Skip to main content

Hormone Receptors, Cyclic Nucleotides, and Control of Cell Function

  • Chapter
The Year in Metabolism 1975–1976
  • 33 Accesses

Abstract

It is now widely recognized that many polypeptide or amine hormones and neurotransmitters act through the intermediation of cyclic 3’,5’-adenosine monophosphate (cAMP). These agonists bind to specific receptors at the outer surface or plasma membrane of the cell and, through a mechanism still under study, activate the enzyme adenylate cyclase, which catalyzes the formation of cAMP from ATP. The cAMP generated as a consequence becomes the “second messenger” that interacts with cyclic nucleotide receptors regulating intracellular enzymes that ultimately account for the physiological response. The concentration of cyclic nucleotides in cells can be regulated not only through biosynthesis, but also by enzymatic destruction (cyclic nucleotide phosphodiesterases) or elaboration into the extracellular space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, D., and Purves, H. D., 1956, Abnormal responses in the assay of thyrotropin, Proc. Univ. Otago Med. School 34: 11.

    Google Scholar 

  • Agus, Z. S., Puschett, J. B., Senesky, D., and Goldberg, M., 1971, Mode of action of parathyroid hormone and cyclic adenosine 3’,5’-monophosphate on renal tubular phosphate reabsorption in the dog, J. Clin. Invest. 50: 617.

    PubMed  CAS  Google Scholar 

  • Alexander, R. W., Davis, J. N., and Lefkowitz, R. J., 1975a, Direct identification and characterisation of ß-adrenergic receptors in rat brain, Nature 258: 437.

    PubMed  CAS  Google Scholar 

  • Alexander, R. W., Williams, L. T., and Lefkowitz, R. J., 1975b, Identification of cardiac ß-adrenergic receptors by (—)[3H]alprenolol binding, Proc. Nat. Acad. Sci. U.S.A. 72: 1564.

    CAS  Google Scholar 

  • Almon, R. R., Andrew, C. G., and Appel, S. H., 1974, Serum globulin in myasthenia gravis: Inhibition of a-bungarotoxin binding to acetylcholine receptors, Science 186: 55.

    PubMed  CAS  Google Scholar 

  • Amatruda, J. M., Livingston, J. N., and Lockwood, D. H., 1975, Insulin receptor: Role in the resistance of human obesity to insulin, Science 188: 264.

    PubMed  CAS  Google Scholar 

  • Appleman, M. M., and Terasaki, W. L., 1975. Regulation of cyclic nucleotide phosphodiesterase, Adv. Cyclic Nucleotide Res. 5: 153.

    PubMed  CAS  Google Scholar 

  • Archer, J. A., Gorden, P., and Roth, J., 1975, Defect in insulin binding to receptors in obese man: Amelioration with calorie restriction, J. Clin. Invest. 55: 166.

    PubMed  CAS  Google Scholar 

  • Ardaillou, R., 1975, Kidney and calcitonin, Nephron 15: 250.

    PubMed  CAS  Google Scholar 

  • Atkinson, D. E., 1966, Regulation of enzyme activity, Ann. Rev. Biochem. 35: 85.

    CAS  Google Scholar 

  • Atlas, D., Steer, M. L., and Levitzki, A., 1974, Stereospecific binding of propranolol and catecholamines to the ß-adrenergic receptor, Proc. Nat. Acad. Sci. U.S.A. 71: 4246.

    CAS  Google Scholar 

  • Aurbach, G. D., and Heath, D. A., 1974, Parathyroid hormone and calcitonin regulation of renal function, Kidney Intl. 6: 331.

    CAS  Google Scholar 

  • Aurbach, G. D., Fedak, S. A., Woodard, C.J., Palmer, J. S., Hauser, D., and “froxler, F., 1974, ß-Adrenergic receptor: Stereospecific interaction of iodinated /3-blocking agent with high affinity site, Science 186: 1223.

    Google Scholar 

  • Aurbach, G. D., Spiegel, A. M., and Gardner, J. D., 1975, ß-Adrenergic receptors, cyclic AMP, and ion transport in the avian erythrocyte, Adv. Cyclic Nucleotide Res. 5: 117.

    PubMed  CAS  Google Scholar 

  • Ball, J. H., Kaminsky, N. I., Hardman, J. G., Broadus, A. E., Sutherland, E. W., and Liddle, G. W., 1972, Effects of catecholamines and adrenergic-blocking agents on plasma and urinary cyclic nucleotides in man, J. Clin. Invest. 51: 2124.

    PubMed  CAS  Google Scholar 

  • Banerjee, S. P., Cuatrecasas, P., and Snyder, S. H., 1975, Nerve growth factor receptor binding, J. Biol. Chem. 250: 1427.

    PubMed  CAS  Google Scholar 

  • Bartley, P. C., Willgoss, D., and Lloyd, H. M., 1975, Urinary excretion of cyclic AMP in primary hyperparathyroidism, Aust. N. Z. J. Med. 5: 36.

    PubMed  CAS  Google Scholar 

  • Beavo, J. A., Bechtel, P. J., and Krebs, E. G., 1975, Mechanism of control for cAMP-dependent protein kinase from skeletal muscle, Adv. Cyclic Nucleotide Res. 5: 241.

    PubMed  CAS  Google Scholar 

  • Bennett, V., and Cuatrecasas, 1975a, Mechanism of action of Vibrio cholerae enterotoxin: Effects on adenylate cyclase of toad and rat erythocyte plasma membranes, J. Membrane Biol. 22: 1.

    CAS  Google Scholar 

  • Bennett, V., and Cuatrecasas, P., 1975b, Mechanism of activation of adenylate cyclase by Vibrio cholerae enterotoxin, J. Membrane Biol. 22: 29.

    CAS  Google Scholar 

  • Bennett, V., O’Keefe, E., and Cuatrecasas, P., 1975, Mechanism of action of cholera toxin and the mobile receptor theory of hormone receptor—adenylate cyclase interactions, Proc. Nat. Acad. Sci. U.S.A. 72: 33.

    CAS  Google Scholar 

  • Bitensky, M. W., Miki, N., Keirns, J. J., Keirns, M., Baraban, J. M., Freeman, J., Wheeler, M. A., Lacy, J., and Marcus, F. R., 1975a, Activation of photoreceptor disk membrane phosphodiesterase by light and ATP, Adv. Cyclic Nucleotide Res. 5: 213.

    PubMed  CAS  Google Scholar 

  • Bitensky, M. W., Wheeler, M. A., Mehta, H., and Miki, N., 1975b, Cholera toxin activation of adenylate cyclase in cancer cell membrane fragments, Proc. Nat. Acad. Sci. U.S.A. 72: 2572.

    CAS  Google Scholar 

  • Blonde, L., Wehmann, R. E., and Steiner, A. L., 1974, Plasma clearance rates and renal clearance of 3H-labeled cyclic AMP and 3H-labeled cyclic GMP in the dog, J. Clin. Invest. 53: 163.

    PubMed  CAS  Google Scholar 

  • Bolonkin, D., Tate, R. L., Luber, J. H., Kohn, L. D., and Winand, R. J., 1975, Experimental exophthalmos: Binding of thyrotropin and an exophthalmogenic factor derived from thyrotropin to retro-orbital tissue plasma membranes, J. Biol. Chem. 250: 6516.

    PubMed  CAS  Google Scholar 

  • Boudreau, R. J., and Drummond, G. I., 1975, The effect of Ca” on cyclic nucleotide phosphodiesterases of superior cervical ganglion, J. Cyclic Nucleotide Res. 1: 219.

    PubMed  CAS  Google Scholar 

  • Bower, R. H., Babka, J. C., and Sode, J., 1974, Nephrogenous cyclic adenosine monophosphate (cAMP) in the diagnosis of hyperparathyroidism, Program of the 56th Meeting of The Endocrine Society, Abstract No. 297, p. A-204.

    Google Scholar 

  • Broadus, A. E., Kaminsky, N. I., Hardman, J. G., Sutherland, E. W., and Liddle, G. W., 1970a, Kinetic parameters and renal clearances of plasma adenosine 3’,5’-monophosphate and guanosine 3’,5’-monophosphate in man, J. Clin. Invest. 49: 2222.

    PubMed  CAS  Google Scholar 

  • Broadus, A. E., Kaminsky, N. I., Northcutt, R. C., Hardman, J. G., Sutherland, E. W., and Liddle, G. W., 1970b, Effects of glucagon on adenosine 3’,5’monophosphate and guanosine 3’,5’-monophosphate in human plasma and urine, J. Clin. Invest. 49: 2237.

    PubMed  CAS  Google Scholar 

  • Brown, E. M., Aurbach, G. D., Hauser, D., and Troxler, F., 1976a, ß-Adrenergic receptor interactions: Characterization of iodohydroxybenzylpindolol as a specific ligand, J. Biol. Chem. 251: 1232.

    PubMed  CAS  Google Scholar 

  • Brown, E. M., Fedak, S. A., Woodard, C. J., Aurbach, G. D., and Rodbard, D., 1976b, ß-Adrenergic receptor interactions: Direct comparison of receptor and biological activity, J. Biol. Chem. 251: 1239.

    PubMed  CAS  Google Scholar 

  • Brown, E. M., Gardner, J. D., and Aurbach, G. D., Direct determination of ligand interactions with ß-adrenergic receptors on intact turkey erythrocytes: Correlation of binding with biological activity, Endocrinology (in press).

    Google Scholar 

  • Chabardès, D., Imbert-Teboul, M., Montégut, M., Clique, A., Morel, F., 1975a, Catecholamine-sensitive adenylate cyclase activity in different segments of rabbit nephron, Pflügers Arch. 361: 9.

    PubMed  Google Scholar 

  • Chabardès, D., Imbert, M., Clique, A., Montégut, M., and Morel, F., 1975b, PTH sensitive adenyl cyclase activity in different segments of the rabbit nephron, Pflügers Arch. 354: 229.

    PubMed  Google Scholar 

  • Chang, K. J., Huang, D., and Cuatrecasas, P., 1975, The defect in insulin receptors in obese-hyperglycemic mice: A probable accompaniment of more generalized alterations in membrane glycoproteins, Biochem. Biophys. Res. Commun. 64: 566.

    PubMed  CAS  Google Scholar 

  • Chase, L. R., 1975, Selective proteolysis of the receptor for parathyroid hormone in renal cortex, Endocrinology 96: 70.

    PubMed  CAS  Google Scholar 

  • Chase, L. R., and Aurbach, G. D., 1967, Parathyroid function and the renal excretion of 3’,5’-adenylic acid, Proc. Nat. Acad. Sci. U.S.A. 58: 518.

    CAS  Google Scholar 

  • Chase, L. R., and Obert, K. A., 1975, Selective proteolysis of the receptor for parathyroid hormone in skeletal tissue, Metabolism 24: 1067.

    PubMed  CAS  Google Scholar 

  • Chase, L. R., Melson, G. L., and Aurbach, G. D., 1969, Pseudohypoparathyroidism: Defective excretion of 3’,5’-AMP in response to parathyroid hormone, J. Clin. Invest. 48: 1832.

    PubMed  CAS  Google Scholar 

  • Chen, L. C., Rohde, J. E., and Sharp, G. W. G., 1971, Intestinal adenyl cyclase activity in human cholera, Lancet 1: 939.

    PubMed  CAS  Google Scholar 

  • Collier, H. O. J., and Francis, D. L., 1975, Morphine abstinence is associated with increased brain cyclic AMP, Nature 255: 159.

    PubMed  CAS  Google Scholar 

  • Collier, H. O.J., and Roy, A. C., 1974, Morphine-like drugs inhibit the stimulation by E prostaglandins of cyclic AMP formation by rat brain homogenate, Nature 248: 24.

    CAS  Google Scholar 

  • Corbin, J. D., Keely, S. L., Soderling, T. R., and Park, C. R., 1975, Hormonal regulation of adenosine 3’,5’-monophosphate—dependent protein kinase, Adv. Cyclic Nucleotide Res. 5: 265.

    PubMed  CAS  Google Scholar 

  • Cox, B. M., Opheim, K. E., Teschemacher, H., and Goldstein, A., 1975, A peptide-like substance from pituitary that acts like morphine. 2. Purification and properties, Life Sci. 16: 1777.

    PubMed  CAS  Google Scholar 

  • Cramer, H., Goodwin, F. K., Post, R. M., and Bunney, W. E., Jr., 1972, Effects of probenecid and exercise on cerebrospinal fluid cyclic AMP in affective illness, Lancet 1: 1346.

    PubMed  CAS  Google Scholar 

  • Cuatrecasas, P., 1973, Interaction of Vibrio cholerae enterotoxin with cell membranes, Biochemistry 12: 3547.

    PubMed  CAS  Google Scholar 

  • Cuatrecasas, P., Hollenberg, M. D., Chang, K.J., and Bennett, V., 1975a, Hormone receptor complexes and their modulation of membrane function, Recent Prog. Horm. Res. 31: 37.

    PubMed  CAS  Google Scholar 

  • Cuatrecasas, P., Jacobs, S., and Bennett, V., 1975b, Activation of adenylate cyclase by phosphoramidate and phosphonate analogs of GTP: Possible role of covalent enzyme—substrate intermediates in the mechanism of hormonal activation, Proc. Nat. Acad. Sci. U.S.A. 72: 1739.

    CAS  Google Scholar 

  • Davoren, P. R., and Sutherland, E. W., 1963, The effect of 1-epinephrine and other agents on the synthesis and release of adenosine 3’,5’-phosphate by whole pigeon erythrocytes, J. Biol. Chem. 238: 3009.

    PubMed  CAS  Google Scholar 

  • De Meyts, P., 1976, Insulin and growth hormone receptors in human cultured lymphocytes and peripheral blood monocytes, in: Methods in Molecular Biology,M. Dekker, New York (in press).

    Google Scholar 

  • De Meyts, P., Roth, J., Neville, D. M., Jr., Gavin, J. R., III, and Lesniak, M. A., 1973, Insulin interactions with its receptors: Experimental evidence for negative cooperativity, Biochem. Biophys. Res. Commun. 55: 154.

    PubMed  Google Scholar 

  • Dousa, T. P., Hui, Y. F. S., and Barnes, L. D., 1975, Renal medullary adenylate cyclase in rats with hypothalamic diabetes insipidus, Endocrinology 97: 802.

    PubMed  CAS  Google Scholar 

  • Exton, J. H., Lewis, S. B., Ho, R. J., and Park, C. R., 1972, The role of cyclic AMP in the control of hepatic glucose production by glucagon and insulin, Adv. Cyclic Nucleotide Res. 1: 91.

    PubMed  CAS  Google Scholar 

  • Fain, J. N., and Loken, S. C., 1969, Response of trypsin-treated brown and white fat cells to hormones: Preferential inhibition of insulin action, J. Biol. Chem. 244: 3500.

    PubMed  CAS  Google Scholar 

  • Field, M., 1974, Mode of action of cholera toxin stabilization of catecholaminesensitive adenylate cyclase in turkey erythrocytes, Proc. Nat. Acad. Sci. U.S.A. 71: 3299.

    CAS  Google Scholar 

  • Flier, J. S., Kahn, C. R., Roth, J., and Bar, R. S., 1975, Antibodies that impair insulin receptor binding in an unusual diabetic syndrome with severe insulin resistance, Science 190: 63.

    PubMed  CAS  Google Scholar 

  • Flores, J., and Sharp, G. W. G., 1975, Effects of cholera toxin on adenylate cyclase: Studies with guanylylimidodiphosphate, J. Clin. Invest. 56: 1345.

    PubMed  CAS  Google Scholar 

  • Gill, D. M., 1975, Involvement of nicotinamide adenine dinucleotide in the action of cholera toxin in vitro, Proc. Nat. Acad. Sci. U.S.A. 72: 2064.

    CAS  Google Scholar 

  • Gill, D. M., and King, C. A., 1975, The mechanism of action of cholera toxin in pigeon erythrocyte lysates, J. Biol. Chem. 250: 6424.

    PubMed  CAS  Google Scholar 

  • Gill, D. M., Pappenheimer, A. M., Jr., and Uchida, T., 1973, Diphtheria toxin, protein synthesis, and the cell, Fed. Proc. Fed. Amer. Soc. Exp. Biol. 32: 1508.

    CAS  Google Scholar 

  • Glossmann, H., 1975, Adrenal cortex adenylate cyclase: Specific binding sites for 5’-guanylyl-imidodiphosphate in partially purified plasma membranes from bovine adrenal cortex, Naunyn-Schmiedeberg’s Arch. Pharmacol. 289: 99.

    PubMed  CAS  Google Scholar 

  • Glossmann, H., and Gips, H., 1975, Bovine adrenal cortex adenylate cyclase: Properties of the particulate enzyme and effects of guanyl nucleotides, Naunyn-Schmiedeberg’s Arch. Pharmacol. 289: 77.

    PubMed  CAS  Google Scholar 

  • Goldstein, A., Lowney, L. I., and Pal, B. K., 1971, Stereospecific and nonspecific interactions of the morphine congener levorphanol in subcellular fractions of mouse brain, Proc. Nat. Acad. Sci. U.S.A. 68: 1742.

    CAS  Google Scholar 

  • Goldstein, G., and Schlesinger, D. H., 1975, Thymopoietin and myasthenia gravis: Neostigmine-responsive neuromuscular block produced in mice by a synthetic peptide fragment of thymopoietin, Lancet 2: 256.

    PubMed  CAS  Google Scholar 

  • Gullis, R., Traber, J., and Hamprecht, B., 1975, Morphine elevates levels of cyclic GMP in a neuroblastoma X glioma hybrid cell line, Nature 256: 57.

    PubMed  Google Scholar 

  • Guttler, R. B., Shaw, J. W., Otis, C., and Nicoloff, J. T., 1975, Epinephrine-induced alterations in urinary cyclic AMP in hyper-and hypothyroidism, J. Clin. Endocrinol. 41: 707.

    CAS  Google Scholar 

  • Hanoune, J., Lacombe, M.-L., and Pecker, F., 1975, The epinephrine-sensitive adenylate cyclase of rat liver plasma membranes: Role of guanyl nucleotides, J. Biol. Chem. 250: 4569.

    PubMed  CAS  Google Scholar 

  • Hardman, J. G., Davis, J. W., and Sutherland, E. W., 1966, Measurement of guanosine 3’,5’-monophosphate and other cyclic nucleotides, J. Biol. Chem. 241: 4812.

    PubMed  CAS  Google Scholar 

  • Heath, D. A., and Aurbach, G. D., 1975, Studies on the binding of 125I-parathyroid hormone to renal cortical membranes, in: Calcium-Regulating Hormones ( R. V. Talmage, M. Owen, and J. A. Parsons, eds.), pp. 159–162, Excerpta Medica, Amsterdam.

    Google Scholar 

  • Hepp, K. D., Langley, J., von Funcke, H. J., Renner, R., and Kemmler, W., 1975, Increased insulin binding capacity of liver membranes from diabetic Chinese hamsters, Nature 258: 154.

    PubMed  CAS  Google Scholar 

  • Hewlett, E. L., Guerrant, R. J., Evans, D. J., Jr., and Greenough, W. B., III, 1974, Toxins of Vibrio cholerae and Escherichia coli stimulate adenyl cyclase in rat fat cells, Nature 249: 371.

    PubMed  CAS  Google Scholar 

  • Hinkle, P. M., and Tashjian, A. H., Jr., 1975, Degredation of thyrotropin-releasing hormone by the GH-3 strain of pituitary cells in culture, Endocrinology 97: 324.

    PubMed  CAS  Google Scholar 

  • Hollenberg, M. D., and Cuatrecasas, P., 1975, Insulin and epidermal growth factor; human fibroblast receptors related to deoxyribonucleic acid synthesis and amino acid uptake, J. Biol. Chem. 250: 3845.

    PubMed  CAS  Google Scholar 

  • Hosey, M., and Tao, M., 1975, Ettect of 5’-guanylylimidodiphosphate on prostaglandin-and fluoride-sensitive adenylate cyclase of rabbit red blood cells, Biochem. Biophys. Res. Commun. 64: 1263.

    PubMed  CAS  Google Scholar 

  • Huang, D., and Cuatrecasas, P., 1975, Insulin-induced reduction of membrane receptor concentrations in isolated fat cells and lymphocytes, J. Biol. Chem. 250: 8251.

    PubMed  CAS  Google Scholar 

  • Hughes, J., 1975, Isolation of an endogenous compound from the brain with pharmacological properties similar to morphine, Brain Res. 88: 295.

    PubMed  CAS  Google Scholar 

  • Hughes, J., Smith, T. W., Kosterlitz, H. W., Fothergill, L. A., Morgan, B. A., and Morris, H. R., 1975, Identification of two related pentapeptides from the brain with potent opiate agonist activity, Nature 258: 577.

    PubMed  CAS  Google Scholar 

  • Imbert, M., Chabardes, D., Montegut, M., Clique, A., and Morel, F., 1975, Vasopressin dependent adenylate cyclase in single segments of rabbit kidney tubule, Pflügers Arch. 357: 173.

    PubMed  CAS  Google Scholar 

  • Insel, P., Balakir, R., and Sacktor, B., 1975, Binding of cyclic AMP to renal brush border membranes, J. Cyclic Nucleotide Res. 1: 107.

    PubMed  CAS  Google Scholar 

  • Issekutz, T. B., 1975, Estimation of cyclic AMP turnover in normal and methylprednisolone-treated dogs: Effect of catecholamines, Amer. J. Physiol. 229: 291.

    PubMed  CAS  Google Scholar 

  • Jard, S., and Bockaert, J., 1975, Stimulus—response coupling in neurohypophysical peptide target cells, Physiol. Rev. 55: 489.

    PubMed  CAS  Google Scholar 

  • Jard, S., Roy, C., Barth, T., Rajerison, R., and Bockaert, J., 1975, Antidiuretic hormone-sensitive kidney adenylate cyclase, Adv. Cyclic Nucleotide Res. 5: 31.

    PubMed  CAS  Google Scholar 

  • Jarett, L., and Smith, R. M., 1975, Ultrastructural localization of insulin receptors on adipocytes, Proc. Nat. Acad. Sci. U.S.A. 72: 3526.

    CAS  Google Scholar 

  • Kahn, C. R., and Roth, J., 1975, Cell membrane receptors for polypeptide hormones, Amer. J. Clin. Pathol. 63: 656.

    CAS  Google Scholar 

  • Kakiuchi, S., Yamazaki, R., Teshima, Y., Uenishi, K., and Miyamoto, E., 1975, Ca2+/Mg2+-dependent cyclic nucleotide phosphodiesterase and its activator protein, Adv. Cyclic Nucleotide Res. 5: 163.

    PubMed  CAS  Google Scholar 

  • Kaminsky, N. I., Broadus, A. E., Hardman, J. G., Jones, D. J., Jr., Ball, J. H., Sutherland, E. W., and Liddle, G. W., 1970, Effects of parathyroid hormone on plasma and urinary adenosine 3’,5’-monophosphate in man, J. Clin. Invest. 49: 2387.

    PubMed  CAS  Google Scholar 

  • Kern, P., Picard, J., Caron, M., and Veissiere, D., 1975, Decreased binding of insulin to liver plasma membrane receptors in hereditary diabetic mice, Biochim. Biophys. Acta 389: 281.

    PubMed  CAS  Google Scholar 

  • Kimberg, D. V., Field, M., Johnson, J., Henderson, A., and Gershaw, E., 1971, Stimulation of intestinal mucosal adenyl cyclase by cholera enterotoxin and prostaglandins, J. Clin. Invest. 50: 1218.

    PubMed  CAS  Google Scholar 

  • Kinne, R., Shlatz, L. J., Kinne-Saffran, E., and Schwartz, I. L., 1975, Distribution of membrane-bound cyclic AMP—dependent protein kinase in plasma membranes of cells of the kidney cortex, J. Membrane Biol. 24: 145.

    CAS  Google Scholar 

  • Klee, W. A., and Nirenberg, M., 1974, A neuroblastoma X glioma hybrid cell line with morphine receptors, Proc. Nat. Acad. Sci. U.S.A. 71: 3474.

    CAS  Google Scholar 

  • Klee, W. A., Sharma, S. K., and Nirenberg, M., 1975, Opiate receptors as regulators of adenylate cyclase, Life Sci. 16: 1869.

    PubMed  CAS  Google Scholar 

  • Kono, T., 1969, Destruction of insulin effector system of adipose tissue cells by proteolytic enzymes, J. Biol. Chem. 244: 1772.

    PubMed  CAS  Google Scholar 

  • Kono, T., Robinson, F. W., and Safvef, J. A., 1975, Insulin-sensitive phosphodiesterase: Its localization, hormonal stimulation, and oxidative stabilization, J. Biol. Chem. 250: 7826.

    PubMed  CAS  Google Scholar 

  • Kriss, J. P., Pleshakov, V., and Chien, J. R., 1964, Isolation and identification of the long-acting thyroid stimulator and its relation to hyperthyroidism and circumscribed pretibial myxedema, J. Clin. Endocrinol. 24: 1005.

    CAS  Google Scholar 

  • Kuchel, O., Hamet, P., Cuche, J. L., Tolis, G., Fraysse, J., and Genest, J., 1975, Urinary and plasma cyclic adenosine 3’,5’-monophosphate in patients with idiopathic edema, J. Clin. Endocrinol. 41: 282.

    CAS  Google Scholar 

  • Lands, A. M., Arnold, A., McAuliff, J. P., Luduena, F. P., and Brown, T. G., Jr., 1967, Differentiation of receptor systems activated by sympathomimetic amines, Nature 214: 597.

    PubMed  CAS  Google Scholar 

  • Lee, C. Y., Stolman, S., Akera, T., and Brody, T. M., 1973, Saturable binding of [3H]-dihydromorphine to rat brain tissue in vitro: Characterization and effect of morphine pretreatment, Pharmacologist 15: 202 (Abstract No. 258).

    Google Scholar 

  • Lefkowitz, R. J., 1975, Guanosine triphosphate binding sites in solubilized myocardium, J. Biol. Chem. 250: 1006.

    CAS  Google Scholar 

  • Lefkowitz, R. J., and Caron, M. G., 1975, Characteristics of 5’-guanylyl-imidodiphosphate-activated adenylate cyclase, J. Biol. Chem. 250: 4418.

    PubMed  CAS  Google Scholar 

  • Lefkowitz, R. J., Mukherjee, C., Coverstone, M., and Caron, M. G., 1974, Stereo-specific [3H](—)alprenolol binding sites, ß-adrenergic receptors and adenylate cyclase, Biochem. Biophys. Res. Commun. 60: 703.

    PubMed  CAS  Google Scholar 

  • Lennon, V. A., Lindstrom, J. M., and Seybold, M. E., 1975, Experimental autoimmune myasthenia: A model of myasthenia gravis in rats and guinea pigs, J. Exp., Med. 141: 1365.

    CAS  Google Scholar 

  • Levey,,G.S.,Fletcher, M. A., and Klein, I., 1975, Glucagon and adenylate cyclase: ‘Binding studies and requirements for activation, Adv. Cyclic Nucleotide Res. 5:53.

    PubMed  CAS  Google Scholar 

  • Levitzki, A., Atlas, D., and Steer, M. L., 1974, The binding characteristics and number of ß-adrenergic receptors on the turkey erythrocyte, Proc. Nat. Acad. Sci. U.S.A. 71: 2773.

    CAS  Google Scholar 

  • Liljenquist, J. E., Bomboy, J. D., Lewis, S. B., Sinclair-Smith, B. C., Felts, P. W., Lacy, W. W., Crofford, O. B., and Liddle, G. W., 1974, Effect of glucagon on net aplanchnic cyclic AMP production in normal and diabetic men, J. Clin. Invest. 53: 198.

    PubMed  CAS  Google Scholar 

  • Limbird, L. E., De Meyts, P., and Lefkowitz, R. J., 1975, /3-Adrenergic receptors: Evidence for negative cooperativity, Biochem. Biophys. Res. Commun. 64: 1160.

    Google Scholar 

  • Lin, T., Kopp, L. E., and Tucci, J. R., 1973, Urinary excretion of cyclic 3’,5’-adenosine monophosphate in hyperthyroidism, J. Clin. Endocrinol. 36: 1033.

    CAS  Google Scholar 

  • Linarelli, L. G., 1972, Newborn urinary cyclic AMP and developmental renal responsiveness to parathyroid hormone, Pediatrics 50: 14.

    PubMed  CAS  Google Scholar 

  • Loten, E. G., and Sneyd, J. G. T., 1970, An effect of insulin on adipose-tissue adenosine 3’,5’-cyclic monophosphate phosphodiesterase, Biochem. J. 120: 187.

    PubMed  CAS  Google Scholar 

  • Lowney, L. I., Schultz, K., Lowery, P. J., and Goldstein, A., 1974, Partial purification of an opiate receptor from mouse brain, Science 183: 749.

    PubMed  CAS  Google Scholar 

  • Maguire, M. E., Wiklund, R. A., Anderson, H. J., and Gilman, A. G., 1976, Binding of [125I]iodohydroxybenzylpindolol to putative ß-adrenergic receptors of rat glioma cells and other cell clones, J. Biol. Chem. 251: 1221.

    PubMed  CAS  Google Scholar 

  • Mallette, L. E., Bilezikian, J. P., Heath, D. A., and Aurbach, G. D., 1974, Primary hyperparathyroidism: clinical and biochemical features, Medicine 53: 127.

    PubMed  CAS  Google Scholar 

  • Manley, S. W., Bourke, J. R., and Hawker, R. W., 1974, The thyrotropin receptor in guinea pig thyroid homogenate: Interaction with the long-acting thyroid stimulator, J. Endocrinol. 61: 437.

    PubMed  CAS  Google Scholar 

  • Marx, S. J., and Aurbach, G. D., 1975, Renal receptors for calcitonin: Coordinate occurrence with calcitonin-activated adenylate cyclase, Endocrinology 97: 448.

    PubMed  CAS  Google Scholar 

  • Marx, S. J., Woodard, C. J., and Aurbach, G. D., 1972, Calcitonin receptors of kidney and bone, Science 178: 999.

    PubMed  CAS  Google Scholar 

  • McKenzie, J. M., 1958, Delayed thyroid response to serum from thyrotoxic patients, Endocrinology 62: 865.

    PubMed  CAS  Google Scholar 

  • Meek, J. C., Jones, A. E., Lewis, U. J., and VanderLaan, W. P., 1964, Characterization of the long-acting thyroid stimulator of Graves’ disease, Proc. Nat. Acad. Sci. U.S.A. 52: 342.

    CAS  Google Scholar 

  • Megyesi, K., Kahn, C. R., Roth, J., Neville, D. M., Jr., Nissley, S. P., Humbel, R. E., and Froesch, E. R., 1975, The NSILA-s receptor in liver plasma membranes: Characterization and comparison with the insulin receptor, J. Biol. Chem. 250: 8990.

    PubMed  CAS  Google Scholar 

  • Mehdi, S. Q., and Nussey, S. S., 1975, A radio-ligand receptor assay for the long-acting thyroid stimulator: Inhibition by the long-acting thyroid stimulator of the binding of radioiodinated thyroid-stimulating hormone to human thyroid membranes, Biochem. J. 145: 105.

    PubMed  CAS  Google Scholar 

  • Mickey, J., Tate, R., and Lefkowitz, R. J., 1975, Subsensitivity of adenylate cyclase and decreased ß-adrenergic receptor binding after chronic exposure to (—)isoproterenol in vitro, J. Biol. Chem. 250: 5727.

    PubMed  CAS  Google Scholar 

  • Morel, F., Chabardes, D., and Imbert, M., 1975, Target sites of antidiuretic hormone (ADH) and parathyroid hormone (PTH) along the segments of the nephron, Adv. Nephrol. 5: 283.

    CAS  Google Scholar 

  • Mukherjee, C., Caron, M. G., Coverstone, M., and Lefkowitz, R. J., 1975a, Identification of adenylate cyclase—coupled ß-adrenergic receptors in frog erythrocytes with (—)-[3H]alprenolol, J. Biol. Chem. 250: 4869.

    PubMed  CAS  Google Scholar 

  • Mukherjee, C., Caron, M. G., and Lefkowitz, R. J., 1975b, Catecholamine-induced subsensitivity of adenylate cyclase associated with loss of ß-adrenergic receptor binding sites, Proc. Nat. Acad. Sci. U.S.A. 72: 1945.

    CAS  Google Scholar 

  • Murad, F., 1973, Clinical studies and application of cyclic nucleotides, Adv. Cyclic Nucleotide Res. 3: 355.

    PubMed  CAS  Google Scholar 

  • Murad, F., Moss, W. W., Johanson, A. J., and Selden, R. F., 1975, Urinary excretion of adenosine 3’,5’-monophosphate and guanosine 3’,5’-monophosphate in normal children and those with cystic fibrosis, J. Clin. Endocrinol. 40: 552.

    CAS  Google Scholar 

  • Neelon, F. A., Drezner, M., Birch, B. M., and Lebovitz, H. E., 1973, Urinary cyclic adenosine monophosphate as an aid in the diagnosis of hyperparathyroidism, Lancet 1: 631.

    PubMed  CAS  Google Scholar 

  • Olefsky, J. M., and Reaven, G. M., 1975, Effects of age and obesity on insulin binding to isolated adipocytes, Endocrinology 96: 1486.

    PubMed  CAS  Google Scholar 

  • Orly, J., and Schramm, M., 1975, Fatty acids as modulators of membrane functions: Catecholamine-activated adenylate cyclase of the turkey erythrocyte, Proc. Nat. Acad. Sci. U.S.A. 72: 3433.

    CAS  Google Scholar 

  • Pak, C. Y. C., Kaplan, R., Bone, H., Townsend, J., and Waters, O., 1975, A simple test for the diagnosis of absorptive, resorptive and renal hypercalciurias, N. Engl. J. Med. 292: 497.

    PubMed  CAS  Google Scholar 

  • Pasternak, G. W., Goodman, R., and Snyder, S. H., 1975, An endogenous morphine-like factor in mammalian brain, Life Sci. 16: 1765.

    PubMed  CAS  Google Scholar 

  • Patrick, J., and Lindstrom, J., 1973, Autoimmune response to acetylcholine receptor, Science 180: 871.

    PubMed  CAS  Google Scholar 

  • Patrick, J., Lindstrom, J., Culp, B., and McMillan, J., 1973, Studies on purified eel acetylcholine receptor and anti-acetylcholine receptor antibody, Proc. Nat. Acad. Sci. USA 70: 3334.

    PubMed  CAS  Google Scholar 

  • Pert, C. B., and Snyder, S. H., 1973, Opiate receptor: Demonstration in nervous tissue, Science 179: 1011.

    PubMed  CAS  Google Scholar 

  • Peytremann, A., Nicholson, W. E., Hardman, J. G., and Liddle, G. N., 1973, Effect of adrenocorticotropic hormone on extracellular adenosine 3’,5’-monophosphate in the hypophysectomized rat, Endocrinology 92: 1502.

    PubMed  CAS  Google Scholar 

  • Pfeuffer, T., and Helmreich, E. J. M., 1975, Activation of pigeon erythrocyte membrane adenylate cyclase by guanylnucleotide analogues and separation of a nucleotide binding protein, J. Biol. Chem. 250: 867.

    PubMed  CAS  Google Scholar 

  • Pittman, R. C., Khoo, J. C., and Steinberg, D., 1975, Cholesterol esterase in rat adipose tissue and its activation by cyclic adenosine 3’,5’-monophosphatedependent protein kinase, J. Biol. Chem. 250: 4505.

    PubMed  CAS  Google Scholar 

  • Queener, S. F., Fleming, J. W., and Bell, N. H., 1975, Solubilization of calcitoninresponsive renal cortical adenylate cyclase, J. Biol. Chem. 250: 7586.

    PubMed  CAS  Google Scholar 

  • Robison, G. A., Butcher, R. W., and Sutherland, E. W., 1971, Cyclic AMP, Academic Press, New York, 531 pp.

    Google Scholar 

  • Rodbell, M., Krans, H. M. J., Pohl, S. L., and Birnbaumer, L., 1971, The glucagonsensitive adenyl cyclase system in plasma membranes of rat liver. IV. Effects of guanyl nucleotides on binding of 125I-glucagon, J. Biol. Chem. 246: 1872.

    PubMed  CAS  Google Scholar 

  • Rodbell, M., Lin, M. C., Salomon, Y., Londos, C., Harwood, J. P., Martin, B. R., Rendell, M., and Berman, M., 1975, Role of adenine and guanine nucleotides in the activity and response of adenylate cyclase systems to hormones: Evidence for multisite transition states, Adv. Cyclic Nucleotide Res. 5: 3.

    PubMed  CAS  Google Scholar 

  • Romero, J. A., Zatz, M., Kebabian, J. W., and Axelrod, J., 1975, Circadian cycles in binding of 3H-alprenolol to ß-adrenergic receptor sites in rat pineal, Nature 258: 435.

    PubMed  CAS  Google Scholar 

  • Rosen, O. M., Erlichman, J., and Rubin, C. S., 1975, Molecular structure and characterization of bovine heart protein kinase, Adv. Cyclic Nucleotide Res. 5: 253.

    PubMed  CAS  Google Scholar 

  • Roth, J., Kahn, C. R., Lesniak, M. A., Gorden, P., De Meyts, P., Megyesi, K., Neville, D. M., Jr., Gavin, J. R., III, Soll, A. H., Freychet, P., Goldfine, I. D., Bar, R. S., and Archer, J. A., 1975, Receptors for insulin, NSILA-s, and growth hormone: Applications to disease states in man, Recent Prog. Horm. Res. 31: 95.

    PubMed  CAS  Google Scholar 

  • Rudolph, S. A., and Greengard, P., 1974, Regulation of protein phosphorylation and membrane permeability by ß-adrenergic agents and cyclic adenosine 3’,5’-monophosphate in the avian erythrocyte, J. Biol. Chem. 249: 5684.

    PubMed  CAS  Google Scholar 

  • Salomon, Y., Lin, M. C., Londos, C., Rendell, M., and Rodbell, M., 1975, The hepatic adenylate cyclase system. I. Evidence for transition states and structural requirements for guanine nucleotide activation, J. Biol. Chem. 250: 4239.

    PubMed  CAS  Google Scholar 

  • Schramm, M., 1975, The catecholamine-responsive adenylate cyclase system and its modification by 5’-guanylylimidodiphosphate, Adv. Cyclic Nucleotide Res. 5: 105.

    PubMed  CAS  Google Scholar 

  • Schramm, M., and Rodbell, M., 1975, A persistent active state of the adenylate cyclase system produced by the combined actions of isoproterenol and guanylylimidodiphosphate in frog erythrocyte membranes, J. Biol. Chem. 250: 2232.

    PubMed  CAS  Google Scholar 

  • Schwartz, R. H., Bianco, A. R., Handwerger, B. S., and Kahn, C. R., 1975, Demonstration that monocytes rather than lymphocytes are the insulin-binding cells in preparations of human peripheral blood mononuclear leukocytes: Implications for studies of insulin-resistant states in man, Proc. Nat. Acad. Sci. U.S.A. 72: 474.

    CAS  Google Scholar 

  • Scurry, M. T., and Pauk, G. L., 1974, Renal tubular localization of parathyroid hormone induced urinary cyclic adenosine 3’,5’-monophosphate, Acta Endocrinol. 77: 282.

    PubMed  CAS  Google Scholar 

  • Sebens, J. B., and Korf, J., 1975, Cyclic AMP in cerebrospinal fluid: Accumulation following probenecid and biogenic amines, Exp. Neurol. 46: 333.

    PubMed  CAS  Google Scholar 

  • Sharma, S. K., Klee, W. A., and Nirenberg, M., 1975a, Dual regulation of adenylate cyclase accounts for narcotic dependence and tolerance, Proc. Nat. Acad. Sci. U.S.A. 72: 3092.

    CAS  Google Scholar 

  • Sharma, S. K., Nirenberg, M., and Klee, W. A., 1975b, Morphine receptors as regulators of adenylate cyclase activity, Proc. Nat. Acad. Sci. U.S.A. 72: 590.

    CAS  Google Scholar 

  • Sharp, G. W. G., and Hynie, S., 1971, Stimulation of intestinal adenyl cyclase by cholera toxin, Nature 229: 266.

    PubMed  CAS  Google Scholar 

  • Schlatz, L. J., Schwartz, I. L., Kinne-Saffran, E., and Kinne, R., 1975, Distribution of parathyroid hormone—stimulated adenylate cyclase in plasma membranes of cells of the kidney cortex, J. Membrane Biol. 24: 131.

    Google Scholar 

  • Simon, E. J., Hiller, J. M., and Edelman, I., 1973, Stereospecific binding of the potent narcotic analgesic [3H]etorphine to rat-brain homogenate, Proc. Nat. Acad. Sci. U.S.A. 70: 1947.

    CAS  Google Scholar 

  • Smith, B. R. and Hall, R., 1974, Thyroid-stimulating immunoglobulins in Graves’ disease, Lancet 2: 427.

    PubMed  CAS  Google Scholar 

  • Soll, A. H., Kahn, C. R., and Neville, D. M., Jr., 1975a, Insulin binding to liver plasma membranes in the obese hyperglycemic (ob/ob) mouse: Demonstration of a decreased number of functionally normal receptors, J. Biol. Chem. 250: 4702.

    PubMed  CAS  Google Scholar 

  • Soll, A. H., Kahn, C. R., Neville, D. M., Jr., and Roth, J., 1975b, Insulin receptor deficiency in genetic and acquired obesity, J. Clin. Invest. 56: 769.

    CAS  Google Scholar 

  • Spiegel, A. M., and Aurbach, G. D., 1974, Binding of 5’-guanylyl-imidodiphosphate to turkey erythrocyte membranes and effect on ß-adrenergic-activated adenylate cyclase, J. Biol. Chem. 249: 7630.

    PubMed  CAS  Google Scholar 

  • Spiegel, A. M., Bilezikian, J. P., and Aurbach, G. D., 1975, Increased adrenergic receptor content in membranes of stress-induced erythrocytes, Clin. Res. 23: 390A (abstract).

    Google Scholar 

  • Spiegel, A. M., Brown, E. M., Fedak, S. A., Woodard, C. J., and Aurbach, G. D., 1976, Holocatalytic state of adenylate cyclase in turkey erythrocyte membranes: Formation with guanylylimidodiphosphate plus isoproterenol without effect on affinity of ß-receptor, J. Cyclic Nucleotide Res. 2: 47.

    PubMed  CAS  Google Scholar 

  • Stephenson, R. P., 1956, A modification of receptor theory, Brit. J. Pharmacol. 11: 379.

    PubMed  CAS  Google Scholar 

  • Strange, R. C., and MjOs, O. D., 1975, The sources of plasma cyclic AMP: Studies in the rat using isoprenaline, nicotinic acid and glucagon, Eur. J. Clin. Invest. 5: 147.

    PubMed  CAS  Google Scholar 

  • Terenius, L., 1973, Stereospecific interaction between narcotic analgesics and a synaptic plasma membrane fraction of rat cerebral cortex, Acta Pharmacol. 32: 317.

    CAS  Google Scholar 

  • Terenius, L., and Wahlström, A., 1975, Search for an endogenous ligand for the opiate receptor, Acta Physiol. Scand. 94: 74.

    PubMed  CAS  Google Scholar 

  • Teschemacher, H., Opheim, K. E., Cox, B. M., and Golstein, A., 1975, A peptide-like substance from pituitary that acts like morphine. 1. Isolation, Life Sci. 16: 1771.

    PubMed  CAS  Google Scholar 

  • Tomlinson, S., Hendy, G. N., and O’Riordan, J. L. H., 1976, A simplifed assessment of response to parathyroid hormone in hypoparathyroid patients, Lancet 1: 62.

    PubMed  CAS  Google Scholar 

  • Van Heyningen, S., and King, C. A., 1975, Subunit A from cholera toxin is an activator of adenylate cyclase in pigeon erythrocytes, Biochem. J. 146: 269.

    PubMed  Google Scholar 

  • Van Wyk, J. J., Underwood, L. E., Baseman, J. B., Hintz, R. L., Clemmons, D. R., and Marshall, R. N., 1975, Explorations of the insulin-like and growth-promoting properties of somatomedin by membrane receptor assays, Adv. Metab. Disord. 8: 127.

    PubMed  Google Scholar 

  • Wang, J. H., Teo, T. S., Ho, H. C., and Stevens, F. C., 1975, Bovine heart protein activator of cyclic nucleotide phosphodiesterase, Adv. Cyclic Nucleotide Res. 5: 179.

    PubMed  CAS  Google Scholar 

  • Wehmann, R. E., Blonde, L., and Steiner, A. L., 1974, Sources of cyclic nucleotides in plasma J. Clin. Invest. 53: 173.

    PubMed  CAS  Google Scholar 

  • Wilfong, R. F., and Neville, D. M., Jr., 1970, The isolation of a brush border membrane fraction from rat kidney, J. Biol. Chem. 245: 6106.

    PubMed  CAS  Google Scholar 

  • Williams, L. T., Snyderman, R., and Lefkowitz, R. J., 1976, Identification of ßadrenergic receptors in human lymphocytes by (—)[3H]alprenolol binding, J. Clin. Invest. 57: 149.

    PubMed  CAS  Google Scholar 

  • Winand, R. J., and Kohn, L. D., 1974, Stimulation of adenylate cyclase activity in retro-orbital tissue membranes by thyrotropin and an exophthalmogenic factor derived from thyrotropin, J. Biol. Chem. 250: 6522.

    Google Scholar 

  • Wolff, J., and Cook, G. H., 1975a, Choleragen stimulates steroidogenesis and adenylate cyclase in cells lacking functional hormone receptors, Biochim. Biophys. Acta 413: 283.

    PubMed  CAS  Google Scholar 

  • Wolff, J., and Cook, G. H., 1975b, Endotoxic lipopolysaccharides stimulate steroidogenesis and adenylate cyclase in adrenal tumor-cells, Biochim. Biophys. Acta 413: 291.

    PubMed  CAS  Google Scholar 

  • Yamashita, K. and Field, J. B., 1972, Effects of long-acting thyroid stimulator on thyrotropin stimulation of adenyl cyclase activity in thyroid plasma membranes, J. Clin. Invest. 51: 463.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Plenum Publishing Corporation

About this chapter

Cite this chapter

Aurbach, G.D. (1976). Hormone Receptors, Cyclic Nucleotides, and Control of Cell Function. In: Freinkel, N. (eds) The Year in Metabolism 1975–1976. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7656-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7656-9_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7658-3

  • Online ISBN: 978-1-4684-7656-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics