R. 1977. Growth of Capitella capita.ta cultured on various levels of detritus derived from different sources. Limnol. Oceanogr. 22: 936–941.CrossRefGoogle Scholar
  88. Tenore, K.R., B.E. Dornseif, and C.N. Weiderhold. 1979. The effect of organic nitrogen supplement on the utilization of different sources of detritus. Limnol. Oceanogr. 24: 350–355.CrossRefGoogle Scholar
  89. Tenore, K.R. and D.L. Rice. 1980. A review of trophic factors affecting secondary production of deposit-feeders. IN Marine Benthic Dynamics, K.R. Tenore and B.C. C. Coull, eds., pp. 325–340. Columbia: Univ. South Carolina Press.Google Scholar
  90. Trueman, E.R. 1971. The control of burrowing and the migratory behavior of Donax denticulatus (Bivalvia: Tellinacea). J. Zool. London 165: 453–469.CrossRefGoogle Scholar
  91. Valiela, I., J.M. Teal. 1979. The nitrogen budget of a salt marsh ecosystem. Nature 280: 652–656.CrossRefGoogle Scholar
  92. Vogel, S. 1978. Organisms that capture currents. Sci. Am. 239: 128–139.CrossRefGoogle Scholar
  93. Vogel, S. 1981. Life in Moving Fluids. Boston: Willard Grant Press.Google Scholar
  94. Whitlatch, R.B. 1974. Food-resource partitioning in the deposit feeding polychaete Pectinaria gouldii. Biol. Bull. 147: 227–235.CrossRefGoogle Scholar
  95. Woodin, S.A. 1974. Polychaete abundance patterns in a marine soft-sediment environment: the importance of biological interactions. Ecol. Monogr. 44: 171–187.CrossRefGoogle Scholar
  96. Woodwell, G.M. D. E. Whitney, C.A. S. Hall, and R.A. Houghton. 1977. The Flax Pond ecosystem study: exchanges of carbon between a salt marsh and Long Island Sound. Limnol. Oceanogr. 22: 833–838.CrossRefGoogle Scholar
  97. Yamamoto, N. and G.R. Lopez. 1985. Bacterial abundance in relation to surface area and organic content of marine sediments. J. Exp. Mar. Biol. Ecol. 90: 209–220.CrossRefGoogle Scholar
  98. Yingst, J.Y. 1976. The utilization of organic matter in shallow marine sediments by an epibenthic deposit-feeding holothurian. J. Exp. Mar. Biol. Ecol. 23: 55–69.CrossRefGoogle Scholar
  99. Zobell, C.E. 1938. Studies on the bacterial flora of marine bottom sediments. J. Sed. Pet. 8: 10–18.Google Scholar
  100. Zobell, C.E., and C.B. Feltham. 1938. Bacteria as food for certain marine invertebrates. J. Mar. Res. 1: 312–327.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1989

Authors and Affiliations

  • Jeffrey S. Levinton
    • 1
  1. 1.Department of Ecology and EvolutionState University of New YorkStony BrookUSA

Personalised recommendations