Nerve Excitability—Toward an Integrating Concept

  • Eberhard Neumann
  • David Nachmansohn
Part of the Biomembranes book series (B, volume 7)


It is well known that bioelectricity and nerve excitability are manifested electrically in stationary membrane potentials and the various forms of transient potential changes such as, e.g., the action potential (Hodgkin, 1964; Tasaki, 1968). Although these electrical properties reflect membrane processes, bioelectricity and excitability are intrinsically coupled to the metabolic activity of the excitable cells. Now, inherent to all living cells is a high degree of coupling between energy and material flows. But already on the subcellular level of membranes intensive chemodiffusional flow coupling occurs and apparently time-independent properties reflect balance between active and passive flows of cell components.


Schwann Cell Permeability Change Cholinergic System Storage Site Postsynaptic Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbot, B. C., Hill, A. V., and Howarth, J. V., 1958, The positive and negative heat production associated with a single impulse, Proc. Roy. Soc. B 148: 149–187.CrossRefGoogle Scholar
  2. Adam, G., 1970, Theory of nerve excitation as a cooperative cation exchange in a two-dimensional lattice, in “Physical Principles of Biological Membranes” (F. Snell, J. Wolken, G. Iverson, and J. Lam, eds.), pp. 35–67, Gordon and Breach, New York.Google Scholar
  3. Agin, D., 1967, Electroneutrality and electrodiffusion in the squid axon, Proc. Nat. Acad. Sci. U. S 57: 1232–1238.CrossRefGoogle Scholar
  4. Agin, D., 1972, Excitability phenomena in membranes, in “Foundations of Mathematical Biology” (R. Rosen, ed.), pp. 253–277, Academic Press, New York.Google Scholar
  5. Armett, J., and Ritchie, J. M., 1960, The action of acetylchloline on conduction in mammalian non-myelinated fibers and its prevention by anticholinesterase, J. Physiol 152: 141–158.PubMedGoogle Scholar
  6. Ascher, L., 1925, Ueber die chemischen Wirkungen der Herznervenreizung, Arch. Ges. Physiol (Pflueger’s) 210: 689–696.CrossRefGoogle Scholar
  7. Barrnett, R. J., 1962, The fine structural localization of acetylcholinesterase at the myoneural junction, J. Cell Biol 12: 247–262.PubMedCrossRefGoogle Scholar
  8. Bartels, E., 1965, Relationship between acetylcholine and local anesthetics, Biochim. Biophys. Acta 109: 194–203.PubMedCrossRefGoogle Scholar
  9. Bergami, G., 1936a, Liberazione di una sostanza acetilcholine-simile dalla superficie di taglio del nervo durant l’eccitamento fisiologico, Atti Acad. naz Lincei VI: 23: 518–521.Google Scholar
  10. Bergami, G., 1936b, Liberazione di una sostanza acetilcolinosimile da un tronco nervoso sopravvivente durante la stimolazione elettrica in vitro, Boll. Soc. Ital. Biol. Sper 11: 275–277.Google Scholar
  11. Bergami, G., Cantoni, G., and Gualtierotti, T., 1936, Sulla liberazione di sostanze biologicamento attive dalla superficie di taglio di nervi durante l’eccitamento fisiologico o provocato. I. La loro azione sul preparato di muscolo dorsale di sanguisuga, Arch. Ist. Biochim. Ital 8: 267–298.Google Scholar
  12. Biesecker, G., 1973, Molecular properties of the cholinergic receptor purified from Electrophorus electricus, Biochemistry 12: 4403–4409.PubMedCrossRefGoogle Scholar
  13. Blumenthal, R., Changeux, J.-P., and Lefevre, R., 1970, Membrane excitability and dissipative instabilities, J. Membrane Biol 2: 351–374.CrossRefGoogle Scholar
  14. Born, M., 1949, “Natural Philosophy of Cause and Chance,” Oxford University Press, London and New York.Google Scholar
  15. Brecht, K., and Corsten, M., 1941, Acetylcholin in sensiblen Nerven, Arch. Ges. Physiol. (Pflueger’s) 245: 160–169.CrossRefGoogle Scholar
  16. Brink, F., 1954, The role of calcium ions in neural processes, Pharmacol. Rev. 6:243–298.PubMedGoogle Scholar
  17. Brzin, M., 1966, The localization of acetylcholinesterase in axonal membranes of frog nerve fibers, Proc. Nat. Acad. Sci. U. S. 56: 1560–1563.CrossRefGoogle Scholar
  18. Brzin, M., and Dettbarn, W.-D., 1967, Cholinesterase activity of nodal and internodal regions of myelinated nerve fibers of frog, J. Cell Biol 32: 577–583.PubMedCrossRefGoogle Scholar
  19. Brzin, M., Dettbarn, W.-D., Rosenberg, Ph., and Nachmansohn, D., 1965, Cholinesterase activity per unit surface area of conducting membranes, J. Cell Biol 26: 353–364.PubMedCrossRefGoogle Scholar
  20. Bullock, T. H., Nachmansohn, D., and Rothenberg, M. A., 1946, Effects of inhibitors of choline esterase on the nerve action potential, J. Neurophysiol 9: 9–22.PubMedGoogle Scholar
  21. Calabro, W., 1933, Sulla regolazione neuro-umorale cardiaca, Riv. Biol 15: 299–320.Google Scholar
  22. Carnay, L. D., and Tasaki, I. 1971, Ion exchange properties and excitability of the squid giant axon, in “Biophysics and Physiology of Excitable Membranes” (W. J. Adelman, Jr., ed.), pp. 379–422, Van Nostrand Reinhold, New York.Google Scholar
  23. Chang, H. W., 1974, Purification and characterization of acetylcholine receptor-I from Electrophorus electricus, Proc. Nat. Acad. Sci. U. S 71: 213.Google Scholar
  24. Chang, H. W., and Neumann, E., 1975, Proc. Nat. Acad. Sci. U. S,in press.Google Scholar
  25. Changeux, J.-P., Gautron, J., Israel, M., and Podleski, T., 1969, Neurobiologie moléculaire. Séparation de membranes excitables à partir de l’organe électrique d’Electrophorus electricus, C. R. Acad. Sci. Paris D 269: 1788–1791.Google Scholar
  26. Cole, K. S., 1965, Electrodiffusion models for the membrane of squid giant axon, Physiol. Rev 45: 340–379.PubMedGoogle Scholar
  27. Cole, K. S., 1968, in “Membranes, Ions and Impulses” (C. A. Tobias, ed.), University of California Press, Berkeley, California.Google Scholar
  28. Cole, K. S., 1970, Dielectric properties of living membranes, in “Physical Principles of Biological Membranes” (F. Snell, J. Wolken, G. Iverson, and J. Lam, eds.), pp. 1–15, Gordon and Breach, New York.Google Scholar
  29. Cowan, S. L., 1934, The action of potassium and other ions on the injury potential and action current in Maja nerve, Proc. Roy. Soc. B 115: 216–260.CrossRefGoogle Scholar
  30. Dale, H. H., Feldberg, W., and Vogt, M., 1936, Release of acetylcholine at voluntary motor nerve endings, J. Physiol 86: 353–380.PubMedGoogle Scholar
  31. DAVIS, F. A., and Nachmansohn, D., 1964, Acetylcholine formation in lobster in sensory axons, Biochim. Biophys. Acta 88: 384–389.PubMedGoogle Scholar
  32. DeLorenzo, A. J. D., Dettbarn, W.-D., and Brzin, M., 1968, Fine structure and organization of. nerve fibers and giant axons in lobster Homarus americanus, I. Ultrastruc. Res. 24: 367–384.CrossRefGoogle Scholar
  33. Denburg, J. L., Eldefrawi, M. E., and O’Brien, R. D., 1972, Macromolecules from lobster axon membranes that bind cholinergic ligands and local anesthetics, Proc. Nat. Acad. Sci. U. S 69: 177–181.CrossRefGoogle Scholar
  34. Dettbarn, W.-D., 1960a, The effect of curare on conduction in myelinated, isolated nerve fibers of the frog, Nature 186: 891–892.PubMedCrossRefGoogle Scholar
  35. Dettbarn, W.-D., 1960b, New evidence for the role of acetylcholine in conduction, Biochim. Biophys. Acta 41: 377–386.PubMedCrossRefGoogle Scholar
  36. Dettbarn, W.-D., 1961, New evidence for the role of acetylcholine in bioelectrogenesis, in “Bioelectrogenesis” (Proc. Symp. on Comparative Bioelectrogenesis) (C. Chagas and A. Paes de Carvalho, eds.), pp. 237–261, Elsevier.Google Scholar
  37. Dettbarn, W.-D., 1967, The acetylcholine system in peripheral nerve, Ann. N. Y. Acad. Sci 144: 483–503.CrossRefGoogle Scholar
  38. Dettbarn, W.-D., and Davis, F. A., 1963, Effects of acetylcholine on axonal conduction of lobster nerve, Biochim. Biophys. Acta 66: 397–405.PubMedCrossRefGoogle Scholar
  39. Dettbarn, W.-D., and Rosenberg, P., 1966, Effect of ions on the efflux of acetylcholine from peripheral nerve, J. Gen. Physiol 50: 447–460.PubMedCrossRefGoogle Scholar
  40. Ebashi, E., and Lipman, F., 1962, Adenosine triphosphate-linked concentration of calcium ions in a particulate fraction of rabbit muscle, J. Cell Biol 14: 389–400.PubMedCrossRefGoogle Scholar
  41. Eccles, J. C., 1935, After-discharge from the superior cervical ganglion, J. Physiol 84: 50p–52 p.Google Scholar
  42. Eigen, M., 1967, Dynamic aspects of information transfer and reaction control in bio-molecular systems, in “The Neurosciences” (G. C. Quarton, T. Melnechuk, and F. O. Schmitt, eds.), pp. 130–142, The Rockefeller University Press, New York.Google Scholar
  43. Eigen, M., and DeMaeyer, L., 1963, Relaxation methods, in “Technique of Organic Chemistry” (S. L. Friess, E. S. Lewis, and A. Weissberger, eds.), Vol. 8, p. 895, Interscience, New York.Google Scholar
  44. Eldefrawi, M. E., and Eldefrawi, A. T., 1973, Purification and molecular properties of the acetylcholine receptor from Torpedo electroplax, Arch. Biochem. Biophys 159: 362–373.PubMedCrossRefGoogle Scholar
  45. Erlanger, J., 1939, The initiation of impulses in axons, J. Neurophysiol 2: 370–379.Google Scholar
  46. Evans, M. H., 1972, Tetrodotoxin and saxitoxin in neurobiology, Intern. Rev. Neutobiol 15: 83–166.CrossRefGoogle Scholar
  47. Feldberg, W., and Vartiainen, A., 1934, Further observations on the physiology and pharmacology of a sympathetic ganglion, J. Physiol 83: 103–128.PubMedGoogle Scholar
  48. Fox, J. M., 1972, Veraenderungen der spezifischen Ionenleitfaehigkeiten der Nervenmembran durch ultraviolette Strahlung, Dissertation, Homburg—Saarbruecken.Google Scholar
  49. Fulton, J. F., 1938, “Physiology of the Nervous System,” Oxford University Press, New York (1938, 1943 ).Google Scholar
  50. Gruber, H., and Zenker, W., 1973. Acetylcholinesterase: histochemical differentiation between motor and sensory nerve fibres, Brain Res. 51: 207–214.PubMedCrossRefGoogle Scholar
  51. Guggenheim, E. A., 1949, “Thermodynamics,” Interscience, New York.Google Scholar
  52. Hamprecht, B., 1974, Cell cultures as model systems for studying the biochemistry of differentiated functions of nerve cells, Hoppe-Seyler’s Z. Physiol. Chem 355: 109–110.Google Scholar
  53. Harris, A. J., and Dennis, M. J., 1970, Acetylcholine sensitivity and distribution on mouse neuroblastoma cells, Science 167: 1253–1255.PubMedCrossRefGoogle Scholar
  54. Hasselbach, W., and Makinose, M., 1963, Ueber den Mechanismus des Calciumtransportes durch die Membranen des sarkoplasmatischen Reticulums, Biochem. Z 339: 96111.Google Scholar
  55. Hebb, C. O., 1957, Biochemical evidence for the neural function of acetylcholine, Physiol. Rev 37: 196–220.PubMedGoogle Scholar
  56. Higman, H. B., and Bartels, E., 1961, The competitive nature of the action of acetylcholine and local anesthetics, Biochim. Biophys. Acta 54: 543–554.PubMedCrossRefGoogle Scholar
  57. Higman, H. B., and Bartels, E., 1962, New method for recording electrical characteristics of the monocellular electroplax, Biochim. Biophys. Acta 57: 77–82.PubMedCrossRefGoogle Scholar
  58. Higman, H. B., Podleski, T. R., and Bartels, E., 1963, Apparent dissociation constants between carbamylcholine, d-tubocurarine and the receptor, Biochim. Biophys. Acta 75: 187–193.PubMedCrossRefGoogle Scholar
  59. Higman, H. B., Podleski, T. R., and Bartels, E., 1964, Correlation of membrane potential and K flux in the electroplax of Electrophorus, Biochim. Biophys. Acta 79: 138–150.PubMedGoogle Scholar
  60. Hill, A. V., 1960, The heat production of muscle, in “Molecular Biology. Elementary Processes of Nerve Conduction and Muscle Contraction” (D. Nachmansohn, ed.), pp. 17–24, Academic Press, New York.Google Scholar
  61. Hodgkin, A. L., 1964, “The Conduction of the Nervous Impulse,” C. C. Thomas, Springfield, Illinois.Google Scholar
  62. Hodgkin, A. L., and Keynes, R. D., 1955, The potassium permeability of a giant nerve fibre, J. Physiol 128: 61.PubMedGoogle Scholar
  63. Hoskin, F. C. G., and Rosenberg, P., 1964, Alteration of acetylcholine penetration into, and effects on venom-treated squid axons by physostigmine and related compounds, J. Gen. Physiol 46: 1117–1127.CrossRefGoogle Scholar
  64. Hoskin, F. C. G., Kremzner, L. T., and Rosenberg, P., 1969, Effects of some cholinesterase inhibitors on the squid giant axon, Biochem. Pharmacol 18: 1727–1737.PubMedCrossRefGoogle Scholar
  65. Hoskin, F. C. G., Rosenberg, P., and Brzin, M., 1966, Re-examination of the effect of DFP on electrical and cholinesterase activity of squid giant axon, Proc. Nat. Acad. Sci. U. S 55: 1231–1235.CrossRefGoogle Scholar
  66. Howarth, J. V., Keynes, R. D., and Ritchie, J. M., 1968, The origin of the initial heat associated with a single impulse in mammalian non-myelinated nerve fibres, J. Physiol 194: 745–793.PubMedGoogle Scholar
  67. Hubbard, J. I., and Schmidt, R. F., 1963, An electrophysiological investigation of mammalian motor nerve terminals, J. Physiol 166: 145–167.PubMedGoogle Scholar
  68. Huneeus-Cox, F., Fernandez, H. L., and Smith, B. H., 1966, Effects of redox and sulfhydryl reagents on the bioelectric properties of the giant axon of the squid, Biophys. J 6: 675–689.PubMedCrossRefGoogle Scholar
  69. Husain, S. S., and Mautner, H. G., 1973, The purification of choline acetyltransferase of squid-head ganglia, Proc. Nat. Acad. Sci. U. S 70: 3749–3753.CrossRefGoogle Scholar
  70. Julian, F. J., and Goldman, D E, 1962, The effects of mechanical stimulation on some electrical properties of axons, J. Gen. Physiol 46: 197–313.CrossRefGoogle Scholar
  71. Karlin, A., 1969, Chemical modification of the active site of the acetylcholine receptor, J. Gen. Physiol 54: 245s–264s.CrossRefGoogle Scholar
  72. Karlin, A., and Bartels, E., 1966, Effects of blocking sulfhydryl groups and or reducing disulfide bonds on the acetylcholine-activated permeability system of the electroplax, Biochim. Biophys. Acta 126: 525–535.PubMedCrossRefGoogle Scholar
  73. Karlin, A., and Cowburn, D., 1973, The affinity-labeling of partially purified acetylcholine receptor from electric tissue of Electrophorus, Proc. Nat. Acad. Sci. U. S 70: 3636–3640.CrossRefGoogle Scholar
  74. Karlin, A., and Winnik, M., 1968, Reduction and specific alkylation of the receptor for acetylcholine, Proc. Nat. Acad. Sci. U. S 60: 668–674.CrossRefGoogle Scholar
  75. Karlin, A., Prives, J., Deal, W., and Winnik, M., 1970, Counting acetylcholine receptors in the electroplax, in “Ciba Foundation Symposium on Molecular Properties of Drug Receptors” (R. Porter and M. O’Connor, eds.), pp. 247–261, J. & A. Churchill, London.Google Scholar
  76. Katchalsky, A., 1964, Polyelectrolytes and their biological interactions, in “Connective Tissue: Intercellular Macromolecules,” pp. 9–41, Little, Brown and Co., Boston, Massachusetts.Google Scholar
  77. Katchalsky, A., 1967, Membrane thermodynamics, in “The Neurosciences” (G. C. Quarton, T. Melnechuk, and F. O. Schmitt, eds.), pp. 326–343, The Rockefeller University Press, New York.Google Scholar
  78. Katchalsky, A., 1969, Chemical dynamics of macromolecules and its cybernetic significance, in “Biology and the Physical Sciences” (S. Devons, ed.), pp. 267–298, Columbia University Press, New York.Google Scholar
  79. Katchalsky, A., and Spangler, R., 1968, Dynamics of membrane processes, Quart. Rev. Biophys 1: 127–175.CrossRefGoogle Scholar
  80. Katz, B., 1966, “Nerve, Muscle and Synapse,” McGraw-Hill, New York.Google Scholar
  81. Katz, B., and Miledi, R., 1965, Propagation of electrical activity in motor nerve terminals, Proc. Roy. Soc. B 161: 453–482.CrossRefGoogle Scholar
  82. Koelle, G. B., 1963, Cytological distribution and physiological functions of cholinesterases, in “Cholinesterases and Anticholinesterase Agents” (G. B. Koelle, ed.), “Handb. d. Exp. Pharmakol.,” Ergw. XV, pp. 187–298, Springer-Verlag, Berlin and Heidelberg.Google Scholar
  83. Koelle, G. B., 1971, Current concepts of synaptic structure and function, Ann. N. Y. Acad. Sci 183: 5–20.PubMedCrossRefGoogle Scholar
  84. Landowne, D., 1973, Movement of sodium ions associated with the nerve impulse, Nature 242: 457–459.PubMedCrossRefGoogle Scholar
  85. Leuzinger, W., Baker, A. L., and Cauvin, E., 1968, Acetylcholinesterase II. Crystallization, absorption spectra, isoionic point, Proc. Nat. Acad. Sci. U. S 59: 620–623.CrossRefGoogle Scholar
  86. Lewis, P. R., and Shute, C. C. D., 1966, The distribution of cholinesterase in cholinergic neurons demonstrated with the electron microscope, J. Cell. Sci 1: 381–390.PubMedGoogle Scholar
  87. Lissak, K., 1939, Liberation of acetylcholine and adrenaline by stimulating isolated nerves, Am. J. Physiol 127: 263–271.Google Scholar
  88. Loewenstein, W. R. (ed.), 1966, Biological membranes: Recent progress, Ann. N. Y. Acad. Sci. 137:403–1048.Google Scholar
  89. Loewi, O., 1921, Ueber humorale Uebertragbarkeit der Nerznervenwirkung. I. Mitteilung, Arch. Ges. Physiol. (Pflueger’s) 189: 239–242.CrossRefGoogle Scholar
  90. Lorente de Nó, R., 1938, Liberation of acetylcholine by the superior cervical sympathetic ganglion and the nodosum ganglion of the vagus, Am. J. Physiol 121: 331–349.Google Scholar
  91. Manson, L. A. (ed.), 1971, “Biomembranes,” Vol. I, Plenum Press, New York.Google Scholar
  92. Margoliash, E., 1972, The molecular variations of cytochrome C as a function of the evolution of species, in “Harvey Lectures 1970/1971,” pp. 171–247, Academic Press, New York.Google Scholar
  93. Martin, R., and Rosenberg, P., 1968, Fine structural alterations associated with venom action on squid giant nerve fibers, J. Cell Biol 36: 341–353.PubMedCrossRefGoogle Scholar
  94. Masland, R. L., and Wigton, R. S., 1940, Nerve activity accompanying fasciculation produced by Prostigmine, J. Neurophysiol 3: 269–275.Google Scholar
  95. McIntyre, A. R., 1959, Neuromuscular transmission and normal and denervated muscle-sensitivity to curare and acetylcholine, in “Curare and Curare-Like Agents” (D. Bovet, F. Bovet-Nitti, and G. B. Marini-Bettolo, eds.), pp. 211–218, Elsevier, Amsterdam.Google Scholar
  96. Meunier, J.-C., Huchet, M., Boquet, P., and Changeux, J.-P., 1971, Separation de la proteine receptrice de l’acetylcholine et de l’acetylcholinesterase, C. R. Acad. Sci. Paris D 272: 117–120.Google Scholar
  97. Murait, A. v., and Stämpfii, R., 1953, Die photochemische Wirkung von Ultraviolettlicht auf den erregten Ranvierschen Knoten der einzelnen Nervenfaser, Hely. Physiol. Acta 11: 182–193.Google Scholar
  98. Nachmansohn, D., 1955, Metabolism and function of the nerve cell, in “Harvey Lectures 1953/1954,” pp. 57–99, Academic Press, New York.Google Scholar
  99. Nachmansohn, D., 1959, “Chemical and Molecular Basis of Nerve Activity,” Academic Press, New York.Google Scholar
  100. Nachmansohn, D., 1963, (1) Actions on axons and the evidence for the role of acetylcholine in axonal conduction, pp. 701–740; in “Cholinesterases and Anticholinesterase Agents” (G. B. Koelle, ed.), “Handb. d. Exp. Pharmakol.,” Ergw. X V, Springer-Verlag, Berlin and Heidelberg.Google Scholar
  101. Nachmansohn, D., 1963, (2) Choline acetylase, pp. 40–45, in “Cholinesterases and Anticholinesterase Agents” (G. B. Koelle, ed.), “Handb. d. Exp. Pharmakol.,” Ergw. X V, Springer-Verlag, Berlin and Heidelberg.Google Scholar
  102. Nachmansohn, D., 1966a, Properties of the acetylcholine receptor protein analyzed on the excitable membrane of the monocellular electroplax preparation, in “Current Aspects of Biochemical Energetics: Lipmann Dedicatory Volume” (N. O. Kaplan and E. P. Kennedy, eds.), pp. 145–172, Academic Press, New York.Google Scholar
  103. Nachmansohn, D., 1966b, Chemical control of the permeability cycle in excitable membranes during electrical activity, in “Biological Membranes: Recent Progress” (W. Loewenstein, ed.), Ann. N. Y. Acad. Sci. 137:877–900.Google Scholar
  104. Nachmansohn, D., 1968, Proteins in bioelectricity: control of ion movements across excitable membranes, Proc. Nat. Acad. Sci. U. S 61: 1034–1041.CrossRefGoogle Scholar
  105. Nachmansohn, D., 1969, Proteins of excitable membranes, J. Gen. Physiol. 54:187s–224s.CrossRefGoogle Scholar
  106. Nachmansohn, D., 1969, Proteins of excitable membranes, J. Gen. Physiol. 54:187s–224s.CrossRefGoogle Scholar
  107. Nachmansohn, D., 1971a, Proteins in bioelectricity. Acetylcholine-esterase and -receptor, in “Handbook of Sensory Physiology” (W. R. Loewenstein, ed.), Vol. I, “Principles of Receptor Physiology,” pp. 18–102, Springer-Verlag, Berlin and Heidelberg.CrossRefGoogle Scholar
  108. Nachmansohn, D., 1971b, Chemical events in conducting and synaptic membranes during electrical activity, Proc. Nat. Acad. Sci. U. S 68: 3170–3174.CrossRefGoogle Scholar
  109. Nachmansohn, D., 1973, The neuromuscular junction. The role of acetylcholine in excitable membranes, in “The Structure and Function of Muscle” (G. H. Boume, ed.), Vol. III, “Physiology and Biochemistry,” pp. 32–117, Academic Press, New York.Google Scholar
  110. Nachmansohn, D., and Lederer, E., 1939, Sur la biochimie de la cholinesterase, Bull. Soc. Chim. Biol. Paris 21: 797–808.Google Scholar
  111. Nachmansohn, D., and Machado, A. L., 1943, The formation of acetylcholine. A new enzyme “choline acetylase,” J. Neurophysiol. 6: 397–404.Google Scholar
  112. Nachmansohn, D., and Meyerhof, B., 1941, Relation between electrical changes during nerve activity and concentration of choline esterase, J. Neurophysiol 4: 348–361.Google Scholar
  113. Nastuk, W. L., 1954, Relation between extracellular Na+ and the depolarization of Acht on the c.p. nerve, Fed. Proc 13: 104.Google Scholar
  114. Neher, E., and Lux, H. D., 1973, Rapid changes of potassium concentration at the outer surface of exposed single neurons during membrane current flow, J. Gen. Physiol 61: 385–399.PubMedCrossRefGoogle Scholar
  115. Nelson, P. G., Peacock, J. H., and Amano, T., 1971, Responses of neuroblastoma cells to iontophoretically applied acetylcholine, J. Cell Physiol 77: 353–362.PubMedCrossRefGoogle Scholar
  116. Neumann, E., 1973, Molecular hysteresis and its cybernetic significance, Angew. Chem, Int. Ed 12: 356–369.CrossRefGoogle Scholar
  117. Neumann, E., 1974, An integral physico-chemical model for bio-excitability, in “Physics and Mathematics of the Nervous System” (M. Conrad et al,eds.). Lecture Notes in Biomathematics 4:42–81.Google Scholar
  118. Neumann, E., and Katchalsky, A., 1972, Long-lived conformation changes induced by electric impulses in biopolymers, Proc. Nat. Acad. Sci. U. S 69: 993–997.CrossRefGoogle Scholar
  119. Neumann, E., and Rosenheck, K., 1972, Permeability changes induced by electric impulses in vesicular membranes, J. Membrane Biol 10: 279–290.CrossRefGoogle Scholar
  120. Neumann, E., Nachmansohn, D., and Katchalsky, A., 1973, An attempt at an integral interpretation of nerve excitability, Proc. Nat. Acad. Sci. U. S 70: 727–731.CrossRefGoogle Scholar
  121. Olsen, R. W., Meunier, J.-C., and Changeux, J.-P., 1972, Progress in the purification of the cholinergic receptor protein from Electrophorus electricus by affinity chromatography, FEBS Lett. 28: 96–100.PubMedCrossRefGoogle Scholar
  122. Oster, G. F., Perelson, A. S., and Katchalsky, A., 1973, Network thermodynamics: dynamic modelling of biophysical systems, Quart. Rev. Biophys 6: 1–134.CrossRefGoogle Scholar
  123. Plonsey, R., 1969, “Bioelectric Phenomena,” McGraw-Hill, New York.Google Scholar
  124. Podleski, T. R., 1966, Effects of quaternary ammonium ions on the membrane potential of electroplax, Doctoral Diss., Columbia University, New York.Google Scholar
  125. Podleski, T. R., 1967, Dixtinction between the active sites of acetylcholine-receptor and -esterase, Proc. Nat. Acad. Sci. U. S 58: 268–273.CrossRefGoogle Scholar
  126. Podleski, T. R., 1969, Molecular forces acting between ammonium ions and acetylcholine receptor protein, Biochem. Pharmacol 18: 211–226.PubMedCrossRefGoogle Scholar
  127. Podleski, T. R., and Bartels, E., 1963, Difference between tetracaine and d-tubocurarine in the competition with carbamylcholine, Biochim. Biophys. Acta 75: 387–396.PubMedCrossRefGoogle Scholar
  128. Podleski, T. R., and Nachmansohn, D., 1966, Similarities between active sites of acetylcholinereceptor and acetylcholinesterase with quinolinium ions, Proc. Nat. Acad. Sci. U. S 56: 1034–1039.CrossRefGoogle Scholar
  129. Podleski, T., Meunier, J.-C., and Changeux, J.-P., 1969, Compared effects of dithiothreitol on the interaction of an affinity-labeling reagent with acetylcholinesterase and the excitable membrane of the electroplax, Proc. Nat. Acad. Sci. U. S 63: 1239–1246.CrossRefGoogle Scholar
  130. Porter, K. R., and Bonneville, M. A., 1964, “An Introduction to the Fine Structure of Cells and Tissues,” Lea and Febiger, Philadelphia.Google Scholar
  131. Porter, C. W., Chiu, T. H., Wieckowski, J., and Barnard, E. A., 1973, Types and locations of cholinergic receptor-like molecules in muscle fibres, Nature, New Biol. 241: 3–7.Google Scholar
  132. Prigogine, I., 1968, “Thermodynamics of Irreversible Processes,” 3rd ed., C. C. Thomas, Springfield, Illinois.Google Scholar
  133. Prince, A. K., 1966, A sensitive fluorometric procedure for the determination of small quantities of acetylcholinesterase, Biochem. Pharmacol 15: 411–417.PubMedCrossRefGoogle Scholar
  134. Racker, E., 1970, “Membranes of Mitochondria and Chloroplasts” (E. Racker, ed.), Van Nostrand Reinhold, New York.Google Scholar
  135. Rawlings, P. K., and Neumann, E., 1975. Proc. Nat. Acad. Sci. U. S,in press.Google Scholar
  136. Revzin, A., and Neumann, E., 1974, Conformational changes in rRNA induced by electric impulses, Biophys. Chem, 2: 144–150.PubMedCrossRefGoogle Scholar
  137. Riker, W. F., Jr., Werner, G., Roberts, J., and Kuperman, A., 1959, The presynaptic element in neuromuscular transmission, Ann. N. Y. Acad. Sci 81: 328–344.CrossRefGoogle Scholar
  138. Ritchie, J. M., 1963, The action of acetylcholine and related drugs on mammalian nonmyelinated nerve fibres, Biochem. Pharmacol. 12 (S): 3.Google Scholar
  139. Robertson, J. D., 1960, The molecular structure and contact relationships of cell membranes, in “Progress in Biophysics” (B. Katz and J. A. V. Butler, eds.), pp. 343–418, Pergamon Press, New York.Google Scholar
  140. Robertson, J. D., 1970, The ultrastructure of synapses, in “The Neurosciences” (F. O. Schmitt, ed.), Vol. 2, pp. 715–728, The Rockefeller University Press, New York.Google Scholar
  141. Rosenberg, P., 1966, Use of venoms in studies of nerve excitation, Mem. Inst. Butantan Simp. Internac. 33:477–508.Google Scholar
  142. Rosenberg, P., and Hoskin, F. C. G., 1963, Demonstration of increased permeability as a factor in the effect of acetylcholine on the electrical activity of venom-treated axons, J. Gen. Physiol 46: 1065–1073.PubMedCrossRefGoogle Scholar
  143. Rothenberg, M. A., Sprinson, D. B., and Nachmansohn, D., 1948, Site of action of acetylcholine, J. Neurophysiol 11: 111–116.PubMedGoogle Scholar
  144. Rothfield, L. I. (ed.), 1971, “Structure and Function of Biological Membranes,” Academic Press, New York.Google Scholar
  145. Sambursky, S., 1965, “Das physikalische Weltbild der Antike,” Artemis Verlag, Zurich.Google Scholar
  146. Schmidt, J., and Raftery, M. A., 1973, Purification of acetylcholine receptor from Torpedo californica electroplax by affinity chromatography, Biochemistry 12: 852–856.PubMedCrossRefGoogle Scholar
  147. Schoffeniels, E., 1957, An isolated single electroplax preparation. II. Improved preparation for studying ion flux, Biochim. Biophys. Acta 26: 585–596.PubMedCrossRefGoogle Scholar
  148. Schoffeniels, E., and Nachmansohn, D., 1957, An isolated single electroplax preparation. I. New data on the effect of acetylcholine and related compounds, Biochim. Biophys. Acta 26: 1–15.PubMedCrossRefGoogle Scholar
  149. Seeman, P., 1972, The membrane actions of anesthetics and tranquilizers, Pharmacol. Rev 24: 583–655.PubMedGoogle Scholar
  150. Segal, J. R., 1968, Surface charge of giant axons of squid and lobster, Biophys. J 8: 470–489.PubMedCrossRefGoogle Scholar
  151. Sjoestrand, F. S., and Barajas, L., 1968, Effect of modifications in conformation of protein molecules on structure of mitochondrial membranes, J. Ultrastructure Res 25: 121–1255.CrossRefGoogle Scholar
  152. Sjoestrand, F. S., and Barajas, L., 1970, A new model for mitochondrial membranes based on structural and on biochemical information, J. Ultrastructure Res 32: 293–306.CrossRefGoogle Scholar
  153. Smith, E. L., 1968, The evolution of proteins, in “Harvey Lectures 1966/1967,” pp. 231–256, Academic Press, New York.Google Scholar
  154. Spector, L, Kimhi, Y., and Nelson, P. G., 1973, Tetrodotoxin and cobalt blockage of Neuroblastoma action potentials, Nature, New Biol. 246: 124–126.Google Scholar
  155. Takeuchi, A., and Takeuchi, N., 1972, Actions of transmitter substances on the neuromuscular junctions of vertebrates and invertebrates, in “Advances in Biophysics” (M. Kotani, ed.), Vol. 3, pp. 45–95, University Park Press, Baltimore, Maryland.Google Scholar
  156. Tasaki, I., 1968, “Nerve Excitation,” Charles C. Thomas, Springfield, Illinois.Google Scholar
  157. Tasaki, I., and Singer, I., 1966, Membrane macromolecules and nerve excitability: a physicochemical interpretation of excitation in squid giant axons, Ann. N. Y. Acad. Sci 137: 793–806.CrossRefGoogle Scholar
  158. Tasaki, I., and Takenada, T., 1964, Ion fluxes and excitability in squid giant axon, in “The Cellular Functions of Membrane Transport” (J. F. Hoffman, ed.), Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
  159. Tasaki, I., Singer, I., and Takenaka, T., 1965, Effects of internal and external ionic environment on excitability of squid giant axon, J. Gen. Physiol 48: 1095–1123.PubMedCrossRefGoogle Scholar
  160. Traeuble, H., and Eibl, H., 1974, Electrostatic effects on lipid phase transitions: membrane structure and ionic environment, Proc. Nat. Acad. Sci. U. S 71: 214–219.CrossRefGoogle Scholar
  161. Webb, G. D., 1965, Affinity of benzoquinonium and ambenonium derivatives for the acetylcholine receptor, tested on the electroplax, and for acetylcholinesterase in solution, Biochim. Biophys. Acta 102: 172–184.PubMedCrossRefGoogle Scholar
  162. Werner, G., and Kuperman, A. S., 1963, Actions at the neuromuscular junctions, in “Cholinesterases and Anticholinesterase Agents” (G. B. Koelle, ed.), “Handb. d. Exp. Pharmakol.,” Ergew. XV, pp. 570–678, Springer-Verlag, Berlin and Heidelberg.Google Scholar
  163. Whittaker, V. P., 1973, The biochemistry of synaptic transmission, Naturwiss. 60: 281–289.PubMedCrossRefGoogle Scholar
  164. Zelman, A., and Shih, H. H., 1972, The constant field approximation: numerical evaluation for monovalent ions migrating across a homogeneous membrane, J. Theor. Biol 37: 373–383.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Eberhard Neumann
    • 1
  • David Nachmansohn
    • 2
  1. 1.Max-Planck-Institut of Biophysical ChemistryGoettingenGermany
  2. 2.Departments of Neurology and BiochemistryColumbia UniversityNew YorkUSA

Personalised recommendations