Advertisement

Abstract

The accuracy of parameter estimates is increased by the use of optimal inputs. In this chapter, a historical background of optimal inputs is given first. This is followed by the design of optimal inputs for linear systems in Section 8.2 and nonlinear systems in Section 8.3. An improved method for the numerical determination of optimal inputs and multiparameter optimal inputs is discussed in Chapter 9.

Keywords

Critical Length Fisher Information Matrix Homogeneous Boundary Condition Terminal Time Optimal Input 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mehra, R. K., Optimal input signals for parameter estimation in dynamic systems— Survey and new results, IEEE Transactions on Automatic Control, Vol. 19, No. 6, pp. 753–768, 1974.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Levin, M. J., Optimal estimation of impulse response in the presence of noise, IRE Transactions on Circuit Theory, Vol. 7, pp. 50–56, March, 1960.Google Scholar
  3. 3.
    Levadi, V. S., Design of input signals for parameter estimation, IEEE Transactions on Automatic Control, Vol. 11, No. 2, pp. 205–211, 1966.CrossRefGoogle Scholar
  4. 4.
    Nahi, N. E., and Wallis, D. E., Jr., Optimal inputs for parameter estimation in dynamic systems with white observation noise, Preprints, Joint Automatic Control Conference, Boulder, Colorado, pp. 506–513, August 1969.Google Scholar
  5. 5.
    Aoki, M., and Staley, R. M., On input signal synthesis in parameter identification, Automatica, Vol. 6, pp. 431–440, 1970.MATHCrossRefGoogle Scholar
  6. 6.
    Nahi, N. E., and Napjus, G. A., Design of optimal probing signals for vector parameter estimation, IEEE Decision and Control Conference, Miami, Florida, pp. 162–168, 1971.Google Scholar
  7. 7.
    Goodwin, G. C., Optimal input signals for nonlinear-system identification, Proceedings of the IEE, Vol. 118, No. 7, pp. 922–926, 1971.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Mehra, R. K., et ah, Dual Control and Identification Methods for Avionic SystemsPart II, Optimal Inputs for Linear System Identification, Final Report, SCI Project 5971, AFOSR Contract F44620–71-C-0077, pp. 1–74, May, 1972.Google Scholar
  9. 9.
    Mehra, R. K., Optimal inputs for linear system identification, Joint Automatic Control Conference, Stanford University, Stanford, California, pp. 811–820, August 1972;Google Scholar
  10. 9a.
    also in IEEE Transactions on Automatic Control, Vol. 19, No. 3, pp. 192–200, June, 1974.MathSciNetMATHCrossRefGoogle Scholar
  11. 10.
    Mehra, R. K., and Stepner, D. E., Optimal inputs for aircraft parameter identification, International Conference on Systems and Control, Coimbatore, India, August, 1973.Google Scholar
  12. 11.
    Mehra, R. K., Frequency-Domain Synthesis of Optimal Inputs for Linear System Parameter Estimation, TR645 Division of Engineering and Applied Physics, Harvard University, July, 1973.Google Scholar
  13. 12.
    Gupta, N. K., Mehra, R. K., and Hall, W. E., Jr., Frequency domain input design for aircraft parameter identification, ASME Winter Annual Meeting, November, 1974.Google Scholar
  14. 13.
    Mehra, R. K., Synthesis of Optimal Inputs for Multiinput-Multioutput (MIMO) Systems with Process Noise; Part I: Frequency Domain Synthesis; Part II: Time Domain Synthesis, TR649, Division of Engineering and Applied Physics, Harvard University, February, 1974;Google Scholar
  15. 13a.
    also in System Identification, Advances and Case Studies, edited by R. K. Mehra and D. G. Lainiotis, Academic Press, New York, pp. 211–249, 1976.CrossRefGoogle Scholar
  16. 14.
    Mehra, R. K., Time domain synthesis of optimal inputs for system identification, IEEE Conference on Decision and Control, Phoenix, Arizona, pp. 480–487, 1974.Google Scholar
  17. 15.
    Mehra, R. K., Frequency domain synthesis of optimal inputs for multiinput-multi-output(MIMO) systems with process noise, IEEE Conference on Decision and Control, Phoenix, Arizona, pp. 410–418, 1974.Google Scholar
  18. 16.
    Mehra, R. K., and Gupta, N. K., Status of input design for aircraft parameter identification, AGARD Specialists Meeting on Methods for Aircraft State and Parameter Identification, NASA Langely Research Center, Hampton, Virginia, pp. 12–1 to 12–21, November, 1974.Google Scholar
  19. 17.
    Kalaba, R. E., and Spingarn, K., Optimal inputs and sensitivities for parameter estimation, Journal of Optimization Theory and Applications, Vol. 11, pp. 56–67, January, 1973.MathSciNetMATHCrossRefGoogle Scholar
  20. 18.
    Kalaba, R. E., and Spingarn, K., Optimal inputs for nonlinear process parameter estimation, IEEE Transactions on Aerospace and Electronic Systems, Vol. 10, pp. 339–345, May, 1974.CrossRefGoogle Scholar
  21. 19.
    Kalaba, R. E., and Spingarn, K., Optimal input system identification for homogeneous and nonhomogeneous boundary conditions, Journal of Optimization Theory and Applications, Vol. 16, Nos. 5/6, pp. 487–496, 1975.MathSciNetMATHCrossRefGoogle Scholar
  22. 20.
    Kalaba, R. E., and Spingarn, K., Optimal input system identification for nonlinear dynamic systems, Journal of Optimization Theory and Applications, Vol. 21, No. 1, pp. 91–102, January, 1977.MathSciNetMATHCrossRefGoogle Scholar
  23. 21.
    Kalaba, R. E., and Spingarn, K., On the numerical determination of optimal inputs, Journal of Optimization Theory and Applications, Vol. 25, No. 2, pp. 219–227, 1978.MathSciNetMATHCrossRefGoogle Scholar
  24. 22.
    Kalaba, R. E., and Spingarn, K., Sensitivity of parameter estimates to observations, system identification, and optimal inputs, Applied Mathematics and Computation, Vol. 7, No. 3, pp. 225–235, 1980.MathSciNetMATHCrossRefGoogle Scholar
  25. 23.
    Georganas, N. D., Optimal inputs and sensitivities for nonlinear process parameter estimation using imbedding techniques, IEEE Transactions on Automatic Control, (Technical Note), Vol. 21, No. 3, pp. 415–417, 1976.MathSciNetMATHCrossRefGoogle Scholar
  26. 24.
    Sugisaka, M., and Sagara, S., Imbedding approach for optimal input design of linear system identification, 5th IFAC Symposium on Identification and System Parameter Estimation, Darmstadt, Federal Republic of Germany, September, 1979.Google Scholar
  27. 25.
    Zarrop, M. B., A Chebyshev system approach to optimal input design, IEEE Transactions on Automatic Control, Vol. 24, No. 5, pp. 687–698, 1979.MathSciNetMATHCrossRefGoogle Scholar
  28. 26.
    Grove, T., Bekey, G., and Haywood, J., Analysis of errors in parameter estimation with applications to physiological systems, American Journal of Physiology, Vol. 239, pp. R39O-R400, November, 1980.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Robert Kalaba
    • 1
  • Karl Spingarn
    • 2
  1. 1.University of Southern CaliforniaLos AngelesUSA
  2. 2.Hughes Aircraft CompanyLos AngelesUSA

Personalised recommendations