Advertisement

Peptide Transport

  • Ze’ev Barak
  • Charles Gilvarg
Part of the Biomembranes book series (B, volume 7)

Abstract

Many roles are being ascribed to peptides in nature. These include hormonal activity, control of pituitary tropic hormone secretion, translocation of ions across membranes, regulation of cell growth, memory transmission, carcinogenesis, and antimicrobial and nutritional activity. Some of these activities have been reported to be extracellular, i.e., activation of an endogenous system as a result of the peptide binding to a specific receptor on the membrane; however, others might require the entrance of the peptide into the cell. It is therefore of great interest to determine whether peptides as such can cross membranes and to study this process of peptide transport.

Keywords

Transport System Peptide Transport Constituent Amino Acid Amino Acid Transport System Oligopeptide Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Addison, J. M., Burston, D., and Matthews, D. M., 1972, Evidence for active transport of dipeptide glycylsarcosine by hamster jejunum in vitro, Clin. Sci. 43: 907–911.PubMedGoogle Scholar
  2. Addison, J. M., Burston, D., and Matthews, D. M., 1973, Carnosine transport by hamster jejunum in vitro and its inhibition by other di-and tripeptides, Clin. Sci. and Molec. Med. 45: 3–4 p.Google Scholar
  3. Addison, J. M., Burston, D., and Matthews, D. M., 1974a, Transport of the tripeptide ß-alanyl-glycyl-glycine by hamster jejunum in vitro, Clin. Sci. Molec. Med. 46: 5–6 p.Google Scholar
  4. Addison, J. M., Burston, D., Matthews, D. M., Payne, J. W., and Wilkinson, S., 1974b, Evidence for active transport of the tripeptide glycylsarcosylsarcosine by hamster jejunum in vitro, Clin. Sci. Malec. Med., 46: 30 P.Google Scholar
  5. Addison, J. M., Matthews, D. M., and Burston, D., 1974c, Competition between carnosine and other peptides for transport by hamster jejunum in vitro, Clin. Sci. Malec. Med. 46: 707–714.Google Scholar
  6. Agar, W. T., Hired, F. J. R., and Sidhu, G. S., 1953, The active absorption of amino acids by the intestine, J. Physiol. 121: 255–263.PubMedGoogle Scholar
  7. Ames, B. N., Ames, G. F., Young, J. D., Isuchiya, D., and Lecocq, J., 1973a, Illicin transport, the oligopeptide permease, Proc. Nat. Acad. Sci. U. S. 70: 456–458.Google Scholar
  8. Ames, B. N., Lee, F. D., and Durston, W. E., 1973b, An improved bacterial test system for the detection and classification of mutagens and carcinogens, Proc. Nat. Acad. Sci. U. S. 70: 782–786.Google Scholar
  9. Ames, G. F., Spudich, E. N., and Nikaido, H., 1974, Protein composition of the outer membrane of Salmonella typhimurium: effect of lipopolysaccharide mutations, J. Bacterial. 117: 406–416.Google Scholar
  10. Asatoor, A. M., Bandoch, J. K., Lant, A. F., Milne, M. D., and Navab, F., 1970a, Intestinal absorption of carnosine and its constitutent amino acids in man, Gut 11: 250–254.PubMedGoogle Scholar
  11. Asatoor, A. M., Cheng, B., Edwards, K. D. G., Lant, A. P., Matthews, D. M., Milne, M. D., Naveb, F., and Richards, A. J., 1970b, Intestinal absorption of two dipeptides in Hartnup disease, Gut 11: 380–389.PubMedGoogle Scholar
  12. Asatoor, A. M., Crouchman, M. R., Harrison, A. R., Light, F. W., Loughridge, L. W., Milne, M. D., and Richards, A. J., 1971, Intestinal absorption of oligopeptides in cystinuria, Clin. Sci. 41: 23–33.PubMedGoogle Scholar
  13. Asatoor, A. M., Harrison, B. D. W., Milne, M. D., and Prosser, D. I., 1972, Intestinal absorption of an arginine-containing peptide in cystinuria, Gut 13: 95–98.PubMedGoogle Scholar
  14. Asatoor, A. M., Chadha, A. K., Milne, M. D., and Prosser, D. I., 1973, Intestinal absorption of stereoisomers of dipeptides in the rat, Brit. J. Nutr. 28: 417–423.Google Scholar
  15. Barak, Z., 1972, Effect of basic oligopeptides on the biosynthesis of macromolecules, Ph.D. thesis, Weizmann Institute of Science.Google Scholar
  16. Barak, Z., and Gilvarg, C., 1974, Triornithine-resistant strain of Escherichia coli: isolation, definition and genetic studies, J. Biol. Chem. 249: 143–148.PubMedGoogle Scholar
  17. Barak, Z., Sarid, S., and Katchalski, E., 1970, Effect of tri-L-ornithine on nucleic acid and protein biosynthesis in intact and bacteriophage infected E. coli B cells, Israel J. Chem. 8: 121.Google Scholar
  18. Barak, Z., Sarid, S., and Katchalski, E., 1973a, Inhibition of protein biosynthesis in Escherichia coli B tri-L-ornithine, Eur. J. Biochem. 34: 317–324.PubMedGoogle Scholar
  19. Barak, Z., Sarid, S., and Katchalski, E., 1973b, Inhibition of T4 maturation by tri-Lornithine, Eur. J. Biochem. 34: 325–328.PubMedGoogle Scholar
  20. Becker, J. M., Naider, F., and Katchalski, E., 1973, Peptide utilization in yeast: studies on methionine and lysine auxotrophs of Saccharomyces cerevisiae, Biochim. Biophys. Acta 291: 388–397.PubMedGoogle Scholar
  21. Berger, E. A., 1973, Different mechanisms of energy coupling for active transport of proline and glutamine in Escherichia coli, Proc. Nat. Acad. Sci. U. S. 70: 1514–1518.Google Scholar
  22. Best, C. H., and Taylor, N. B., 1950, “The Physiological Basis of Medical Practice,” 5th ed., p. 588, Bailliere, Tindall and Cox, London.Google Scholar
  23. Brock, T. D., and Wooley, S. O., 1964, Glycylglycine uptake in Streptococci and a possible role of peptides in amino acid transport, Arch. Biochem. Biophys. 105: 51–57.PubMedGoogle Scholar
  24. Burston, D., Addison, J. M., and Matthews, D. M., 1972, Uptake of dipeptides containing basic and acidic amino acids by rat small intestine in vitro, Clin. Sci. 43: 823–837.PubMedGoogle Scholar
  25. Cajori, F. A., 1933, The enzyme activity of dogs’ intestinal juice and its relation to intestinal digestion, Am. J. Physiol. 104: 659–668.Google Scholar
  26. Cheeseman, C. I., and Smyth, D. H., 1973, Specific transfer process for intestinal absorption of peptides, J. Physiol. 229: 45–46 P.Google Scholar
  27. Cheng, B., and Matthews, D. M., 1970, Rates of uptake of amino acid from L-methionine and the peptide L-methionyl-L-methionine by rat small intenstine in vitro, J. Physiol. 210: 37–38 P.Google Scholar
  28. Cheng, B., Navab, F., Lis, M. T., Miller, T. N., and Matthews, D. M., 1971, Mechanisms of dipeptide uptake by rat small intenstine in vitro, Clin. Sci. 40: 247–259.PubMedGoogle Scholar
  29. Choutes, G. L., and Gray, W. R., 1971, Peptidase activity in the membranes of Mycoplasma laidlawii, Biochem. Biophys. Res. Commun. 45: 849–855.Google Scholar
  30. Cohnheim, O., 1901, Die umwandlung des eiweiss durch die darmwand, Z. Physiol. Chem. 33: 451–465.Google Scholar
  31. Costerton, J. W., Ingram, J. M., and Cheng, K. J., 1974, Structure and function of the cell envelope of gram-negative bacteria, Bacteriol. Rev. 38: 87–110.PubMedGoogle Scholar
  32. Craft, I. L., and Matthews, D. M., 1968, The absorption of glycine and glycylglycine in man, following surgery and in gastrointestinal disorders, Brit. J. Surg. 55: 158.Google Scholar
  33. Craft, I. L., Geddes, D., Hydge, C. W., Wise, I. J., and Matthews, D. M., 1968, Absorption and malabsorption of glycine and glycine peptides in man, Gut 9: 425–427.PubMedGoogle Scholar
  34. Crampton, R. F., Gangolli, S. D., Simson, P., and Matthews, D. M., 1971, Rates of absorption by rat intestine of pancreatic hydrolysates of proteins and their corresponding amino acid mixtures, Clin. Sci. 41: 309–417.Google Scholar
  35. De Felice, M., Guardiola, J., Lamberti, A., and laccarino, M., 1973, Escherichia coli K-12 mutants altered in the transport systems for oligo-and dipeptides, J. Bacteriol. 116: 751–756.Google Scholar
  36. Dunn, F. W., Humphreys, J., and Shive, W., 1957, Utilization of tripeptides, Arch. Biochem. Biophys. 71: 475–476.PubMedGoogle Scholar
  37. Dvorak, H. F., Wetzel, B. K., and Heppel, L. A. 1970, Biochemical and cytochemical evidence for the polar concentration of periplasmic enzymes in a minicell strain of Escherichia coli, J. Bacteriol. 104: 543–548.PubMedGoogle Scholar
  38. Fern, E. B., Hider, R. C., and London, D. R., 1969, The site of hydrolysis of dipeptides containing leucine and glycine by rat jejunum in vitro, Biochem. J. 114: 855–861.PubMedGoogle Scholar
  39. Fickel, T. E., 1973, The oligopeptide permease of E. coli as a vehicle for the transport of impermeant substances and its accessibility to large oligopeptides, Ph.D. thesis, Princeton University.Google Scholar
  40. Fickel, T. E., and Gilvarg, C., 1973, Transport of impermeant substances in E. coli by way of oligopeptide permease, Nature, New Biol. 241: 161–163.Google Scholar
  41. Florsheim, H. A., Makineni, S., and Shankman, S., 1962, The isolation, identification and synthesis of a peptide growth factor for P. cerevisiae, Arch. Biochem. Biophys. 97: 243–249.PubMedGoogle Scholar
  42. Ford, J. E., and Shorrock, C., 1971, Metabolism of heat-damaged proteins in the rat. Influence of heat damage on the excretion of amino acids and peptides in the urine, Brit. J. Nutr. 26: 311–322.PubMedGoogle Scholar
  43. Fordham, W. D., and Gilvarg, C., 1974, Kinetics of crosslinking of peptidoglycan in Bacillus megaterium, J. Biol. Chem. 249: 2478–2482.PubMedGoogle Scholar
  44. Gale, E. F., 1945, The arginine, ornithine and carbon dioxide requirements of Streptococci (Lancefield group D) and their relation to argine dehydrolase activity, Brit. J. Exp. Path. 26: 225–233.PubMedGoogle Scholar
  45. Gangolli, S. D., Simson, P., Lis, M. T., Crampton, R. F., and Matthews, D. M., 1970, Amino acid and peptide uptake in protein absorption, Clin. Sci. 39: 18 P.Google Scholar
  46. Gibson, Q. H., and Wiseman, G., 1951, Selective absorption of stereoisomers of amino acids from loops of the small intestine of the rat, Biochem. J. 48: 426–429.PubMedGoogle Scholar
  47. Gilvarg, C., 1972, Peptide transport in bacteria, in “Peptide Transport in Bacteria and Mammalian Gut,” p. 11, Ciba Foundation Symposium, Elsevier, Excerpta Medica, North Holland, Associated Scientific Publishers, Amsterdam, London, New York.Google Scholar
  48. Gilvarg, C., and Katchalski, E., 1965, Peptide utilization in Escherichia coli, J. Biol. Chem. 240: 3093–3098.PubMedGoogle Scholar
  49. Gilvarg, C., and Levin, Y., 1972, Response of Escherichia coli to ornithyl peptides, J. Biol. Chem. 247: 543–549.PubMedGoogle Scholar
  50. Guardiola, J., and Iaccarino, M., 1971, Escherichia coli K-12 mutants altered in the transport of branched-chain amino acids, J. Bacteriol. 108: 1034–1044.Google Scholar
  51. Hauschild, A. H. W., 1965, Incorporation of 14C from amino acids and peptides into protein by clostridium perfringens type D, J. Bacteriol. 90: 1569–1574.PubMedGoogle Scholar
  52. Hellier, M. D., Perret, D., and Holdsworth, C. D., 1970, Dipeptide absorption in cystinuria, Brit. Med. J. 4: 782–793.PubMedGoogle Scholar
  53. Hellier, M. D., Perret, D., Holdsworth, C. D., and Thirumalai, 1971, Absorption of dipeptides in normal and cystinuric subjects, Gut 12: 496–497.PubMedGoogle Scholar
  54. Hellier, M. D., Holdsworth, C. D., Perrett, D., and Thirumalai, C., 1972, Intestinal dipeptide transport in normal and cystinuric subjects, Clin. Sci. 43: 659–668.PubMedGoogle Scholar
  55. Henning, U., Braun, V., Höhn, B., and Schwarz, U., 1972, Cell envelope and shape of Escherichia coli K-12, properties of a temperature-sensitive rod mutant, Eur. J. Biochem. 26: 570–586.PubMedGoogle Scholar
  56. Heppel, L. A., Rosen, B. P., Friedberg, I., Berger, E. A., and Weiner, J. H., 1972, The molecular basis of biological transport, in “Miami Winter Symposia,” Vol. 3, pp. 133–156.Google Scholar
  57. Hueckel, H. J., and Rogers, Q. R., 1972, Prolylhydroxyproline absorption in hamsters, Can. J. Biochem. 50: 782–790.PubMedGoogle Scholar
  58. Johnston, J. M., and Wiggans, D. S., 1958, The absorption in vitro of alanylphenylalanine, Biochim. Biophys. Acta 27: 224–225.PubMedGoogle Scholar
  59. Kadner, R. J., and Liggins, G. L., 1973, Transport of vitamin B12 in Escherichia coli: genetic studies, J. Bacteriol. 115: 514–521.PubMedGoogle Scholar
  60. Kamiryo, T., and Strominger, J. L., 1974, Penicillin-resistant temperatures ensitive mutants of Escherichia coli which synthesize hypo-or hyper-cross-linked peptidoglycan, J. Bacteriol. 117: 568–577.PubMedGoogle Scholar
  61. Kessel, D., and Lubin, M., 1963, On the distinction between peptidase activity and peptide transport, Biochim. Biophys. Acta 71: 656–663.PubMedGoogle Scholar
  62. Kihara, H., and Snell, E. C., 1952, Peptides and bacterial growth: L-alanine peptides and growth of Lactobacillus casei, J. Biol. Chem. 197: 791–800.PubMedGoogle Scholar
  63. Kihara, H., Ikawa, M., and Snell, E. E., 1961, Peptides and bacterial growth: relation of uptake and hydrolysis to utilization of D-alanine peptides for growth of Streptococcus faecalis, J. Biol. Chem. 236: 172–176.PubMedGoogle Scholar
  64. Koplow, J., and Goldfine, H., 1974, Alterations in the outer membrane of the cell envelope of heptose-deficient mutants of Escherichia coli, J. Bacteriol. 117: 527–543.PubMedGoogle Scholar
  65. Kornberg, H. J., 1972, in Discussion to: Membrane digestion and peptide transport, in “Peptide Transport in Bacteria and Mammalian Gut,” p. 137, Ciba Foundation Symposium, Elsevier Excerpta Medica, North-Holland, Associated Scientific Publishers, Amsterdam, London, New York.Google Scholar
  66. Leach, F. R., and Snell, E. E., 1959, Occurrence of independent uptake mechanisms for glycine and glycine peptides in Lactobacillus casei, Biochim. Biophys. Acta 34: 292–293.PubMedGoogle Scholar
  67. Leach, F. R., and Snell, E. E., 1960, The absorption of glycine and alanine and their peptides by Lactobacillus casei, J. Biol. Chem. 235: 3523–3531.PubMedGoogle Scholar
  68. Lehmann, V., Hammerling, G., Nurminen, M., Ruschmann, E., Luderitz, O., Kuo, T., and Stocker, B. A. D., 1973, A new class of heptose-defective mutant of Salmonella typhimurium, Euro. J. Biochem. 32: 268–275.Google Scholar
  69. Leive, L., 1968, Studies on the permeability change produced in coliform bacteria by ethylenediaminetetraacetate, J. Biol. Chem. 243: 2373–2380.PubMedGoogle Scholar
  70. Leive, L., Shovlin, V. K., and Mergenhagen S. E., 1968, Physical chemical and immunological properties of lipopolysaccharide released from Escherichia coli by ethylenediaminetetraacetate, J. Biol. Chen. 243: 6384–6391.Google Scholar
  71. Levine, E. M., and Simmonds, S., 1960, Metabolite uptake by serine-glycine auxotrophs of Escherichia coli, J. Biol. Chem. 235: 2902–2909.PubMedGoogle Scholar
  72. Levine, E. M., and Simmonds, S., 1962, Further studies on metabolite uptake by serine-glycine auxotrophs of Escherichia coli, J. Biol. Chem. 237: 3718–3724.PubMedGoogle Scholar
  73. Lindsay, S. S., Wheeler, B., Sanderson, K. E., Costerton, J. W., and Cheng, K. J., 1973, The release of alkaline phosphatase and lipopolysaccharide during growth of rough and smooth strains of Salmonella tiphimurium, Can. J. Microbiol. 19: 333–343.Google Scholar
  74. Lis, M. T., Crampton, R. F., and Matthews, D. M., 1971, Rates of absorption of a dipeptide and the equivalent free amino acid in various mammalian species, Biochim. Biophys. Acta 233: 453–455.PubMedGoogle Scholar
  75. MacAlister, T. J., Costerton, J. W., Thompson, L., Thompson, J., and Ingram, J. M., 1972, Distribution of alkaline phosphatase within the periplasmic space of gram-negative bacteria, J. Bacteriol. 111: 827–832.PubMedGoogle Scholar
  76. Matheson, A. T., and Murayama, T., 1966, The limited release of ribosomal peptidase during formation of Escherichia coli spheroplasts, Can. J. Biochem. 44: 1407–1415.Google Scholar
  77. Matthews, D. M., 1971a, Experimental Approach in chemical pathology, Brit. Med. J. 3: 659–664.PubMedGoogle Scholar
  78. Matthews D. M. 1971b, Protein absorption, J. Clin. Path. 24, Suppl. Roy Coll. Path. 5: 29–40.Google Scholar
  79. Matthews, D. M., 1972a, Rates of Peptide uptake by small intestine, in “Peptide Transport in Bacteria and Mammalian Gut,” pp. 71–88, Ciba Foundation Symposium, Elsevier, Excerpta Medica, North-Holland, Associated Scientific Publishers, Amsterdam, London, New York.Google Scholar
  80. Matthews, D. M., 1972b, Intestinal absorption of amino acids and protein, Proc. Nutr. Soc. 31: 171–177.PubMedGoogle Scholar
  81. Matthews, D. M., Lis, M. T., Cheng, B., and Crampton, R. F., 1969, Observations on the intestinal absorption of some oligopeptides of methionine and glycine in the rat, Clin. Sci. 37: 751–764.PubMedGoogle Scholar
  82. Matthews, D. M., Addison, J. M., and Burston, D., 1974, Evidence for active transport of the dipeptide carnosine (ß-alanyl-L-histidine) by hamster jejunum in vitro, Clin. Sci. Molec. Med. 46: 693–705.Google Scholar
  83. Mayshak, J., Yoder, O. C., Beamer, K. C., and Shelton, D. C., 1966, Inhibition and transport kinetic studies involving L-leucine, L-valine and their dipeptides in Leuconostic mesenteroides, Arch. Biochem. Biophys. 113: 189–194.PubMedGoogle Scholar
  84. Meinhart, J. O., and Simmonds, S., 1955, Metabolism of serine and glycine peptides by mutants of Escherichia coli Strain K-12 J. Biol. Chem. 216: 51–65.PubMedGoogle Scholar
  85. Meisler, N., and Simmonds, S., 1963, The metabolism of glycyl-L-leucine by Escherichia coli, J. Gen. Microbiol. 31: 109–123.PubMedGoogle Scholar
  86. Merrifield, R. B., and Woolley, D. W., 1956, The synthesis of L-seryl-L-histidyl-L-leucyl-Lvalyl-L-glutamic acid, a peptide with strepogenin activity, J. Am. Chem. Soc. 78: 4646–4649.Google Scholar
  87. Messerli, H., 1913, -Ober die Resorptiongeschwindigkeit der Eiweisse und ihrer Abbauprodukte in Dünndarm, Biochem. Z. 54: 446–473.Google Scholar
  88. Miller, A., Neidle, A., and Welsch, H., 1955, Chemical stability and metabolic utilization of asparagine peptides, Arch. Biochem. Biophys. 56: 11–21.PubMedGoogle Scholar
  89. Milne, M. D., 1971, Transport of amino acids and peptides in the gut and the kidney, Sci. Basis Med. 1971: 161–177.Google Scholar
  90. Milne, M. D., 1972, Peptides in genetic errors of amino acid transport, in “Peptide Transport in Bacteria and Mammalian Gut,” p. 93, Ciba Foundation Symposium, Elsevier, Excerpta Medica, North-Holland, Associated Scientific Publishers, Amsterdam, London, New York.Google Scholar
  91. Monner, D. A., Jonsson, S., and Boman, H. G., 1971, Ampicillin-resistant mutants of Escherichia coli K-12 with lipoplysaccharide alterations affecting mating ability and susceptibility to sex-specific bacteriophages, J. Bacteriol. 107: 420–432.PubMedGoogle Scholar
  92. Mueller, J. H., 1938, The utilization of carnosine by Diphteria bacillus, J. Biol. Chem. 123: 421–432.Google Scholar
  93. Muller-Hill, B., Crapo, L., and Gilbert, W., 1968, Mutants that make more lac repressor, Proc. Nat. Acad. Sci. U. S. 59: 1259–1264.Google Scholar
  94. Naider, F., Becker, J. M., and Katzir-Katchalski, E., 1974, Utilization of methioninecontaining peptides and their derivatives by a methionine-requiring auxotroph of Saccharomyces cerevisiae, J. Biol. Chem. 249: 9–20.PubMedGoogle Scholar
  95. Navab, F., and Asatoor, A. M., 1970, Studies on intestinal absorption of amino acids and a dipeptide in a case of Hartnup disease, Gut 11: 373–379.PubMedGoogle Scholar
  96. Neu, H. C., and Heppel, L. A., 1966, The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts, J. Biol. Chem. 240: 3605–3692.Google Scholar
  97. Newey, H., and Smyth, D. H., 1957, Intestinal absorption of dipeptides, J. Physiol. 135: 3–44.Google Scholar
  98. Newey, H., and Smyth, D. H., 1959, The intestinal absorption of some dipeptides, J. Physiol. 145: 48–56.PubMedGoogle Scholar
  99. Newey, H., and Smyth, D. H., 1960, Intracellular hydrolysis of dipeptides during intestinal absorption, J. Physiol. 152: 367–380.PubMedGoogle Scholar
  100. Newey, H., and Smyth, D. H., 1962, Cellular mechanisms in intestinal transport of amino acids, J. Physiol. 164: 527–551.PubMedGoogle Scholar
  101. Payne, J. W., 1968, Oligopeptide transport in Escherichia coli: specificity with respect to side chain and distinction from dipeptide transport, J. Biol. Chem. 243: 33953403.Google Scholar
  102. Payne, J. W., 1971a, The requirement for the protonated a-amino group for the transport of peptides in Escherichia coli, Biochem. J. 123: 245–253.PubMedGoogle Scholar
  103. Payne, J. W., 1971b, The utilization of prolyl peptides by Escherichia coli, Biochem. J. 123: 255–260.PubMedGoogle Scholar
  104. Payne, J. W., 1972a, Mechanisms of bacterial peptide transport, in “Peptide Transport in Bacteria and Mammalian Gut,” p. 17, Ciba Foundation Symposium, Elsevier, Excerpta Medica, North-Holland, Associated Scientific Publishers, Amsterdam, London, New York.Google Scholar
  105. Payne, J. W., 1972b, Effects of N-methylpeptide bonds on peptide utilization by Escherichia coli, J. Gen. Microbiol. 71: 259–265.PubMedGoogle Scholar
  106. Payne, J. W., 1972c, in Discussion to: Mechanisms of bacterial peptide transport, in “Peptide Transport in Bacteria and Mammalian Gut,” p. 38, Ciba Foundation Symposium, Elsevier, Excerpta Medica, North-Holland, Associated Scientific Publishers, Amsterdam, London, New York.Google Scholar
  107. Payne, J. W., 1973, Peptide utilization in Escherichia coli: Studies with peptides containing ß-alanyl residues, Biochim. Biophys. Acta 298: 469–478.Google Scholar
  108. Payne, J. W., 1974, Peptide transport in Escherichia coli: Permease specificity towards terminal amino group substituents, J. Gen. Microbiol. 80: 269–276.PubMedGoogle Scholar
  109. Payne, J. W., and Gilvarg, C., 1968a, The role of terminal carboxyl group in peptide transport in Escherichia coli, J. Biol. Chem. 243: 335–340.Google Scholar
  110. Payne, J. W., and Gilvarg, C. 1968b, Size restriction on peptide utilization in Escherichia coli, J. Biol. Chem. 243: 6291–6299.PubMedGoogle Scholar
  111. Payne, J. W., and Gilvarg, C., 1971, Peptide transport, Advan. Enzymol. 35: 187–244.Google Scholar
  112. Pecht, M., Giberman, E. Keysary, A., Yariv, J., and Katchalski, E., 1972, Hydrolysis of alanine oligopeptides by an enzyme located in the membrane of Mycoplasma laidlawii, Biochim. Biophys. Acta 290: 267–273.PubMedGoogle Scholar
  113. Peters, V. J., Prescott, J. M., and Snell, E. E., 1953, Peptides and bacterial growth: Histidine peptides as growth factors for Lactobacillus delbrueckii 9649, J. Biol. Chem. 202: 521–532.PubMedGoogle Scholar
  114. Pittman, K. A., Lakshmanan, S., and Bryant, M. P., 1967, Oligopeptide uptake by Bacteroides ruminicola, J. Bacteriol. 93: 1499–1508.PubMedGoogle Scholar
  115. Prescott, J. M., Peters, V. J., and Snell, E. E., 1953, Peptides and bacterial growth: Serine peptides and growth of Lactobacillus delbrueckii 9649, J. Biol. Chem. 202: 533–540.PubMedGoogle Scholar
  116. Rooney, S. A., and Goldfine, H., 1972, Isolation and characterization of 2-keto-3deoxyoctonate-lipid A from a heptose deficient mutant of Escherichia coli, J. Bacteriol. 111: 531–541.Google Scholar
  117. Rubino, A., Field, M., and Shwachman, H., 1971, Intestinal transport of amino acid residues of dipeptides: Influx of the glycine residue of glycyl-L-proline across mucosal border, J. Biol. Chem. 246: 3542–3548.PubMedGoogle Scholar
  118. Schmidt, G., Jann, B., and Jann, K., 1969, Immunochemistry of R lipopolysaccharides of Escherichia coli, different core regions in the lipopolysaccharides of 0 group 3, Eur. J. Biochem. 10: 501–510.PubMedGoogle Scholar
  119. Schmidt, G., Jann, B., and Jann, K., 1970, Immunochemistry of R lipopolysaccharides of Escherichia coli, studies on R mutants with an incomplete core, derived from E. coli 08:K27, Eur. J. Biochem. 16: 382–392.PubMedGoogle Scholar
  120. Shankman, S., Higa, S., Florsheim, H. A., Schvo, Y., and Gold, V., 1960, Peptide studies: Growth-promoting activity of peptides of L-leucine and L- and D-value for lactic acid bacteria, Arch. Biochem. Biophys. 86: 204–209.PubMedGoogle Scholar
  121. Shankman, S., Higa, S., and Gold, V., 1961, Peptide studies: Inhibition of bacterial growth by di-and tripeptides, Texas Rept. Biol. Med. 19: 358–369.Google Scholar
  122. Shankman, S., Gold, V., Higa, S., and Squires, R., 1962, On the mode of action of a peptide inhibitor of growth in P. cerevisiae, Biochem. Biophys. Res. Communs. 9: 25–31.Google Scholar
  123. Shelton, D. C., and Nutter, W. E., 1964, Uptake of valine and glycylvaline by Leuconostoc mesenteroides, J. Bacteriol. 88: 1175–1184.Google Scholar
  124. Simmonds, S., 1966, The role of dipeptidases in cells of Escherichia coli K-12, J. Biol. Chem. 241: 2502–2508.PubMedGoogle Scholar
  125. Simmonds, S., 1970, Peptidase activity and peptide metabolism in Escherichia coli K-12, Biochem. 9: 1–9.Google Scholar
  126. Simmonds, S., 1972, Peptidase activity and peptide metabolism in Escherichia coli, in “Peptide Transport in Bacteria and Mammalian Gut,” p. 43, Ciba Foundation Symposium, Elsevier, Excerpta Medica, North-Holland, Associated Scientific Publishers, Amsterdam, London, New York.Google Scholar
  127. Simmonds, S., and Fruton, J. S., 1948, The utilization of proline derivatives by mutant strains of Escherichia coli, J. Biol. Chem. 174: 705–715.Google Scholar
  128. Simmonds, S., and Griffith, D. D., 1962, Metabolism of phenylalanine containing peptide amides in Escherichia coli, J. Bacteriol. 83: 256–263.Google Scholar
  129. Simmonds, S., and Toye, N. O., 1966, Peptidases in spheroplasts of Escherichia coli K-12, J. Biol. Chem. 241: 3852–3860.PubMedGoogle Scholar
  130. Simmonds, S., Tatum, E. L., and Fruton, J. S., 1947, The utilization of phenylalanine and tyrosine derivatives by mutant strains of Escherichia coli, J. Biol. Chem. 169: 91–101.Google Scholar
  131. Simmonds, S., Harris, J. I., and Fruton, J. S., 1951, Inhibition of bacterial growth by leucine peptides, J. Biol. Chem. 188: 251–262.PubMedGoogle Scholar
  132. Smith, R. L., Archer, E. G., and Dunn, F. W., 1970, Uptake of “C-labeled tri-, tetra-and pentapeptides of phenylalanine and glycine by Escherichia coli, J. Biol. Chem. 245: 2962–2966.Google Scholar
  133. Starling, E. H., 1906, “Recent Advances in the Physiology of Digestion,” p. 127, Constable, London.Google Scholar
  134. Sussman, A. J., and Gilvarg, C., 1970, Peptidases in Escherichia coli K-12 capable of cleaving lysine homopeptides, J. Biol. Chem. 245: 6518–6524.PubMedGoogle Scholar
  135. Sussman, A. J., and Gilvarg, C., 1971, Peptide transport and metabolism in bacteria, Ann. Rev. Biochem. 40: 397–408.PubMedGoogle Scholar
  136. Tamaki, S., and Matsuhashi, M., 1973, Increase in sensitivity to antibiotics and lysozyme on deletion of lipopolysaccharides in Escherichia coli strains, J. Bacteriol. 114: 453454.Google Scholar
  137. Tamaki, S., Sato, T., and Matsuhashi, M., 1971, Role of lipopolysaccharides in antibiotic resistance and bacteriophage absorption of Escherichia coli K-12, J. Bacteriol. 105: 968–975.PubMedGoogle Scholar
  138. Takagaki, Y., Kunugita, K., and Matsuhashi, M., 1973, Evidence for direct action of colicin K on aerobic 32Pi uptake in Escherichia coli in-vivo and in-vitro, J. Bacteriol. 113: 42–50.Google Scholar
  139. Tarlow, M. J., Seakins, J. W. T., Lloyd, J. K., Matthews, D. M., Cheng, B., and Thomas, A. J., 1970, Intestinal absorption and biopsy transport of peptides and amino acids in Hartnup disease, Clin. Sci. 39: 18–19 p.Google Scholar
  140. Ugolev, A. M., 1972, Membrane digestion and peptide transport, in “Peptide Transport in Bacteria and Mammalian Gut,” pp. 123–137, Ciba Foundation Symposium, Elsevier, Excerpta Medica, North-Holland, Associated Scientific Publishers, Amsterdam, London, New York.Google Scholar
  141. Ugolev, A. M., and DeLaey, P., 1973, Membrane digestion: a concept of enzymic hydrolysis of cell membranes, Biochim. Biophys. Acta 300: 105–128.PubMedGoogle Scholar
  142. Van Lenten, E. J., and Simmonds, S., 1967, Dipeptidases in spheroplasts and osmotically shocked cells prepared from Escherichia coli K-12, J. Biol. Chem. 242: 1439–1444.PubMedGoogle Scholar
  143. Van Slyke, D. D., and Meyer, G. M., 1912, The amino acid nitrogen of the blood. Preliminary experiments on protein assimilation, J. Biol. Chem. 12: 399–410.Google Scholar
  144. Van Slyke, D. D., and Meyer, G. M., 1913–1914, The fate of protein digestion products in the body. The absorption of amino acids from the bood by the tissues, J. Biol. Chem. 16: 197–212.Google Scholar
  145. Vonder Haar, R. A., and Umbarger, H. E., 1972, Isoleucine and valine metabolism in Escherichia coli, J. Bacteriol. 112: 142–147.Google Scholar
  146. Wahren, A., and Gibbons, R. J., 1970, Amino acid fermentation by Bacteroides melaninogenicus, Antonie van Leeuwenhoek J. Microbiol. Serol. 36: 149–159.Google Scholar
  147. Wahren, A., and Holme, T., 1973, Amino acid and peptide requirement of Fusiformis necrophorus, J. Bacteriol. 116: 279–284.PubMedGoogle Scholar
  148. Wang, C. C., and Newton, A., 1969, Iron transport in Escherichia coli: relation between chromium sensitivity and high iron requirement in mutants of Escherichia coli, J. Bacterial. 98: 1135–1141.Google Scholar
  149. Wetzel, B. K., Spicer, S. S., Dvorak, H. F., and Heppel, L. A., 1970, Cytochemical localization of certain phosphatases in Escherichia coli, J. Bacteriol. 104: 529–542.Google Scholar
  150. White, J. C., Di Girolamo, P. M., Fu, M. L., Preston, Y., and Bradbeer, C., 1973, Transport of vitamin Bu in Escherichia coli, location and properties of the initial B12-binding site, J. Biol. Chem. 248: 3978–3986.PubMedGoogle Scholar
  151. Wiggans, D. S., and Johnston, J. M., 1959, The absorption of peptides, Biochim. Biophys. Acta 32: 69–73.PubMedGoogle Scholar
  152. Wiseman, G., 1953, Absorption of amino acids using an in-vitro technique, J. Physiol. 120: 63–72.PubMedGoogle Scholar
  153. Woolley, D. W., Merrifield, R. B., Ressler, C., and Du Vigneaud, V., 1955, Strepogenin activity of synthetic peptides related to oxytocin, Proc. Soc. Exp. Biot Med. 89: 669–673.Google Scholar
  154. Wu, H. C., 1972, Isolation and characterization of an Escherichia coli mutant with alteration in the outer membrane proteins of the cell envelope, Biochim. Biophys. Acta 290: 274–289.PubMedGoogle Scholar
  155. Yoder, O. C., Beamer, K. C., and Shelton, D. C., 1965a, Structural and stereochemical specificity of transport systems for glycine, valine and their dipeptides in L. mesenteroides, Fed. Proc. 24: 352.Google Scholar
  156. Yoder, O. C., Beamer, K. C., Cipolloni, Jr., P. B., and Shelton, D. C., 1965b, Kinetic studies of L-valine and glycyl-L-valine uptake by leuconostoc mesenteroides, Arch. Biochem. Biophys. 110: 336–340.Google Scholar
  157. Young, E. A., Bowen, D. O., and Diehl, J. F., 1964, Transport studies with peptides containing unnatural amino acids, Biochem. Biophys. Res. Commun. 14: 250–255.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Ze’ev Barak
    • 1
  • Charles Gilvarg
    • 1
  1. 1.Department of Biochemical Sciences Frick Chemical LaboratoryPrinceton UniversityPrincetonUSA

Personalised recommendations