Hormone Receptors, Cyclic Nucleotides, and Control of Cell Function

  • G. D. Aurbach


It is now widely recognized that many polypeptide or amine hormones and neurotransmitters act through the intermediation of cyclic 3’,5’-adenosine monophosphate (cAMP). These agonists bind to specific receptors at the outer surface or plasma membrane of the cell and, through a mechanism still under study, activate the enzyme adenylate cyclase, which catalyzes the formation of cAMP from ATP. The cAMP generated as a consequence becomes the “second messenger” that interacts with cyclic nucleotide receptors regulating intracellular enzymes that ultimately account for the physiological response. The concentration of cyclic nucleotides in cells can be regulated not only through biosynthesis, but also by enzymatic destruction (cyclic nucleotide phosphodiesterases) or elaboration into the extracellular space.


Parathyroid Hormone Insulin Receptor Cholera Toxin Cyclic Nucleotide Guanine Nucleotide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, D., and Purves, H. D., 1956, Abnormal responses in the assay of thyrotropin, Proc. Univ. Otago Med. School 34: 11.Google Scholar
  2. Agus, Z. S., Puschett, J. B., Senesky, D., and Goldberg, M., 1971, Mode of action of parathyroid hormone and cyclic adenosine 3’,5’-monophosphate on renal tubular phosphate reabsorption in the dog, J. Clin. Invest. 50: 617.PubMedGoogle Scholar
  3. Alexander, R. W., Davis, J. N., and Lefkowitz, R. J., 1975a, Direct identification and characterisation of ß-adrenergic receptors in rat brain, Nature 258: 437.PubMedGoogle Scholar
  4. Alexander, R. W., Williams, L. T., and Lefkowitz, R. J., 1975b, Identification of cardiac ß-adrenergic receptors by (—)[3H]alprenolol binding, Proc. Nat. Acad. Sci. U.S.A. 72: 1564.Google Scholar
  5. Almon, R. R., Andrew, C. G., and Appel, S. H., 1974, Serum globulin in myasthenia gravis: Inhibition of a-bungarotoxin binding to acetylcholine receptors, Science 186: 55.PubMedGoogle Scholar
  6. Amatruda, J. M., Livingston, J. N., and Lockwood, D. H., 1975, Insulin receptor: Role in the resistance of human obesity to insulin, Science 188: 264.PubMedGoogle Scholar
  7. Appleman, M. M., and Terasaki, W. L., 1975. Regulation of cyclic nucleotide phosphodiesterase, Adv. Cyclic Nucleotide Res. 5: 153.PubMedGoogle Scholar
  8. Archer, J. A., Gorden, P., and Roth, J., 1975, Defect in insulin binding to receptors in obese man: Amelioration with calorie restriction, J. Clin. Invest. 55: 166.PubMedGoogle Scholar
  9. Ardaillou, R., 1975, Kidney and calcitonin, Nephron 15: 250.PubMedGoogle Scholar
  10. Atkinson, D. E., 1966, Regulation of enzyme activity, Ann. Rev. Biochem. 35: 85.Google Scholar
  11. Atlas, D., Steer, M. L., and Levitzki, A., 1974, Stereospecific binding of propranolol and catecholamines to the ß-adrenergic receptor, Proc. Nat. Acad. Sci. U.S.A. 71: 4246.Google Scholar
  12. Aurbach, G. D., and Heath, D. A., 1974, Parathyroid hormone and calcitonin regulation of renal function, Kidney Intl. 6: 331.Google Scholar
  13. Aurbach, G. D., Fedak, S. A., Woodard, C.J., Palmer, J. S., Hauser, D., and “froxler, F., 1974, ß-Adrenergic receptor: Stereospecific interaction of iodinated /3-blocking agent with high affinity site, Science 186: 1223.Google Scholar
  14. Aurbach, G. D., Spiegel, A. M., and Gardner, J. D., 1975, ß-Adrenergic receptors, cyclic AMP, and ion transport in the avian erythrocyte, Adv. Cyclic Nucleotide Res. 5: 117.PubMedGoogle Scholar
  15. Ball, J. H., Kaminsky, N. I., Hardman, J. G., Broadus, A. E., Sutherland, E. W., and Liddle, G. W., 1972, Effects of catecholamines and adrenergic-blocking agents on plasma and urinary cyclic nucleotides in man, J. Clin. Invest. 51: 2124.PubMedGoogle Scholar
  16. Banerjee, S. P., Cuatrecasas, P., and Snyder, S. H., 1975, Nerve growth factor receptor binding, J. Biol. Chem. 250: 1427.PubMedGoogle Scholar
  17. Bartley, P. C., Willgoss, D., and Lloyd, H. M., 1975, Urinary excretion of cyclic AMP in primary hyperparathyroidism, Aust. N. Z. J. Med. 5: 36.PubMedGoogle Scholar
  18. Beavo, J. A., Bechtel, P. J., and Krebs, E. G., 1975, Mechanism of control for cAMP-dependent protein kinase from skeletal muscle, Adv. Cyclic Nucleotide Res. 5: 241.PubMedGoogle Scholar
  19. Bennett, V., and Cuatrecasas, 1975a, Mechanism of action of Vibrio cholerae enterotoxin: Effects on adenylate cyclase of toad and rat erythocyte plasma membranes, J. Membrane Biol. 22: 1.Google Scholar
  20. Bennett, V., and Cuatrecasas, P., 1975b, Mechanism of activation of adenylate cyclase by Vibrio cholerae enterotoxin, J. Membrane Biol. 22: 29.Google Scholar
  21. Bennett, V., O’Keefe, E., and Cuatrecasas, P., 1975, Mechanism of action of cholera toxin and the mobile receptor theory of hormone receptor—adenylate cyclase interactions, Proc. Nat. Acad. Sci. U.S.A. 72: 33.Google Scholar
  22. Bitensky, M. W., Miki, N., Keirns, J. J., Keirns, M., Baraban, J. M., Freeman, J., Wheeler, M. A., Lacy, J., and Marcus, F. R., 1975a, Activation of photoreceptor disk membrane phosphodiesterase by light and ATP, Adv. Cyclic Nucleotide Res. 5: 213.PubMedGoogle Scholar
  23. Bitensky, M. W., Wheeler, M. A., Mehta, H., and Miki, N., 1975b, Cholera toxin activation of adenylate cyclase in cancer cell membrane fragments, Proc. Nat. Acad. Sci. U.S.A. 72: 2572.Google Scholar
  24. Blonde, L., Wehmann, R. E., and Steiner, A. L., 1974, Plasma clearance rates and renal clearance of 3H-labeled cyclic AMP and 3H-labeled cyclic GMP in the dog, J. Clin. Invest. 53: 163.PubMedGoogle Scholar
  25. Bolonkin, D., Tate, R. L., Luber, J. H., Kohn, L. D., and Winand, R. J., 1975, Experimental exophthalmos: Binding of thyrotropin and an exophthalmogenic factor derived from thyrotropin to retro-orbital tissue plasma membranes, J. Biol. Chem. 250: 6516.PubMedGoogle Scholar
  26. Boudreau, R. J., and Drummond, G. I., 1975, The effect of Ca” on cyclic nucleotide phosphodiesterases of superior cervical ganglion, J. Cyclic Nucleotide Res. 1: 219.PubMedGoogle Scholar
  27. Bower, R. H., Babka, J. C., and Sode, J., 1974, Nephrogenous cyclic adenosine monophosphate (cAMP) in the diagnosis of hyperparathyroidism, Program of the 56th Meeting of The Endocrine Society, Abstract No. 297, p. A-204.Google Scholar
  28. Broadus, A. E., Kaminsky, N. I., Hardman, J. G., Sutherland, E. W., and Liddle, G. W., 1970a, Kinetic parameters and renal clearances of plasma adenosine 3’,5’-monophosphate and guanosine 3’,5’-monophosphate in man, J. Clin. Invest. 49: 2222.PubMedGoogle Scholar
  29. Broadus, A. E., Kaminsky, N. I., Northcutt, R. C., Hardman, J. G., Sutherland, E. W., and Liddle, G. W., 1970b, Effects of glucagon on adenosine 3’,5’monophosphate and guanosine 3’,5’-monophosphate in human plasma and urine, J. Clin. Invest. 49: 2237.PubMedGoogle Scholar
  30. Brown, E. M., Aurbach, G. D., Hauser, D., and Troxler, F., 1976a, ß-Adrenergic receptor interactions: Characterization of iodohydroxybenzylpindolol as a specific ligand, J. Biol. Chem. 251: 1232.PubMedGoogle Scholar
  31. Brown, E. M., Fedak, S. A., Woodard, C. J., Aurbach, G. D., and Rodbard, D., 1976b, ß-Adrenergic receptor interactions: Direct comparison of receptor and biological activity, J. Biol. Chem. 251: 1239.PubMedGoogle Scholar
  32. Brown, E. M., Gardner, J. D., and Aurbach, G. D., Direct determination of ligand interactions with ß-adrenergic receptors on intact turkey erythrocytes: Correlation of binding with biological activity, Endocrinology (in press).Google Scholar
  33. Chabardès, D., Imbert-Teboul, M., Montégut, M., Clique, A., Morel, F., 1975a, Catecholamine-sensitive adenylate cyclase activity in different segments of rabbit nephron, Pflügers Arch. 361: 9.PubMedGoogle Scholar
  34. Chabardès, D., Imbert, M., Clique, A., Montégut, M., and Morel, F., 1975b, PTH sensitive adenyl cyclase activity in different segments of the rabbit nephron, Pflügers Arch. 354: 229.PubMedGoogle Scholar
  35. Chang, K. J., Huang, D., and Cuatrecasas, P., 1975, The defect in insulin receptors in obese-hyperglycemic mice: A probable accompaniment of more generalized alterations in membrane glycoproteins, Biochem. Biophys. Res. Commun. 64: 566.PubMedGoogle Scholar
  36. Chase, L. R., 1975, Selective proteolysis of the receptor for parathyroid hormone in renal cortex, Endocrinology 96: 70.PubMedGoogle Scholar
  37. Chase, L. R., and Aurbach, G. D., 1967, Parathyroid function and the renal excretion of 3’,5’-adenylic acid, Proc. Nat. Acad. Sci. U.S.A. 58: 518.Google Scholar
  38. Chase, L. R., and Obert, K. A., 1975, Selective proteolysis of the receptor for parathyroid hormone in skeletal tissue, Metabolism 24: 1067.PubMedGoogle Scholar
  39. Chase, L. R., Melson, G. L., and Aurbach, G. D., 1969, Pseudohypoparathyroidism: Defective excretion of 3’,5’-AMP in response to parathyroid hormone, J. Clin. Invest. 48: 1832.PubMedGoogle Scholar
  40. Chen, L. C., Rohde, J. E., and Sharp, G. W. G., 1971, Intestinal adenyl cyclase activity in human cholera, Lancet 1: 939.PubMedGoogle Scholar
  41. Collier, H. O. J., and Francis, D. L., 1975, Morphine abstinence is associated with increased brain cyclic AMP, Nature 255: 159.PubMedGoogle Scholar
  42. Collier, H. O.J., and Roy, A. C., 1974, Morphine-like drugs inhibit the stimulation by E prostaglandins of cyclic AMP formation by rat brain homogenate, Nature 248: 24.Google Scholar
  43. Corbin, J. D., Keely, S. L., Soderling, T. R., and Park, C. R., 1975, Hormonal regulation of adenosine 3’,5’-monophosphate—dependent protein kinase, Adv. Cyclic Nucleotide Res. 5: 265.PubMedGoogle Scholar
  44. Cox, B. M., Opheim, K. E., Teschemacher, H., and Goldstein, A., 1975, A peptide-like substance from pituitary that acts like morphine. 2. Purification and properties, Life Sci. 16: 1777.PubMedGoogle Scholar
  45. Cramer, H., Goodwin, F. K., Post, R. M., and Bunney, W. E., Jr., 1972, Effects of probenecid and exercise on cerebrospinal fluid cyclic AMP in affective illness, Lancet 1: 1346.PubMedGoogle Scholar
  46. Cuatrecasas, P., 1973, Interaction of Vibrio cholerae enterotoxin with cell membranes, Biochemistry 12: 3547.PubMedGoogle Scholar
  47. Cuatrecasas, P., Hollenberg, M. D., Chang, K.J., and Bennett, V., 1975a, Hormone receptor complexes and their modulation of membrane function, Recent Prog. Horm. Res. 31: 37.PubMedGoogle Scholar
  48. Cuatrecasas, P., Jacobs, S., and Bennett, V., 1975b, Activation of adenylate cyclase by phosphoramidate and phosphonate analogs of GTP: Possible role of covalent enzyme—substrate intermediates in the mechanism of hormonal activation, Proc. Nat. Acad. Sci. U.S.A. 72: 1739.Google Scholar
  49. Davoren, P. R., and Sutherland, E. W., 1963, The effect of 1-epinephrine and other agents on the synthesis and release of adenosine 3’,5’-phosphate by whole pigeon erythrocytes, J. Biol. Chem. 238: 3009.PubMedGoogle Scholar
  50. De Meyts, P., 1976, Insulin and growth hormone receptors in human cultured lymphocytes and peripheral blood monocytes, in: Methods in Molecular Biology,M. Dekker, New York (in press).Google Scholar
  51. De Meyts, P., Roth, J., Neville, D. M., Jr., Gavin, J. R., III, and Lesniak, M. A., 1973, Insulin interactions with its receptors: Experimental evidence for negative cooperativity, Biochem. Biophys. Res. Commun. 55: 154.PubMedGoogle Scholar
  52. Dousa, T. P., Hui, Y. F. S., and Barnes, L. D., 1975, Renal medullary adenylate cyclase in rats with hypothalamic diabetes insipidus, Endocrinology 97: 802.PubMedGoogle Scholar
  53. Exton, J. H., Lewis, S. B., Ho, R. J., and Park, C. R., 1972, The role of cyclic AMP in the control of hepatic glucose production by glucagon and insulin, Adv. Cyclic Nucleotide Res. 1: 91.PubMedGoogle Scholar
  54. Fain, J. N., and Loken, S. C., 1969, Response of trypsin-treated brown and white fat cells to hormones: Preferential inhibition of insulin action, J. Biol. Chem. 244: 3500.PubMedGoogle Scholar
  55. Field, M., 1974, Mode of action of cholera toxin stabilization of catecholaminesensitive adenylate cyclase in turkey erythrocytes, Proc. Nat. Acad. Sci. U.S.A. 71: 3299.Google Scholar
  56. Flier, J. S., Kahn, C. R., Roth, J., and Bar, R. S., 1975, Antibodies that impair insulin receptor binding in an unusual diabetic syndrome with severe insulin resistance, Science 190: 63.PubMedGoogle Scholar
  57. Flores, J., and Sharp, G. W. G., 1975, Effects of cholera toxin on adenylate cyclase: Studies with guanylylimidodiphosphate, J. Clin. Invest. 56: 1345.PubMedGoogle Scholar
  58. Gill, D. M., 1975, Involvement of nicotinamide adenine dinucleotide in the action of cholera toxin in vitro, Proc. Nat. Acad. Sci. U.S.A. 72: 2064.Google Scholar
  59. Gill, D. M., and King, C. A., 1975, The mechanism of action of cholera toxin in pigeon erythrocyte lysates, J. Biol. Chem. 250: 6424.PubMedGoogle Scholar
  60. Gill, D. M., Pappenheimer, A. M., Jr., and Uchida, T., 1973, Diphtheria toxin, protein synthesis, and the cell, Fed. Proc. Fed. Amer. Soc. Exp. Biol. 32: 1508.Google Scholar
  61. Glossmann, H., 1975, Adrenal cortex adenylate cyclase: Specific binding sites for 5’-guanylyl-imidodiphosphate in partially purified plasma membranes from bovine adrenal cortex, Naunyn-Schmiedeberg’s Arch. Pharmacol. 289: 99.PubMedGoogle Scholar
  62. Glossmann, H., and Gips, H., 1975, Bovine adrenal cortex adenylate cyclase: Properties of the particulate enzyme and effects of guanyl nucleotides, Naunyn-Schmiedeberg’s Arch. Pharmacol. 289: 77.PubMedGoogle Scholar
  63. Goldstein, A., Lowney, L. I., and Pal, B. K., 1971, Stereospecific and nonspecific interactions of the morphine congener levorphanol in subcellular fractions of mouse brain, Proc. Nat. Acad. Sci. U.S.A. 68: 1742.Google Scholar
  64. Goldstein, G., and Schlesinger, D. H., 1975, Thymopoietin and myasthenia gravis: Neostigmine-responsive neuromuscular block produced in mice by a synthetic peptide fragment of thymopoietin, Lancet 2: 256.PubMedGoogle Scholar
  65. Gullis, R., Traber, J., and Hamprecht, B., 1975, Morphine elevates levels of cyclic GMP in a neuroblastoma X glioma hybrid cell line, Nature 256: 57.PubMedGoogle Scholar
  66. Guttler, R. B., Shaw, J. W., Otis, C., and Nicoloff, J. T., 1975, Epinephrine-induced alterations in urinary cyclic AMP in hyper-and hypothyroidism, J. Clin. Endocrinol. 41: 707.Google Scholar
  67. Hanoune, J., Lacombe, M.-L., and Pecker, F., 1975, The epinephrine-sensitive adenylate cyclase of rat liver plasma membranes: Role of guanyl nucleotides, J. Biol. Chem. 250: 4569.PubMedGoogle Scholar
  68. Hardman, J. G., Davis, J. W., and Sutherland, E. W., 1966, Measurement of guanosine 3’,5’-monophosphate and other cyclic nucleotides, J. Biol. Chem. 241: 4812.PubMedGoogle Scholar
  69. Heath, D. A., and Aurbach, G. D., 1975, Studies on the binding of 125I-parathyroid hormone to renal cortical membranes, in: Calcium-Regulating Hormones ( R. V. Talmage, M. Owen, and J. A. Parsons, eds.), pp. 159–162, Excerpta Medica, Amsterdam.Google Scholar
  70. Hepp, K. D., Langley, J., von Funcke, H. J., Renner, R., and Kemmler, W., 1975, Increased insulin binding capacity of liver membranes from diabetic Chinese hamsters, Nature 258: 154.PubMedGoogle Scholar
  71. Hewlett, E. L., Guerrant, R. J., Evans, D. J., Jr., and Greenough, W. B., III, 1974, Toxins of Vibrio cholerae and Escherichia coli stimulate adenyl cyclase in rat fat cells, Nature 249: 371.PubMedGoogle Scholar
  72. Hinkle, P. M., and Tashjian, A. H., Jr., 1975, Degredation of thyrotropin-releasing hormone by the GH-3 strain of pituitary cells in culture, Endocrinology 97: 324.PubMedGoogle Scholar
  73. Hollenberg, M. D., and Cuatrecasas, P., 1975, Insulin and epidermal growth factor; human fibroblast receptors related to deoxyribonucleic acid synthesis and amino acid uptake, J. Biol. Chem. 250: 3845.PubMedGoogle Scholar
  74. Hosey, M., and Tao, M., 1975, Ettect of 5’-guanylylimidodiphosphate on prostaglandin-and fluoride-sensitive adenylate cyclase of rabbit red blood cells, Biochem. Biophys. Res. Commun. 64: 1263.PubMedGoogle Scholar
  75. Huang, D., and Cuatrecasas, P., 1975, Insulin-induced reduction of membrane receptor concentrations in isolated fat cells and lymphocytes, J. Biol. Chem. 250: 8251.PubMedGoogle Scholar
  76. Hughes, J., 1975, Isolation of an endogenous compound from the brain with pharmacological properties similar to morphine, Brain Res. 88: 295.PubMedGoogle Scholar
  77. Hughes, J., Smith, T. W., Kosterlitz, H. W., Fothergill, L. A., Morgan, B. A., and Morris, H. R., 1975, Identification of two related pentapeptides from the brain with potent opiate agonist activity, Nature 258: 577.PubMedGoogle Scholar
  78. Imbert, M., Chabardes, D., Montegut, M., Clique, A., and Morel, F., 1975, Vasopressin dependent adenylate cyclase in single segments of rabbit kidney tubule, Pflügers Arch. 357: 173.PubMedGoogle Scholar
  79. Insel, P., Balakir, R., and Sacktor, B., 1975, Binding of cyclic AMP to renal brush border membranes, J. Cyclic Nucleotide Res. 1: 107.PubMedGoogle Scholar
  80. Issekutz, T. B., 1975, Estimation of cyclic AMP turnover in normal and methylprednisolone-treated dogs: Effect of catecholamines, Amer. J. Physiol. 229: 291.PubMedGoogle Scholar
  81. Jard, S., and Bockaert, J., 1975, Stimulus—response coupling in neurohypophysical peptide target cells, Physiol. Rev. 55: 489.PubMedGoogle Scholar
  82. Jard, S., Roy, C., Barth, T., Rajerison, R., and Bockaert, J., 1975, Antidiuretic hormone-sensitive kidney adenylate cyclase, Adv. Cyclic Nucleotide Res. 5: 31.PubMedGoogle Scholar
  83. Jarett, L., and Smith, R. M., 1975, Ultrastructural localization of insulin receptors on adipocytes, Proc. Nat. Acad. Sci. U.S.A. 72: 3526.Google Scholar
  84. Kahn, C. R., and Roth, J., 1975, Cell membrane receptors for polypeptide hormones, Amer. J. Clin. Pathol. 63: 656.Google Scholar
  85. Kakiuchi, S., Yamazaki, R., Teshima, Y., Uenishi, K., and Miyamoto, E., 1975, Ca2+/Mg2+-dependent cyclic nucleotide phosphodiesterase and its activator protein, Adv. Cyclic Nucleotide Res. 5: 163.PubMedGoogle Scholar
  86. Kaminsky, N. I., Broadus, A. E., Hardman, J. G., Jones, D. J., Jr., Ball, J. H., Sutherland, E. W., and Liddle, G. W., 1970, Effects of parathyroid hormone on plasma and urinary adenosine 3’,5’-monophosphate in man, J. Clin. Invest. 49: 2387.PubMedGoogle Scholar
  87. Kern, P., Picard, J., Caron, M., and Veissiere, D., 1975, Decreased binding of insulin to liver plasma membrane receptors in hereditary diabetic mice, Biochim. Biophys. Acta 389: 281.PubMedGoogle Scholar
  88. Kimberg, D. V., Field, M., Johnson, J., Henderson, A., and Gershaw, E., 1971, Stimulation of intestinal mucosal adenyl cyclase by cholera enterotoxin and prostaglandins, J. Clin. Invest. 50: 1218.PubMedGoogle Scholar
  89. Kinne, R., Shlatz, L. J., Kinne-Saffran, E., and Schwartz, I. L., 1975, Distribution of membrane-bound cyclic AMP—dependent protein kinase in plasma membranes of cells of the kidney cortex, J. Membrane Biol. 24: 145.Google Scholar
  90. Klee, W. A., and Nirenberg, M., 1974, A neuroblastoma X glioma hybrid cell line with morphine receptors, Proc. Nat. Acad. Sci. U.S.A. 71: 3474.Google Scholar
  91. Klee, W. A., Sharma, S. K., and Nirenberg, M., 1975, Opiate receptors as regulators of adenylate cyclase, Life Sci. 16: 1869.PubMedGoogle Scholar
  92. Kono, T., 1969, Destruction of insulin effector system of adipose tissue cells by proteolytic enzymes, J. Biol. Chem. 244: 1772.PubMedGoogle Scholar
  93. Kono, T., Robinson, F. W., and Safvef, J. A., 1975, Insulin-sensitive phosphodiesterase: Its localization, hormonal stimulation, and oxidative stabilization, J. Biol. Chem. 250: 7826.PubMedGoogle Scholar
  94. Kriss, J. P., Pleshakov, V., and Chien, J. R., 1964, Isolation and identification of the long-acting thyroid stimulator and its relation to hyperthyroidism and circumscribed pretibial myxedema, J. Clin. Endocrinol. 24: 1005.Google Scholar
  95. Kuchel, O., Hamet, P., Cuche, J. L., Tolis, G., Fraysse, J., and Genest, J., 1975, Urinary and plasma cyclic adenosine 3’,5’-monophosphate in patients with idiopathic edema, J. Clin. Endocrinol. 41: 282.Google Scholar
  96. Lands, A. M., Arnold, A., McAuliff, J. P., Luduena, F. P., and Brown, T. G., Jr., 1967, Differentiation of receptor systems activated by sympathomimetic amines, Nature 214: 597.PubMedGoogle Scholar
  97. Lee, C. Y., Stolman, S., Akera, T., and Brody, T. M., 1973, Saturable binding of [3H]-dihydromorphine to rat brain tissue in vitro: Characterization and effect of morphine pretreatment, Pharmacologist 15: 202 (Abstract No. 258).Google Scholar
  98. Lefkowitz, R. J., 1975, Guanosine triphosphate binding sites in solubilized myocardium, J. Biol. Chem. 250: 1006.Google Scholar
  99. Lefkowitz, R. J., and Caron, M. G., 1975, Characteristics of 5’-guanylyl-imidodiphosphate-activated adenylate cyclase, J. Biol. Chem. 250: 4418.PubMedGoogle Scholar
  100. Lefkowitz, R. J., Mukherjee, C., Coverstone, M., and Caron, M. G., 1974, Stereo-specific [3H](—)alprenolol binding sites, ß-adrenergic receptors and adenylate cyclase, Biochem. Biophys. Res. Commun. 60: 703.PubMedGoogle Scholar
  101. Lennon, V. A., Lindstrom, J. M., and Seybold, M. E., 1975, Experimental autoimmune myasthenia: A model of myasthenia gravis in rats and guinea pigs, J. Exp., Med. 141: 1365.Google Scholar
  102. Levey,,G.S.,Fletcher, M. A., and Klein, I., 1975, Glucagon and adenylate cyclase: ‘Binding studies and requirements for activation, Adv. Cyclic Nucleotide Res. 5:53.PubMedGoogle Scholar
  103. Levitzki, A., Atlas, D., and Steer, M. L., 1974, The binding characteristics and number of ß-adrenergic receptors on the turkey erythrocyte, Proc. Nat. Acad. Sci. U.S.A. 71: 2773.Google Scholar
  104. Liljenquist, J. E., Bomboy, J. D., Lewis, S. B., Sinclair-Smith, B. C., Felts, P. W., Lacy, W. W., Crofford, O. B., and Liddle, G. W., 1974, Effect of glucagon on net aplanchnic cyclic AMP production in normal and diabetic men, J. Clin. Invest. 53: 198.PubMedGoogle Scholar
  105. Limbird, L. E., De Meyts, P., and Lefkowitz, R. J., 1975, /3-Adrenergic receptors: Evidence for negative cooperativity, Biochem. Biophys. Res. Commun. 64: 1160.Google Scholar
  106. Lin, T., Kopp, L. E., and Tucci, J. R., 1973, Urinary excretion of cyclic 3’,5’-adenosine monophosphate in hyperthyroidism, J. Clin. Endocrinol. 36: 1033.Google Scholar
  107. Linarelli, L. G., 1972, Newborn urinary cyclic AMP and developmental renal responsiveness to parathyroid hormone, Pediatrics 50: 14.PubMedGoogle Scholar
  108. Loten, E. G., and Sneyd, J. G. T., 1970, An effect of insulin on adipose-tissue adenosine 3’,5’-cyclic monophosphate phosphodiesterase, Biochem. J. 120: 187.PubMedGoogle Scholar
  109. Lowney, L. I., Schultz, K., Lowery, P. J., and Goldstein, A., 1974, Partial purification of an opiate receptor from mouse brain, Science 183: 749.PubMedGoogle Scholar
  110. Maguire, M. E., Wiklund, R. A., Anderson, H. J., and Gilman, A. G., 1976, Binding of [125I]iodohydroxybenzylpindolol to putative ß-adrenergic receptors of rat glioma cells and other cell clones, J. Biol. Chem. 251: 1221.PubMedGoogle Scholar
  111. Mallette, L. E., Bilezikian, J. P., Heath, D. A., and Aurbach, G. D., 1974, Primary hyperparathyroidism: clinical and biochemical features, Medicine 53: 127.PubMedGoogle Scholar
  112. Manley, S. W., Bourke, J. R., and Hawker, R. W., 1974, The thyrotropin receptor in guinea pig thyroid homogenate: Interaction with the long-acting thyroid stimulator, J. Endocrinol. 61: 437.PubMedGoogle Scholar
  113. Marx, S. J., and Aurbach, G. D., 1975, Renal receptors for calcitonin: Coordinate occurrence with calcitonin-activated adenylate cyclase, Endocrinology 97: 448.PubMedGoogle Scholar
  114. Marx, S. J., Woodard, C. J., and Aurbach, G. D., 1972, Calcitonin receptors of kidney and bone, Science 178: 999.PubMedGoogle Scholar
  115. McKenzie, J. M., 1958, Delayed thyroid response to serum from thyrotoxic patients, Endocrinology 62: 865.PubMedGoogle Scholar
  116. Meek, J. C., Jones, A. E., Lewis, U. J., and VanderLaan, W. P., 1964, Characterization of the long-acting thyroid stimulator of Graves’ disease, Proc. Nat. Acad. Sci. U.S.A. 52: 342.Google Scholar
  117. Megyesi, K., Kahn, C. R., Roth, J., Neville, D. M., Jr., Nissley, S. P., Humbel, R. E., and Froesch, E. R., 1975, The NSILA-s receptor in liver plasma membranes: Characterization and comparison with the insulin receptor, J. Biol. Chem. 250: 8990.PubMedGoogle Scholar
  118. Mehdi, S. Q., and Nussey, S. S., 1975, A radio-ligand receptor assay for the long-acting thyroid stimulator: Inhibition by the long-acting thyroid stimulator of the binding of radioiodinated thyroid-stimulating hormone to human thyroid membranes, Biochem. J. 145: 105.PubMedGoogle Scholar
  119. Mickey, J., Tate, R., and Lefkowitz, R. J., 1975, Subsensitivity of adenylate cyclase and decreased ß-adrenergic receptor binding after chronic exposure to (—)isoproterenol in vitro, J. Biol. Chem. 250: 5727.PubMedGoogle Scholar
  120. Morel, F., Chabardes, D., and Imbert, M., 1975, Target sites of antidiuretic hormone (ADH) and parathyroid hormone (PTH) along the segments of the nephron, Adv. Nephrol. 5: 283.Google Scholar
  121. Mukherjee, C., Caron, M. G., Coverstone, M., and Lefkowitz, R. J., 1975a, Identification of adenylate cyclase—coupled ß-adrenergic receptors in frog erythrocytes with (—)-[3H]alprenolol, J. Biol. Chem. 250: 4869.PubMedGoogle Scholar
  122. Mukherjee, C., Caron, M. G., and Lefkowitz, R. J., 1975b, Catecholamine-induced subsensitivity of adenylate cyclase associated with loss of ß-adrenergic receptor binding sites, Proc. Nat. Acad. Sci. U.S.A. 72: 1945.Google Scholar
  123. Murad, F., 1973, Clinical studies and application of cyclic nucleotides, Adv. Cyclic Nucleotide Res. 3: 355.PubMedGoogle Scholar
  124. Murad, F., Moss, W. W., Johanson, A. J., and Selden, R. F., 1975, Urinary excretion of adenosine 3’,5’-monophosphate and guanosine 3’,5’-monophosphate in normal children and those with cystic fibrosis, J. Clin. Endocrinol. 40: 552.Google Scholar
  125. Neelon, F. A., Drezner, M., Birch, B. M., and Lebovitz, H. E., 1973, Urinary cyclic adenosine monophosphate as an aid in the diagnosis of hyperparathyroidism, Lancet 1: 631.PubMedGoogle Scholar
  126. Olefsky, J. M., and Reaven, G. M., 1975, Effects of age and obesity on insulin binding to isolated adipocytes, Endocrinology 96: 1486.PubMedGoogle Scholar
  127. Orly, J., and Schramm, M., 1975, Fatty acids as modulators of membrane functions: Catecholamine-activated adenylate cyclase of the turkey erythrocyte, Proc. Nat. Acad. Sci. U.S.A. 72: 3433.Google Scholar
  128. Pak, C. Y. C., Kaplan, R., Bone, H., Townsend, J., and Waters, O., 1975, A simple test for the diagnosis of absorptive, resorptive and renal hypercalciurias, N. Engl. J. Med. 292: 497.PubMedGoogle Scholar
  129. Pasternak, G. W., Goodman, R., and Snyder, S. H., 1975, An endogenous morphine-like factor in mammalian brain, Life Sci. 16: 1765.PubMedGoogle Scholar
  130. Patrick, J., and Lindstrom, J., 1973, Autoimmune response to acetylcholine receptor, Science 180: 871.PubMedGoogle Scholar
  131. Patrick, J., Lindstrom, J., Culp, B., and McMillan, J., 1973, Studies on purified eel acetylcholine receptor and anti-acetylcholine receptor antibody, Proc. Nat. Acad. Sci. USA 70: 3334.PubMedGoogle Scholar
  132. Pert, C. B., and Snyder, S. H., 1973, Opiate receptor: Demonstration in nervous tissue, Science 179: 1011.PubMedGoogle Scholar
  133. Peytremann, A., Nicholson, W. E., Hardman, J. G., and Liddle, G. N., 1973, Effect of adrenocorticotropic hormone on extracellular adenosine 3’,5’-monophosphate in the hypophysectomized rat, Endocrinology 92: 1502.PubMedGoogle Scholar
  134. Pfeuffer, T., and Helmreich, E. J. M., 1975, Activation of pigeon erythrocyte membrane adenylate cyclase by guanylnucleotide analogues and separation of a nucleotide binding protein, J. Biol. Chem. 250: 867.PubMedGoogle Scholar
  135. Pittman, R. C., Khoo, J. C., and Steinberg, D., 1975, Cholesterol esterase in rat adipose tissue and its activation by cyclic adenosine 3’,5’-monophosphatedependent protein kinase, J. Biol. Chem. 250: 4505.PubMedGoogle Scholar
  136. Queener, S. F., Fleming, J. W., and Bell, N. H., 1975, Solubilization of calcitoninresponsive renal cortical adenylate cyclase, J. Biol. Chem. 250: 7586.PubMedGoogle Scholar
  137. Robison, G. A., Butcher, R. W., and Sutherland, E. W., 1971, Cyclic AMP, Academic Press, New York, 531 pp.Google Scholar
  138. Rodbell, M., Krans, H. M. J., Pohl, S. L., and Birnbaumer, L., 1971, The glucagonsensitive adenyl cyclase system in plasma membranes of rat liver. IV. Effects of guanyl nucleotides on binding of 125I-glucagon, J. Biol. Chem. 246: 1872.PubMedGoogle Scholar
  139. Rodbell, M., Lin, M. C., Salomon, Y., Londos, C., Harwood, J. P., Martin, B. R., Rendell, M., and Berman, M., 1975, Role of adenine and guanine nucleotides in the activity and response of adenylate cyclase systems to hormones: Evidence for multisite transition states, Adv. Cyclic Nucleotide Res. 5: 3.PubMedGoogle Scholar
  140. Romero, J. A., Zatz, M., Kebabian, J. W., and Axelrod, J., 1975, Circadian cycles in binding of 3H-alprenolol to ß-adrenergic receptor sites in rat pineal, Nature 258: 435.PubMedGoogle Scholar
  141. Rosen, O. M., Erlichman, J., and Rubin, C. S., 1975, Molecular structure and characterization of bovine heart protein kinase, Adv. Cyclic Nucleotide Res. 5: 253.PubMedGoogle Scholar
  142. Roth, J., Kahn, C. R., Lesniak, M. A., Gorden, P., De Meyts, P., Megyesi, K., Neville, D. M., Jr., Gavin, J. R., III, Soll, A. H., Freychet, P., Goldfine, I. D., Bar, R. S., and Archer, J. A., 1975, Receptors for insulin, NSILA-s, and growth hormone: Applications to disease states in man, Recent Prog. Horm. Res. 31: 95.PubMedGoogle Scholar
  143. Rudolph, S. A., and Greengard, P., 1974, Regulation of protein phosphorylation and membrane permeability by ß-adrenergic agents and cyclic adenosine 3’,5’-monophosphate in the avian erythrocyte, J. Biol. Chem. 249: 5684.PubMedGoogle Scholar
  144. Salomon, Y., Lin, M. C., Londos, C., Rendell, M., and Rodbell, M., 1975, The hepatic adenylate cyclase system. I. Evidence for transition states and structural requirements for guanine nucleotide activation, J. Biol. Chem. 250: 4239.PubMedGoogle Scholar
  145. Schramm, M., 1975, The catecholamine-responsive adenylate cyclase system and its modification by 5’-guanylylimidodiphosphate, Adv. Cyclic Nucleotide Res. 5: 105.PubMedGoogle Scholar
  146. Schramm, M., and Rodbell, M., 1975, A persistent active state of the adenylate cyclase system produced by the combined actions of isoproterenol and guanylylimidodiphosphate in frog erythrocyte membranes, J. Biol. Chem. 250: 2232.PubMedGoogle Scholar
  147. Schwartz, R. H., Bianco, A. R., Handwerger, B. S., and Kahn, C. R., 1975, Demonstration that monocytes rather than lymphocytes are the insulin-binding cells in preparations of human peripheral blood mononuclear leukocytes: Implications for studies of insulin-resistant states in man, Proc. Nat. Acad. Sci. U.S.A. 72: 474.Google Scholar
  148. Scurry, M. T., and Pauk, G. L., 1974, Renal tubular localization of parathyroid hormone induced urinary cyclic adenosine 3’,5’-monophosphate, Acta Endocrinol. 77: 282.PubMedGoogle Scholar
  149. Sebens, J. B., and Korf, J., 1975, Cyclic AMP in cerebrospinal fluid: Accumulation following probenecid and biogenic amines, Exp. Neurol. 46: 333.PubMedGoogle Scholar
  150. Sharma, S. K., Klee, W. A., and Nirenberg, M., 1975a, Dual regulation of adenylate cyclase accounts for narcotic dependence and tolerance, Proc. Nat. Acad. Sci. U.S.A. 72: 3092.Google Scholar
  151. Sharma, S. K., Nirenberg, M., and Klee, W. A., 1975b, Morphine receptors as regulators of adenylate cyclase activity, Proc. Nat. Acad. Sci. U.S.A. 72: 590.Google Scholar
  152. Sharp, G. W. G., and Hynie, S., 1971, Stimulation of intestinal adenyl cyclase by cholera toxin, Nature 229: 266.PubMedGoogle Scholar
  153. Schlatz, L. J., Schwartz, I. L., Kinne-Saffran, E., and Kinne, R., 1975, Distribution of parathyroid hormone—stimulated adenylate cyclase in plasma membranes of cells of the kidney cortex, J. Membrane Biol. 24: 131.Google Scholar
  154. Simon, E. J., Hiller, J. M., and Edelman, I., 1973, Stereospecific binding of the potent narcotic analgesic [3H]etorphine to rat-brain homogenate, Proc. Nat. Acad. Sci. U.S.A. 70: 1947.Google Scholar
  155. Smith, B. R. and Hall, R., 1974, Thyroid-stimulating immunoglobulins in Graves’ disease, Lancet 2: 427.PubMedGoogle Scholar
  156. Soll, A. H., Kahn, C. R., and Neville, D. M., Jr., 1975a, Insulin binding to liver plasma membranes in the obese hyperglycemic (ob/ob) mouse: Demonstration of a decreased number of functionally normal receptors, J. Biol. Chem. 250: 4702.PubMedGoogle Scholar
  157. Soll, A. H., Kahn, C. R., Neville, D. M., Jr., and Roth, J., 1975b, Insulin receptor deficiency in genetic and acquired obesity, J. Clin. Invest. 56: 769.Google Scholar
  158. Spiegel, A. M., and Aurbach, G. D., 1974, Binding of 5’-guanylyl-imidodiphosphate to turkey erythrocyte membranes and effect on ß-adrenergic-activated adenylate cyclase, J. Biol. Chem. 249: 7630.PubMedGoogle Scholar
  159. Spiegel, A. M., Bilezikian, J. P., and Aurbach, G. D., 1975, Increased adrenergic receptor content in membranes of stress-induced erythrocytes, Clin. Res. 23: 390A (abstract).Google Scholar
  160. Spiegel, A. M., Brown, E. M., Fedak, S. A., Woodard, C. J., and Aurbach, G. D., 1976, Holocatalytic state of adenylate cyclase in turkey erythrocyte membranes: Formation with guanylylimidodiphosphate plus isoproterenol without effect on affinity of ß-receptor, J. Cyclic Nucleotide Res. 2: 47.PubMedGoogle Scholar
  161. Stephenson, R. P., 1956, A modification of receptor theory, Brit. J. Pharmacol. 11: 379.PubMedGoogle Scholar
  162. Strange, R. C., and MjOs, O. D., 1975, The sources of plasma cyclic AMP: Studies in the rat using isoprenaline, nicotinic acid and glucagon, Eur. J. Clin. Invest. 5: 147.PubMedGoogle Scholar
  163. Terenius, L., 1973, Stereospecific interaction between narcotic analgesics and a synaptic plasma membrane fraction of rat cerebral cortex, Acta Pharmacol. 32: 317.Google Scholar
  164. Terenius, L., and Wahlström, A., 1975, Search for an endogenous ligand for the opiate receptor, Acta Physiol. Scand. 94: 74.PubMedGoogle Scholar
  165. Teschemacher, H., Opheim, K. E., Cox, B. M., and Golstein, A., 1975, A peptide-like substance from pituitary that acts like morphine. 1. Isolation, Life Sci. 16: 1771.PubMedGoogle Scholar
  166. Tomlinson, S., Hendy, G. N., and O’Riordan, J. L. H., 1976, A simplifed assessment of response to parathyroid hormone in hypoparathyroid patients, Lancet 1: 62.PubMedGoogle Scholar
  167. Van Heyningen, S., and King, C. A., 1975, Subunit A from cholera toxin is an activator of adenylate cyclase in pigeon erythrocytes, Biochem. J. 146: 269.PubMedGoogle Scholar
  168. Van Wyk, J. J., Underwood, L. E., Baseman, J. B., Hintz, R. L., Clemmons, D. R., and Marshall, R. N., 1975, Explorations of the insulin-like and growth-promoting properties of somatomedin by membrane receptor assays, Adv. Metab. Disord. 8: 127.PubMedGoogle Scholar
  169. Wang, J. H., Teo, T. S., Ho, H. C., and Stevens, F. C., 1975, Bovine heart protein activator of cyclic nucleotide phosphodiesterase, Adv. Cyclic Nucleotide Res. 5: 179.PubMedGoogle Scholar
  170. Wehmann, R. E., Blonde, L., and Steiner, A. L., 1974, Sources of cyclic nucleotides in plasma J. Clin. Invest. 53: 173.PubMedGoogle Scholar
  171. Wilfong, R. F., and Neville, D. M., Jr., 1970, The isolation of a brush border membrane fraction from rat kidney, J. Biol. Chem. 245: 6106.PubMedGoogle Scholar
  172. Williams, L. T., Snyderman, R., and Lefkowitz, R. J., 1976, Identification of ßadrenergic receptors in human lymphocytes by (—)[3H]alprenolol binding, J. Clin. Invest. 57: 149.PubMedGoogle Scholar
  173. Winand, R. J., and Kohn, L. D., 1974, Stimulation of adenylate cyclase activity in retro-orbital tissue membranes by thyrotropin and an exophthalmogenic factor derived from thyrotropin, J. Biol. Chem. 250: 6522.Google Scholar
  174. Wolff, J., and Cook, G. H., 1975a, Choleragen stimulates steroidogenesis and adenylate cyclase in cells lacking functional hormone receptors, Biochim. Biophys. Acta 413: 283.PubMedGoogle Scholar
  175. Wolff, J., and Cook, G. H., 1975b, Endotoxic lipopolysaccharides stimulate steroidogenesis and adenylate cyclase in adrenal tumor-cells, Biochim. Biophys. Acta 413: 291.PubMedGoogle Scholar
  176. Yamashita, K. and Field, J. B., 1972, Effects of long-acting thyroid stimulator on thyrotropin stimulation of adenyl cyclase activity in thyroid plasma membranes, J. Clin. Invest. 51: 463.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • G. D. Aurbach
    • 1
  1. 1.Metabolic Diseases Branch, National Institute of Arthritis, Metabolism, and Digestive DiseasesNational Institutes of HealthBethesdaUSA

Personalised recommendations