Advertisement

Examining Nitrate Reduction by Phytoplankton with an Immunoassay

  • W. M. Balch
  • C. M. Yentsch
  • Beatrez Reguera
  • Wilbur Campbell
Part of the Lecture Notes on Coastal and Estuarine Studies book series (COASTAL, volume 25)

Abstract

The uptake of nitrate by phytoplankton is a central issue in biological oceanography, mainly because of its ramifications to primary production and particle fluxes to the sediments. Dugdale and Goering (1967) first conceived of the idea of “new” production as that primary production which was growing on nitrogen sources from outside the euphotic zone (such as nitrate diffusing upwards). They further defined “regenerated production” as the primary production growing on regenerated nitrogen (such as ammonium and urea). These definitions were important for several reasons. For an oceanic ecosystem, apparently at equilibrium with regards to the concentration of particulate carbon, the rate of new production directly relates to the sinking flux of biogenic material (Eppley and Peterson, 1979). This implies that the rate of nitrate utilization should set an upper limit to the rates of supply of carbon to the benthic communities; for deep basins in the Southern California Bight, this prediction is supported by experimental data (Jahnke, in prep).

Keywords

Nitrate Reductase Denitrification Rate Nitrate Reductase Activity Nitrate Uptake Marine Phytoplankton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balch, W.M. submitted. Studies of nitrate transport by marine phytoplankton using 36Cl-ClO3 as a transport analogue. I. Physiological Findings. J. Phycol.Google Scholar
  2. Balch, W.M., C. Garside and E.H. Renger. in press. Studies of nitrate transport by marine phytoplankton using 36Cl-ClO3 as a transport analogue. II Field Observations. Deep Sea Res.Google Scholar
  3. Blasco, D., J.J. Maclsaac, T.T. Packard and R.C. Dugdale. 1984. Relationship between nitrate reductase and nitrate uptake in phytoplankton in the Peru upwelling region. Limnol. Oceanogr. 29: 275–286.CrossRefGoogle Scholar
  4. Campbell, W.H. 1985. The biochemistry of higher plant nitrate reductase. IN: Nitrogen Fixation and CO2 Metabolism. P.W. Ludden and J.E. Burris. (eds.). Elsevier Science Publishing Co., Inc., NY pp. 143–151.Google Scholar
  5. Campbell, W.H. and J.L. Remmler. 1986. Regulation of corn (Zea Mays) leaf nitrate reductase: I. Immunochemical methods for analysis of the enzymes protein component. Plant Physiol. 80: 435–441.PubMedCrossRefGoogle Scholar
  6. Campbell, W.H. and K.G. Ripp. 1984. An Elisa for higher nitrate reductase. Ann. New York. Acad. Sci. 435: 123–151.CrossRefGoogle Scholar
  7. Collos, Y. and G. Slawyk. 1976. Significance of cellular nitrate content in natural populations of marine phytoplankton growing in shipboard culture. Mar. Biol. 34: 27–32.CrossRefGoogle Scholar
  8. Collos, Y. and G. Slawyk. 1977. Nitrate reductase activity as a function of in situ nitrate uptake and environmental factors of euphotic zone profiles. J. Exp. Mar. Biol. Ecol. 29: 119–130.CrossRefGoogle Scholar
  9. Dortch, Q., S.I. Ahmed and T.T. Packard. 1979. Nitrate reductase and glutamate dehydrogenase activities in Skeletonema costatvm as measures of nitrogen assimilation rates. J. Plank. Res. 1: 169–185.CrossRefGoogle Scholar
  10. Dortch, Q. and H. Maske. 1982. Dark uptake of nitrate and nitrate reductase activity of a red-tide population off Peru. Mar. Ecol. Prog. Ser. 9: 299–303.CrossRefGoogle Scholar
  11. Dugdale, R.C. and J.J. Goering. 1967. Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol. Oceanogr. 12: 196–206.CrossRefGoogle Scholar
  12. Dugdale, R.C. and F.P. Wilkerson. 1986. The use of 15N to measure nitrogen uptake in eutrophic oceans: experimental considerations. Limnol. Oceanogr. 31: 673–689.CrossRefGoogle Scholar
  13. Dunn-Coleman, N.S., J. Smarrelli, Jr. and R.H. Garrett. 1984. Nitrate assimilation in eukaryotic cells. IN: Internatl. Rev. Cytol. G.H. Bourne, J.F. Danelli and K.W. Joen (eds.). Academic Press, NY. 92: 1–50.Google Scholar
  14. Eppley, R.W. 1978. Nitrate reductase in marine phytoplankton. IN: Handbook of Phycological Methods. J.A. Hellebust and J.S. Craigii. (eds.). Cambridge University Press. pp. 217–223.Google Scholar
  15. Eppley, R.W., J.L. Coatsworth and L. Solorzano. 1969. Studies of nitrate reductase in marine phytoplankton. Limnol. Oceanogr. 14: 194–205.CrossRefGoogle Scholar
  16. Eppley, R.W., R.W. Holmes and J.D.H. Strickland. 1967. Sinking rates of marine phytoplankton measured with a fluorometer. J. Exp. Mar. Biol. Ecol. 1: 191–208.CrossRefGoogle Scholar
  17. Eppley, R.W. and B.J. Peterson. 1979. Particulate organic matter flux and planktonic new production in the deep ocean. Nature 28: 677–680.CrossRefGoogle Scholar
  18. Eppley, R.W. and E. Renger. submitted. New production above the nitracline: plankton utilize nanomolar concentrations of nitrate in nutrient-depleted surface waters. Oceanographie Tropicale.Google Scholar
  19. Eppley, R.W., E.H. Renger, W.G. Harrison and J.J. Cullen. 1979. Ammonium distribution in southern California coastal waters and its role in the growth of phytoplankton. Limnol. Oceanogr. 24: 495–509.CrossRefGoogle Scholar
  20. Evans, H.J. and A. Nason. 1953. Plant Physiol. 28: 233–254.PubMedCrossRefGoogle Scholar
  21. Falkowski, P. 1983. Enzymology of nitrogen assimilation. IN: Nitrogen in the Marine Environment, E.J. Carpenter and D.G. Capone (eds.). Academic Press, NY. pp. 839–868.Google Scholar
  22. Funkhouser, E.A. and C.S. Ramadoss. 1980. Synthesis of nitrate reductase in Chlorella. II. Evidence for synthesis in ammonia-grown cells. Plant Physiol. 65: 944–948.PubMedCrossRefGoogle Scholar
  23. Garside, Chris. 1982. A chemiluminescent technique for the determination of nanomolar concentrations of nitrate, nitrate and nitrite or nitrite alone in seawater. Mar. Chem. 11: 159–167.CrossRefGoogle Scholar
  24. Garside, Chris. 1985. The vertical distribution of nitrate in open ocean surface water. Deep Sea Research. 32: 723–732.CrossRefGoogle Scholar
  25. Harrison, W.G. 1975. Assay of nitrate reductase from plasmolyzed marine phytoplankton. Annual Report of the Food Chain Group. Scripps Institute of Oceanography, La Jolla, CA. 473–483.Google Scholar
  26. Hochman, A., A., Nissanyk, D. Wynne, B. Kaplan and T. Berman. in press. Nitrate reductase: an improved assay method for phytoplankton. Limnol. Oceanogr.Google Scholar
  27. Jenkins, W.J. and J.C. Goldman. 1984. Seasonal oxygen cycling and primary production in the Sargasso Sea. J. Mar. Res. 43: 465–491.CrossRefGoogle Scholar
  28. Keller, M.D. and R.R.L Guillard. 1985. Factors significant to marine dinoflagellate culture. IN: Toxic Dinoflagellates. D.M. Anderson, A.W. White and D.G. Baden (eds.). Elsevier Science Publishing Co., Inc. pp. 113–116.Google Scholar
  29. Lewis, Marion, W.G. Harrison, N.S. Oakey, D. Herbert and T. Platt. 1986. Vertical nitrate fluxes in the oligotrophic ocean. Science. 234: 870–873.PubMedCrossRefGoogle Scholar
  30. Lopez-Ruiz, A., J.P. Verbelen, J.M. Roldan and J. Diez. 1986. Nitrate reductase of green algae is located in the pyrenoid. Plant Physiol. 79: 1006–1010.CrossRefGoogle Scholar
  31. Nisonoff, A. 1982. Introduction to Molecular Immunology. Sinauer Associates Inc.: Sunderland, MA. 204 pp.Google Scholar
  32. Paasche, E. 1986. Pelagic Primary Production in Nearshore Waters. IN: Nitrogen Cycling in Coastal Marine Environments.Google Scholar
  33. Paasche, E., I. Bryceson and K. Tangen. 1984. Interspecific variation in dark nitrogen uptake by dinoflagellates. J. Phycol. 20: 394–401.CrossRefGoogle Scholar
  34. Packard, T.T. 1973. The light dependence of nitrate reductase in marine phytoplankton. Limnol. Oceanogr. 18: 466–469.CrossRefGoogle Scholar
  35. Packard, T.T. and D. Blasco. 1974. Nitrate reductase activity in upwelling regions 2. Ammonia and light dependence. Tethys. 6: 269–280.Google Scholar
  36. Packard, T.T., D. Blasco, J.J. MacIsaac and R.C. Dugdale. 1971. Variations of nitrate reductase activity in marine phytoplankton. Inv. Pesq. 35: 209–219.Google Scholar
  37. Packard, T.T., R.C. Dugdale, J.J. Goering and R.T. Barber. 1978. Nitrate reductase activity in the subsurface waters of the Peru Current. J. Mar. Res. 36: 59–76;.Google Scholar
  38. Packard, T.T., P.C. Garfield and L.A. Codispoti. 1983. Oxygen consumption and denitrification below the Peruvian upwelling. IN: Coastal Upwelling, pt. A. E. Suess and J. Thiede (eds.). Plenum Publishing Corporation, pp. 147–173.Google Scholar
  39. Redinbaugh, M.G. and W.H. Campbell. 1983. Purification and squash NADH: nitrate reductase by zinc chelate affinity chromatography. Plant Physiol. 71: 205–207.PubMedCrossRefGoogle Scholar
  40. Roldan, J.M., V.P. Verbelen, W.L. Butler and K. Tokuyasu. 1982. Intracellular localization of nitrate reductase in Neurospora crassa. Plant Physiol. 70: 872–874.PubMedCrossRefGoogle Scholar
  41. Smarrelli Jr., J. and W.H. Campbell. 1981. Immunological approach to structural comparisons of assimilatory nitrate reductases. Plant Physiol. 68: 1226–1230.PubMedCrossRefGoogle Scholar
  42. Solomonson, L.P. 1975. Purification of NADH-NR by affinity chromatography. Plant Physiol. 56: 853–855.PubMedCrossRefGoogle Scholar
  43. Syrett, P. 1981. Nitrogen metabolism of microalgae. IN: Physiological Bases of Phytoplankton Ecology. T. Platt (ed.).Google Scholar
  44. Syrett, P. 1981. Nitrogen metabolism of microalgae. Can. Bull. Fish. Aquat. Sci. 210: 182–210.Google Scholar
  45. Strickland, J.D.H. and T. Parsons. 1972. A Practical Handbook of Seawater Analysis, Second edition. Fish. Res. Board Can., Ottawa, Bull. 167: 310 pp.Google Scholar
  46. Vaughn, K.C., S.O. Duke and E.A. Funkhouser. 1984. Immunochemical characterization and localization of nitrate reductase in norflurazon-treated soybean cotyledons. Physiol. Plant. 62: 481–484.CrossRefGoogle Scholar
  47. Ward, B.B. and M.J. Perry. 1980. Immunofluorescent assay for the marine ammonium-oxidizing bacterium Nitrosococcus oceanus. Applied and Environmental Microbiology. 39: 913–918.PubMedGoogle Scholar
  48. Wheeler, P.A. 1983. Phytoplankton nitrogen metabolism. IN: Nitrogen in the Marine Environment, E.J. Carpenter and D.G. Capone (eds.). Academic Press, NY. pp. 309–346.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1988

Authors and Affiliations

  • W. M. Balch
    • 1
  • C. M. Yentsch
    • 2
  • Beatrez Reguera
    • 3
  • Wilbur Campbell
    • 4
  1. 1.A-018, Scripps Inst. Of OceanographyLa JollaUSA
  2. 2.Bigelow Laboratory for Ocean SciencesW. Boothbay HarborUSA
  3. 3.Instituto OceanograficoVigoSpain
  4. 4.Department of Biological SciencesMichigan Technological UniversityHoughtonUSA

Personalised recommendations