Effects of Sulfhydryl Reagents on Basal and Vasopressin-Stimulated Na+ Transport in the Toad Bladder

  • Ayala Frenkel
  • E. B. Margareta Ekblad
  • Isidore S. Edelman
Part of the Biomembranes book series (B, volume 7)


The two-barrier, in series, model of Koefoed-Johnsen and Ussing (1958) has been widely accepted as representative of the basic mechanism of transepithelial active Na+ transport. The first step in the process is presumed to be passive penetration of Na+ across the apical plasma membrane driven by the electrochemical gradient, and the second step is active extrusion of Na+ across the basal-lateral plasma membrane. The Na+ pump in the basal-lateral membrane apparently derives its energy from the hydrolysis of ATP (Skou, 1965).


Apical Membrane Apical Plasma Membrane Serosal Side Sulfhydryl Reagent Toad Bladder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Banerjee, S. P., and Sen, A. K., 1969, On the mechanism of inhibition of (Na+ + K+)ATPase by N-ethylmaleimide and ethacrynic acid, Fed. Proc 28: 589.Google Scholar
  2. Bentley, P. J., 1968, Amiloride: A potent inhibitor of sodium transport across the toad bladder, J. Physiol. 195: 317–330.PubMedGoogle Scholar
  3. Civan, M. M., and Frazier, H. S., 1968, The site of the stimulatory action of vasopressin on sodium transport in toad bladder, J. Gen. Physiol 51: 589–605.PubMedCrossRefGoogle Scholar
  4. Degani, Y., and Patchornik, A., 1971, Selective cyanylation of sulfhydryl groups. II. On the synthesis of 2-nitro-5-thiocyanato-benzoic acid, J. Org. Chem 36: 2727–2728.CrossRefGoogle Scholar
  5. Ehrlich, E. N., and Crabbé, J., 1968, The mechanism of action of amipramizide, Pflügers Arch. 302: 79–96.PubMedCrossRefGoogle Scholar
  6. Ellman, G. L., and Lysko, H., 1967, Disulfide and sulfhydryl compounds in TCA extracts of human blood and plasma, J. Lab. Clin. Med 70: 518–527.PubMedGoogle Scholar
  7. Farah, A., Yamodis, N. D., and Pessah, N., 1969, The relation of changes in sodium transport to protein-bound disulfide and sulfhydryl groups in the toad bladder epithelium, J. Pharm. Expt. Ther 170: 132–144.Google Scholar
  8. Frazier, H. S., Dempsey, E. F., and Leaf, A., 1962, Movement of sodium across the mucosal surface of the isolated toad bladder and its modification by vasopressin, J. Gen. Physiol 45: 529–543.PubMedCrossRefGoogle Scholar
  9. Green, F. A., 1967, Erythrocyte membrane sulfhydryl groups and RH antigen activity, Immunochemistry 4: 247–257.PubMedCrossRefGoogle Scholar
  10. Koefoed-Johnsen, V., and Ussing, H. H., 1958, The nature of the frog skin potential, Acta Physiol. Scand 42: 298–308.PubMedCrossRefGoogle Scholar
  11. Leaf, A., and Sharp, G. W. G., 1971, A discussion on active transport of salts and water in living tissues, Roy. Soc. Lond, Phil. Trans. B 262: 323–332.CrossRefGoogle Scholar
  12. Loewenstein, W. R., Socolar, S. J., Higashino, S, Kanno, Y., and Davidson, N., 1965, Intercellular communication: Renal, urinary bladder, sensory, and salivary gland cells, Science 149: 295–296.PubMedCrossRefGoogle Scholar
  13. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J., 1951, Protein measurement with the Folin phenol reagent, J. Biol. Chem 193: 265–275.PubMedGoogle Scholar
  14. Petersen, M. J., and Edelman, I. S., 1964, Calcium inhibition of the action of vasopressin on the urinary bladder of the toad, J. Clin. Invest 43: 583–594.PubMedCrossRefGoogle Scholar
  15. Rega, A. F., Rothstein, A., and Weed, R. I., 1967, Erythrocyte membrane sulfhydryl groups and the active transport of cations, J. Cell. Physiol 70: 45–52.PubMedCrossRefGoogle Scholar
  16. Rothstein, A., 1970, Sulfhydryl groups in membrane structure and function, in “Current Topics in Membranes and Transport” (F. Bronner and A. Kleinzeller, eds.), Vol. 1, pp. 135–176, Academic Press, New York.CrossRefGoogle Scholar
  17. Skou, J. C., 1965, Enzymatic basis for active transport of Na+ and K+ across cell membrane, Physiol. Rev 45: 596–617.PubMedGoogle Scholar
  18. Spooner, P. M., and Edelman, I. S., Studies on the effect of aldosterone on electrical resistance of toad bladder, Submitted for publication.Google Scholar
  19. Ussing, H. H., 1963–1964, Transport of electrolytes and water across epithelia, in “Harvey Lectures,” Series 59, pp. 1–30.Google Scholar
  20. Ussing, H. H., and Zerahn, K., 1951, Active transport of sodium as the source of electric current in the short-circuited frog skin, Acta Physiol. Scand 23: 110–127.PubMedCrossRefGoogle Scholar
  21. Van Steveninck, J., Weed, R. I., and Rothstein, A., 1965, Localization of erythrocyte membrane sulfhydryl groups essential for glucose transport, J. Gen. Physiol 48: 617–632.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Ayala Frenkel
    • 1
    • 2
  • E. B. Margareta Ekblad
    • 1
    • 2
  • Isidore S. Edelman
    • 1
    • 2
  1. 1.Cardiovascular Research InstituteUniversity of California School of MedicineSan FranciscoUSA
  2. 2.Departments of Medicine and Biochemistry and BiophysicsUniversity of California School of MedicineSan FranciscoUSA

Personalised recommendations