Advertisement

Numerical Solutions for Nonlinear Two-Point Boundary-Value Problems

  • Robert Kalaba
  • Karl Spingarn
Part of the Mathematical Concepts and Methods in Science and Engineering book series (MCSENG)

Abstract

Optimal control problems for linear systems with quadratic performance criteria involve the solution of linear two-point boundary-value problems. The numerical solutions of these problems were discussed in the previous chapter. For nonlinear optimal control problems, iterative methods must be used to obtain the numerical solutions of the nonlinear two-point boundary-value problems. Two iterative methods for the numerical solutions are discussed in this chapter, (i) the method of quasilinearization and (ii) the Newton-Raphson method. These methods can also be used for linear or nonlinear optimal control problems subject to integral constraints.

Keywords

Critical Load Critical Length Energy Constraint Integral Constraint Grid Interval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bellman, R. E., and Kalaba, R. E., Quasilinearization and Nonlinear Boundary-Value Problems, American Elsevier Publishing Company, Inc., New York, p. 127, 1965.MATHGoogle Scholar
  2. 2.
    Roberts, S. M., and Shipman, J. S., Two-Point Boundary-Value Problems: Shooting Methods, American Elsevier Publishing Company, Inc., New York, 1972.MATHGoogle Scholar
  3. 3.
    Kalaba, R. E., and Spingarn, K., Optimization of functional subject to integral constraints, Journal of Optimization Theory and Applications, Vol. 24, No. 2, pp. 325–335, 1978.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Gottfried, B. S., and Weisman, J., Introduction to Optimization Theory, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1973.Google Scholar
  5. 5.
    Bellman, R., Introduction to the Mathematical Theory of Control Processes, Vol. 1, Academic Press, New York, p. 76, 1967.Google Scholar
  6. 6.
    Kalaba, R., and Ruspini, E., Identification of parameters in nonlinear boundary value problems, Journal of Optimization Theory and Applications, Vol. 4, No. 6, pp. 371–377, 1969.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Miele, A., and Levy, A. V., Modified quasilinearization and optimal initial choice of the multipliers, Part 1, Mathematical programming problems, Journal of Optimization Theory and Applications, Vol. 6, No. 5, pp. 364–380, 1970.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Miele, A., Iyer, R. R., and Well, K. H., Modified quasilinearization and optimal initial choice of the multipliers, Part 2, Optimal control problems, Journal of Optimization Theory and Applications, Vol. 6, No. 5, pp. 381–409, 1970.MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Kalaba, R. E., and Spingarn, K., Design of linear regulators with energy constraints, IEEE Conference on Decision and Control, Albuquerque, pp. 301–305, December, 1980.Google Scholar
  10. 10.
    Kalman, R. E., Contributions to the theory of optimal control, Boletin Sociedad Matematica Mexicana, Vol. 5, No. 1, pp. 102–119, 1960.MathSciNetGoogle Scholar
  11. 11.
    Athans, M., and Falb, P., Optimal Control, McGraw-Hill Book Company, New York, pp. 750–814, 1966.MATHGoogle Scholar
  12. 12.
    Bryson, A. E., Jr, and Ho, Y., Applied Optimal Control, Blaisdell Publishing Co., Waltham, Massachusetts, 1969.Google Scholar
  13. 13.
    Sage, A. P., Optimum Systems Control, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1968.MATHGoogle Scholar
  14. 14.
    Harvey, C. A., and Stein, G., Quadratic weights for asymptotic regulator properties, IEEE Transactions on Automatic Control, Vol. 23, No. 3, pp. 378–387, 1978.MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Stein, G., Generalized quadratic weights for asymptotic regulator properties, IEEE Conference on Decision and Control, San Diego, California, pp. 831–837, 1978.Google Scholar
  16. 16.
    Kalaba, R. E., Spingarn, K., and Zagustin, E., On the integral equation method for buckling loads, Applied Mathematics and Computation, Vol. 1, No. 3, pp. 253–261, 1975.MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Vol’mir, A. S., Stability of Elastic Systems, Fitmatgiz, Moscow, 1965.Google Scholar
  18. 18.
    Popov, E. P., Mechanics of Materials, Prentice-Hall, Inc., New York, 1952.Google Scholar
  19. 19.
    Kagiwada, H., and Kalaba, R., An Initial Value Method for Fredholm Resolvents, Biomedical Engineering Program, University of Southern California, Los Angeles, California, 1970.Google Scholar
  20. 20.
    Kalaba, R. E., and Spingarn, K., Numerical solution of the integral equations for optimal sequential filtering, International Journal for Numerical Methods in Engineering, Vol. 6, No. 3, pp. 451–454, 1973.MathSciNetCrossRefGoogle Scholar
  21. 21.
    Kalaba, R. E., Spingarn, K., and Zagustin, E., An imbedding method for buckling loads, Computers and Mathematics with Applications, Vol. 1, No. 3/4, pp. 277–284, 1975.Google Scholar
  22. 22.
    Casti, J., and Kalaba, R., Imbedding Methods in Applied Mathematics, Addison-Wesley Publishing Company, Reading, Massachusetts, 1973.MATHGoogle Scholar
  23. 23.
    Alspaugh, D., Kagiwada, H., and Kalaba, R., Applications of invariant imbedding to the buckling of columns, Journal of Computational Physics, Vol. 5, No. 1, pp. 56–69, February 1970.MathSciNetCrossRefGoogle Scholar
  24. 24.
    Kalaba, R. E., and Spingarn, K., Numerical solution of a nonlinear two-point boundary value problem by an imbedding method, Nonlinear Analysis, Theory, Methods, & Applications, Vol. 1, No. 2, pp. 129–133, 1977.MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Kagiwada, H., and Kalaba, R., Integral Equations via Imbedding Methods, Addison-Wesley Publishing Company, Reading, Massachusetts, 1974.MATHGoogle Scholar
  26. 26.
    Kalaba, R., and Zagustin, E., Reduction of a nonlinear two-point boundary value problem with nonlinear boundary conditions to a Cauchy system, International Journal of Nonlinear Mechanics, Vol. 9, pp. 221–228, 1974.MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Huss, R., and Kalaba, R., Invariant imbedding and the numerical determination of Green’s functions, Journal of Optimization Theory and Applications, Vol. 6, pp. 415–423, 1970.MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Mikhlin, S., and Smolitskiy, K., Approximate Methods for Solution of Differential and Integral Equations, American Elsevier Publishing Company, Inc., New York, 1967.MATHGoogle Scholar
  29. 29.
    Kalaba, R. E., and Spingarn, K., Post buckling beam configurations via an imbedding method, Computers and Mathematics with Applications, Vol. 4, No. 1, pp. 1–10, 1978.MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Kalaba, R. E., Spingarn, K., and Zagustin, E., Imbedding methods for bifurcation problems and post-buckling behavior of nonlinear columns, in Nonlinear Systems and Applications, edited by V. Lakshmikantham, Academic Press, New York, pp. 173–187, 1977.Google Scholar
  31. 31.
    Kalaba, R., Dynamic programming and the variational principles of classical and statistical mechanics, Developments in Mechanics, Vol. 1, Plenum Press, New York, pp. 1–9, 1961.Google Scholar
  32. 32.
    Abramowitz, M., and Stegum, I. A., editors, Handbook of Mathematical Functions, National Bureau of Standards, Applied Mathematics Series-55, U. S. Government Printing Office, Washington, D.C., 1964.MATHGoogle Scholar
  33. 33.
    Kalaba, R., Spingarn, K., and Tesfatsion, L., A sequential method for nonlinear filtering: Numerical implementation and comparisons, Journal of Optimization Theory and Applications, Vol. 34, No. 4, pp. 543–561, 1981.MathSciNetCrossRefGoogle Scholar
  34. 34.
    Bellman, R., Kagiwada, H., Kalaba, R., and Sridhar, R., Invariant imbedding and nonlinear filtering theory, Journal of the Astronautical Sciences, Vol. 13, pp. 110–115, 1966.MathSciNetGoogle Scholar
  35. 35.
    Detchmendy, D., and Sridhar, R., Sequential estimation of states and parameters in noisy nonlinear dynamical systems, Transactions of the ASME, pp. 362–368, 1966.Google Scholar
  36. 36.
    Kagiwada, H., Kalaba, R., Schumitsky, A., and Sridhar, R., Invariant imbedding and sequential interpolating filters for nonlinear processes, Journal of Basic Engineering, Vol. 91, pp. 195–200, 1969.CrossRefGoogle Scholar
  37. 37.
    Sugisaka, M., and Sagara, S., A non-linear filter with higher-order weight functions functions via invariant imbedding, International Journal of Control, Vol. 21, pp. 801–823, 1975.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Robert Kalaba
    • 1
  • Karl Spingarn
    • 2
  1. 1.University of Southern CaliforniaLos AngelesUSA
  2. 2.Hughes Aircraft CompanyLos AngelesUSA

Personalised recommendations