The Self-Consistent-Field Method in Nuclear Theory

  • R. V. Dzholos
  • V. G. Solov’ev


The self-consistent-field method is described in the Bogolyubov formulation. It is shown that this method yields equations for the effective fields in the theory of finite Fermi systems and the secular equations for a model with pairing and multipole forces.


Vibrational State Secular Equation Nuclear Phys Nuclear Theory Nuclear Ground State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    N. N. Bogolyubov, Usp. Fiz. Nauk, 67, 549 (1959).MathSciNetGoogle Scholar
  2. 2.
    N. N. Bogolyubov, Dokl. Akad. Nauk SSSR, 124, 1011 (1959).MathSciNetGoogle Scholar
  3. 3.
    N. I. Pyatov, Arkiv Fys., 36, 667 (1967).Google Scholar
  4. 4.
    L. Kisslinger and R. A. Sorensen, Rev. Mod. Phys., 35, 853 (1963).ADSCrossRefGoogle Scholar
  5. 5.
    V. G. Solov’ev (Soloviev), Atomic Energy Rev., 3, 117 (1965).Google Scholar
  6. 6.
    J. Hogaassen-Feldman, Nuclear Phys., 28, 258 (1961).MathSciNetADSGoogle Scholar
  7. 7.
    V. G. Solov’ev (Soloviev), Nuclear Phys., 69, 1 (1965).ADSCrossRefGoogle Scholar
  8. 8.
    A. Bohr, Nuclear Structure. Dubna Symposium, 1968, International Atomic Energy Agency, Vienna (1968).Google Scholar
  9. 9.
    B. Sorensen, Nuclear Phys., A134, 1 (1969).ADSGoogle Scholar
  10. 10.
    A. B. Migdal, Theory of Finite Fermi Systems and Properties of Atomic Nuclei [in Russian], Nauka, Moscow (1968).Google Scholar
  11. 11.
    N. N. Bogolyubov, JINR Preprint D-781, Dubna (1961).Google Scholar

Copyright information

© Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011 1972

Authors and Affiliations

  • R. V. Dzholos
  • V. G. Solov’ev

There are no affiliations available

Personalised recommendations