Advertisement

Carotenoid and Merocyanine Probes in Chromatophore Membranes

  • Britton Chance
  • Margareta Baltscheffsky
  • W. K. Cheng
Part of the Biomembranes book series (B, volume 7)

Abstract

Increasing awareness of the vast amount of information that can be obtained from intrinsic and extrinsic probes of membrane phenomena has led to a wide-ranging survey of the properties of both types of probe. Intrinsic probes of photosynthetic membranes are provided by the carotenoid pigments. The carotenoids are assumed to be located in the lipid phase of the membrane close to chlorophyll, since they act as accessory light-harvesting pigments. Isolated reaction center preparations from photosynthetic bacteria usually contain tightly bound carotenoids, which further supports the concept of a close association between them and the photosynthetic unit. The spectral and kinetic properties of these pigments respond to several parameters: light, oxygen, ATP, and inorganic pyrophosphate (PPi). In single-flash illumination experiments, the rate of decay of the membrane charge is assumed to depict the degree of coupling of the chromatophore or chloroplast membrane. The origin of the carotenoid absorbance change has been much debated and recently it has been shown to coincide with the formation of a diffusion potential in chromatophore membranes from Rhodopseudomonas spheroides (Jackson and Crofts, 1969, 1971; Crofts, 1974). In plant chloroplasts, the corresponding absorbance change at 518 nm has been stated by Witt (1972) to indicate the formation of a transmembrane electric field. When induced in the dark by energizing conditions, or by illumination, the steady state response of the pigments is abolished by uncouplers but the response to a single flash is unaltered in rise time and extent, even though the decay time is accelerated.

Keywords

Spectral Shift Absorbance Change Steady State Response Fluorescence Change Single Flash 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Azzi, A., Chance, B., Radda, G. K., and Lee, C. P., 1969, A fluorescence probe for energy dependent structural changes in fragmented membranes, Proc. Natl. Acad. Sci. 62: 612–619.PubMedCrossRefGoogle Scholar
  2. Baltscheffsky, M., 1967, Inorganic pyrophosphate and ATP as energy donors in’chromatophores from R. rubrum, Nature 216: 241–243.PubMedCrossRefGoogle Scholar
  3. Baltscheffsky, M., 1974, Reversible energization in photosynthesis as measured with endogenous carotenoid, in “Dynamics of Energy Transducing Membranes.” (L. Ernster, R. W. Estabrook, and E. C. Slater, eds.), pp. 365–376, BBA Library, Elsevier, Amsterdam.Google Scholar
  4. Brooker, L. G. S., Keyes, G. H., Sprague, R. H., Van Dyke, R. H., Van Lare, E., Van Zandt, G., White, F. L., Cressman, H. W. J., and Dent, S. G., 1951, Color and constitution. X. Absorption of the merocyanines. J. Am. Chem. Soc. 73: 5332.CrossRefGoogle Scholar
  5. Bücher, H., Wiegand, J., Snavely, B. B., Beck, K. H., and Kuhn, H., 1969, Electric field induced changes in the optical absorption of a merocyanine dye, Chem. Phys. Lett. 3: 508–511.CrossRefGoogle Scholar
  6. Chance, B., 1973, Electrochromic responses of merocyanine probes in energy coupling responses of submitochondrial particles (smp), Fed. Proc. Abs. 32: 669.Google Scholar
  7. Chance, B. (1974), Deep and shallow probes of natural and artificial membranes, in “4th Int. Biophys. Congress-Moscow” (L. Kayushin, ed.), pp. 911–923, USSR Academy of Sciences, Moscow.Google Scholar
  8. Chance, B., and Graham, N., 1971, A rapid-scanning dual wavelength spectrophotometer, Rev. Sci. Instr. 42: 941–945.CrossRefGoogle Scholar
  9. Clayton, R. K., 1963, Absorption spectra of photosynthetic bacteria and their chlorophylls, in “Bacterial Photosynthesis” (H. Gest, A. San Pietro, and L. P. Vernon, eds.) pp. 495–500. The Antioch Press, Yellow Springs.Google Scholar
  10. Cohen, L. B., Salzberg, B. M., Davila, H. V., Ross, W. N., Landowne, D., Waggoner, A. S., and Wang, C. H., 1974, Changes in axon fluorescence during activity: A search for useful probes, J. Memb. Biol. 19: 1–36.CrossRefGoogle Scholar
  11. Crofts, A. R., 1975, The electron transport system as a H+ pump in photosynthetic bacteria, in “Perspectives in Membrane Biology Symposium-Oaxaca, Mexico” (C. Gitler, ed.).Google Scholar
  12. Davila, H. V., Salzberg, B. M., and Cohen, L. B., 1973, A large change in axon fluorescence that provides a promising method for measuring membrane potential, Nature, New Biol. 241: 159–160.Google Scholar
  13. Jackson, J. B., and Crofts, A. R., 1969, The high energy state in chromatophores from Rhodopseudomonas spheroides, FEBS Lett. 4: 185–189.PubMedCrossRefGoogle Scholar
  14. Jackson, J. B., and Crofts, A. R., 1971, The kinetics of light induced carotenoid changes in Rhodopseudomonas spheroides and their relation to electrical field generation across the chromatophore membrane, Eur. J. Biochem. 18: 120–130.PubMedCrossRefGoogle Scholar
  15. Laris, P. C., and Hoffman, J. F., 1973, Membrane potentials in human red blood cells determined using a fluorescent probe, Fed. Proc. Abs. 32: 326.Google Scholar
  16. Platt, J. R., 1956, Wavelength formulae and configuration interaction in Brooker dyes and chain molecules, J. Chem. Phys. 25: 80–105.CrossRefGoogle Scholar
  17. Platt, J. R., 1961, Electrochromism, a possible change in color producible in dyes by an electric field, J. Chem. Phys. 34: 862–863.CrossRefGoogle Scholar
  18. Reich, R., and Schmidt, S., 1972, Über den Einfluß elektrischer Felder auf das Absorptionsspektrum von Farbstoffmolekülen in Lipidschnichten. I. Theorie, Ber. Bunsenges. Physik. Chem. 76: 589–598.Google Scholar
  19. Schmidt, S., and Reich, R., 1972a, Über den Einfluß elektrischer Felder auf das Absorptionsspektrum von Farbstoffmolekülen in Lipidschnichten. II. Messungen an Rhodamin B, Ber. Bunsenges. Physik. Chem. 76: 599–602.Google Scholar
  20. Schmidt, S., and Reich, R., 1972b, Über den Einfluß elektrischer Felder auf das Absorptionsspektrum von Farbstoffmolekülen in Lipidschnichten. III. Elektrochemie eines Carotinoids (lutein), Ber. Bunsenges. Physik. Chem. 76: 1202–1208.Google Scholar
  21. Schmidt, S., Reich, R., and Witt, H. J., 1972, Electrochromic measurements in vitro as a test for the interpretation of field indicating absorption changes in photosynthesis, in “Proc. 2nd Int. Congr. on Photosynthesis Research” (G. Forti, M. Avron, and A. Melandri, eds.), p. 1087, Dr. W. Junk N. W. Publishers, The Hague.Google Scholar
  22. Vainio, H., Baltscheffsky, M., Baltscheffsky, H., and Azzi, A., 1972, Energy-dependent changes in membranes of Rhodospirillum rubrum chromatophores as measured by 8-anilino-naphthalene-l-sulfonic acid, Eur. J. Biochem. 30: 301–306.PubMedCrossRefGoogle Scholar
  23. Witt, H. T., 1972, Energy transduction in the functional membrane of photosynthesis, Bioenergetics 3: 47–54.CrossRefGoogle Scholar
  24. Brooker, L. G. S., Keyes, G. H., Sprague, R. H., Van Dyke, R. H., Van Lare, E., Van Zandt, G., White, F. L., Cressman, H. W. J., and Dent, S. G., 1951, Color and constitution. X. Absorption of the merocyanines, J. of Amer. Chem. Soc. 73: 5332.CrossRefGoogle Scholar
  25. Bücher, H., Wiegand, J., Snavely, B. B., Beck, K. H., and Kuhn, H., 1969, Electric field induced changes in the optical absorption of a merocyanine dye, Chem. Phys. Lett. 3: 508–511.CrossRefGoogle Scholar
  26. Platt, J. R., 1961, Electrochromism, a possible change in color producible in dyes by an electric field, J. Chem. Phys. 34: 862–863.CrossRefGoogle Scholar
  27. Schmidt, S., and Reich, R., 1972a, Über den Einfluß elektrischer Felder auf das Absorptionsspektrum von Farbstoffmolekülen in Lipidschnichten. H. Messungen an Rhoda-min B, Ber. Bunsenges. Physik. Chem. 76: 599–602.Google Scholar
  28. Schmidt, S., and Reich, R., 1972b, Über den Einfluß elektrischer Felder auf das Absorptionsspektrum von Farbstoffmolekülen in Lipidschnichten. III. Elektrochemie eines Carotinoids (lutein), Ber. Bunsenges. Physik. Chem. 76: 1202–1208.Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Britton Chance
    • 1
  • Margareta Baltscheffsky
    • 2
  • W. K. Cheng
    • 1
  1. 1.Johnson Research Foundation, School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of Biochemistry, Arrhenius LaboratoryUniversity of StockholmStockholmSweden

Personalised recommendations