What Does the Immunological Approach Offer Aquatic Research? An Overview

  • S. A. Pomponi
  • C. M. Yentsch
  • P. K. Horan
Conference paper
Part of the Lecture Notes on Coastal and Estuarine Studies book series (COASTAL, volume 25)


Chemical reagents have permitted the probing of cells, metabolic rates and processes, all of which make up an understanding of the world’s living resources on land, and freshwater as well as estuarine, coastal and oceanic waters. During the past decade, there has been an explosion of immunochemical reagents and techniques, primarily in the biomedical sciences. Within the past few years there has been keen interest in adapting some of this methodology to the study of marine organisms. The greatest incentive is derived from the fact that one can tag and trace something of interest in a complex mixture — without elaborate separation and isolation procedures. Thus, for the aquatic research community the approach is ideal. Oceans, lakes, and estuaries are often dilute mixtures, but they are always complex mixtures of autotrophs, heterotrophs, larval stages, adult forms, detritus, and fecal pellets.


Paralytic Shellfish POisoning Antibody Molecule Biological Response Modifier Marine Science Immune Memory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alberte, R.S. and A.L. Friedman. 1986. A diatom-specific signature: use of immunological techniques. Abstract. EOS. 67: 1056.Google Scholar
  2. Andrews, D.W. 1984. Use of monoclonal antibody immunoaffinity column to purify subsets of human HLA-DR antigens. IN: Methods in Enzymology. J.J. Langone, H. Van Vunakis and G. DiSabato. (eds.). 108: 600.Google Scholar
  3. Baden, D.G., T.J. Mende and L.E. Brand. 1985. Cross-reactivity in immunoassays directed against toxins isolated from Ptychodiscus brevis. IN: Toxic Dinoflagellates. D. Anderson, A. White and D.G. Baden (eds.). Elsevier, NY. pp. 363–369.Google Scholar
  4. Bigger, C.H., P.L. Jokiel, W.H. Hildemann and I.S. Johnston. 1982. Characterization of alloimmune memory in a sponge. J. Immunol. 129: 1570–1572.PubMedGoogle Scholar
  5. Buscema, M. and G. Van de Vyver. 1984. Cellular aspects of alloimmune reactions in sponges of the genus Axinella. II. Axinella verrucosa and Axinella damicornis. J. Expt. Zool. 229: 19–32.CrossRefGoogle Scholar
  6. Campbell, L., E.J. Carpenter and V.J. Iacono. 1983. Identification and enumeration of marine Chroococcold cyanobacteria by immunofluorescence. Appl. Environ. Microbiol. 46: 553–559.PubMedGoogle Scholar
  7. Colwell, D.E., S.M. Michalek and J.R. McGee. 1986. Method for generating high frequency of hybridomas producing monoclonal antibodies. IN: Methods in Enzymology. J.J. Langone and H. Van Vunakis (eds.). Academic Press, NY. 121: 42.Google Scholar
  8. Dahle, A.B. and M. Laake. 1981. Diversity dynamics of marine bacteria: immunofluorescence stain on membrane filters. J. Appl. Microbiol. 43: 169–179.Google Scholar
  9. Dahle, A.B. and M. Laake. 1982. Diversity dynamics of marine bacteria studies by immunofluorescent staining on membrane filters. Appl. Environ. Microbiol. 43: 169–176.PubMedGoogle Scholar
  10. Friedman, A.L. and R.S. Alberte. 1986. Biogenesis and light regulation of the major light harvesting chlorophyll-protein of diatoms. Plant Physiol. 80: 43–51.PubMedCrossRefGoogle Scholar
  11. Friedman, A.L. and R.S. Alberte. (submitted) Phylogenetic distribution of the major diatom light-harvesting pigment-protein determined by immunological methods.Google Scholar
  12. Friefelder, D. 1982. Immunological Methods. W.H. Freeman & Co., NY. Chapter 1. p. 323.Google Scholar
  13. Fujiwara, K. and T.D. Pollard. 1980. J. Cell. Biol. 87(2): 222A.Google Scholar
  14. Hildemann, W.H., C.H. Bigger and I.S. Johnson. 1979. Histocompatibility reactions and allogeneic polymorphism among invertebrates. Transplantation Proceedings 11: 1136–1142.PubMedGoogle Scholar
  15. Hildemann, W.H., C.H. Bigger, P.L. Jokiel and I.S. Johnston. 1980. Characteristics of immune memory in invertebrates. IN: Phylogeny of immunological memory. J. Manning (ed.). Elsevier/North-Holland Biomedical Press, Amsterdam, pp. 9–14.Google Scholar
  16. Kennett, R.H., T.J. McKearn and K.B. Bechton. Editors. 1980. Monoclonal Antibodies. Hybridomas: a new dimension in biological analysis.Google Scholar
  17. Köhler, G. and C. Milstein. 1975. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 256: 495–497.PubMedCrossRefGoogle Scholar
  18. Kolenkine, X. 1971. Les histocompatibilitiės intraspėcifique et interspėcifique chez les hydres d’eau douce. Arch. Zool. Exp. Gėner. 112: 63–70.Google Scholar
  19. Lackie, A.M. 1977. Cellular recognition of “non-self” in insects. IN: Developmental Immunobiology. J.B. Soloman and J.D. Horton (eds.). Elsevier/North-Holland Biomedical Press, Amsterdam, pp. 75–81.Google Scholar
  20. Lackie, A.M. 1979. Cellular recognition of foreignness in two insect species, the American cockroach and the desert locust. Immunobiology 36: 909–914.Google Scholar
  21. Langlet, C. and J. Bierne. 1977. The immune response to xenografts in nemertines of the genus Lineus IN: Developmental Immunobiology. J.B. Solomon and J.D. Horton, eds., Elsevier/North-Holland Biomedial Press, Amsterdam, pp. 17–26.Google Scholar
  22. Lanier, L.L., E.G. Engleman and P. Gatenby. 1983. Correlation of functional properties of human lymphoid cell subsets and surface marker phenotypes using multiparameter analysis and flow cytometry. Imnol. Rev. 74: 143.CrossRefGoogle Scholar
  23. Marchalonis, J.J. 1977. Immunity in Evolution. Arnold, London, 238 pp.Google Scholar
  24. Muller, W.E.G. 1982. Int. Rev. Cytol. 77: 129–181.CrossRefGoogle Scholar
  25. Muirhead, K.A., P.K. Horan and G. Poste. 1985. Flow cytometry: present and future. Bio/technology. 3: 337–356.CrossRefGoogle Scholar
  26. Nicolas, M-T., C.H. Johnson, J-M. Bassot and J.W. Hastings. 1985. Immunogold labeling of organelles in the bioluminescent dinoflagellate Gonyaulax polyedra with antiluciferase antibody. Cell Biol. Internl. Repts. 9: 797–802.CrossRefGoogle Scholar
  27. Reinisch, C.L., A.M. Charles and J. Froutner. 1983. Dev. Comp. Immunol. 7: 33–39.PubMedCrossRefGoogle Scholar
  28. Roitt, I., J. Brostoff and D. Male. 1985. Immunology. C.V. Mosby, St. Louis.Google Scholar
  29. Springer, T.A. Editor. 1985. Hybridoma technology in the biosciences and medicine. Plenum Press. NY.Google Scholar
  30. Stegeman, J.J., R.J. Kloepper-Sams and J.W. Farrington. 1986. Monooxygenase induction and chlorobiphenyls in the deep sea fish Coryphaenoides armatus. Science. 231: 1287–1289.PubMedCrossRefGoogle Scholar
  31. Truneh, A., P. Machy and P.K. Horan. (in press). Antibody-bearing liposomes as multicolor immunofluoro markers for flow cytometry and imaging. J. Imnol. Methods.Google Scholar
  32. Twarog, B.M. 1974. “Immunity” to paralytic shellfish toxin in bivalve molluscs. Proc. Second Intnl. Coral Reef Symposium. Great Barrier Reef Committee, Brisbane, Australia. pp. 505–512.Google Scholar
  33. Twarog, B.M., T. Hidaka and H. Yamaguchi. 1972. Resistance to tetrodotoxin and saxitoxin in nerves of bivalve molluscs. Toxicon. 10: 273–278.PubMedCrossRefGoogle Scholar
  34. Twarog, B.M. and H. Yamaguchi. 1975. Resistance to paralytic shellfish toxins in bivalve molluscs. Proc. of the First Intnl. Conf. on Toxic Dinoflagellate Blooms. Mass. Sci. Tech. Fdn. Wakefield, MA. pp. 381–393.Google Scholar
  35. Valembois, P. 1973. Quelques aspects phylogėnėteiques de la rėaction d’incompatibilitė aux greffes chez les Métazoaires. Ann. Biol. 12: 1–26.Google Scholar
  36. Vierling, E. and R.S. Alberte. 1983. P700 chlorophyll a-protein, Purification, Characterization, and Antibody preparation. Plant Physiol. 72: 625–633.PubMedCrossRefGoogle Scholar
  37. Visser, J.W.M. and G.R. Van den Engh. 1982. IN: Immunofluorescence Technology Selected Theoretical and Clinical Aspects, Wick. (ed.). Elsevier, Amsterdam. pp. 95–128.Google Scholar
  38. Ward, B.B. and M.J. Perry. 1980. Immunofluorescent assay for the marine ammonium-oxidizing bacterium Nitrosococcus oceanus. Appl. Environ. Microbiol. 39: 913–918.PubMedGoogle Scholar
  39. Yentsch, C.M. and S.A. Pomponi. 1986. Automated individual cell analysis in aquatic research. Internal. Rev. Cytol. 105: 183–243.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1988

Authors and Affiliations

  • S. A. Pomponi
    • 1
  • C. M. Yentsch
    • 2
    • 3
  • P. K. Horan
    • 4
  1. 1.Sea Pharm. Inc.Harbor Branch Oceanographic InstitutionFort PierceUSA
  2. 2.Bigelow Laboratory for Ocean SciencesWest Boothbay HarborUSA
  3. 3.Bowdoin College Chemistry DepartmentBrunswickUSA
  4. 4.Smith, Kline & French LaboratoriesDepartment of ImmunologySwedelandUSA

Personalised recommendations