Probes for Assessing Single-Cell Primary Production: Antibodies Against Ribulose-1,5-Bisphosphate Carboxylase (RuBPCase) and Peridinin/Chlorophyll A Protein (PCP)

  • M. V. Orellana
  • M. J. Perry
  • B. A. Watson
Part of the Lecture Notes on Coastal and Estuarine Studies book series (COASTAL, volume 25)


Identification of the factors controlling spatial and temporal variability of phytoplankton production is a major issue in biological oceanography. Although the interest in primary production has a long history, recent technological developments have enabled new approaches to the problem of its measurement. With the availability of new methods, the approach has shifted from gross estimation of primary production to include studying the control processes influencing individual phytoplankton cells. The effect of environmental factors on the metabolic activity and growth at the species level is a key to understanding large-scale patterns of production and distribution of phytoplankton in the ocean.


Ribulose Bisphosphate Bisphosphate Carboxylase Euglena Gracilis Maximal Photosynthetic Rate Chlorophyll Autofluorescence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akazawa, T., Takabe and H. Kobayashi. 1984. Molecular evolution of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Trends Biochem Sci. 9: 380–383.CrossRefGoogle Scholar
  2. Bauwe, H. 1984. Photosynthetic enzyme activities and immunofluorescence studies on the localization of ribulose 1,5-bisphosphate carboxylase/oxygenase in leaves of C3, C4 and C3–C4 intermediate species of Flaveria (Asteraceae). Biochem. Physiol. Pflanzen 179: 253–268.Google Scholar
  3. Bjorkman, O. 1968. Carboxydismutase activity in shade-adapted and sun-adapted species of higher plants. Physiol. Plant. 21: 481–485.Google Scholar
  4. Bowes, G., W.L. Ogren and R.H. Hageman. 1972. Light saturation, photosynthesis rate, RuDP carboxylase activity, and specific leaf weight in soybeans grown under different light intensities. Crop Sci. 12: 77–79.Google Scholar
  5. Bravdo, B. and J.E. Pallas, Jr. 1981. Photosynthesis photo-respiration and RuBP carboxylase/oxygenase activity in selected peanut genotypes. Photosynthetica 16: 36:42.Google Scholar
  6. Cleveland, J.S. and M.J. Perry. (in press) Quantum yield, relative specific absorption, and fluorescence in nitrogen-limited Chaetoceros gracilis. Mar. Biol.Google Scholar
  7. Collatz, G.J., M. Badger, C. Smith and J.A. Berry. 1979. A radioimmune assay for RuP2 carboxylase protein. Carnegie Inst Yearbook. 78: 171–175.Google Scholar
  8. Daley, R.J. and S.R. Brown. 1973. Chlorophyll, nitrogen, and photosynthetic patterns during growth and senescence of two blue green algae. J. Phycol. 9: 395–401.Google Scholar
  9. Ellis, J. 1979. The most abundant protein in the world. Trends Biochem. Sci. 4: 241–244.CrossRefGoogle Scholar
  10. Eppley, R.W. and B.J. Peterson. 1979. Particulate organic matter flux and planktonic new production in the deep ocean. Nature. 282: 677–680.CrossRefGoogle Scholar
  11. Eppley, R.W. and E.M. Renger. 1974. Nitrogen assimilation of an oceanic diatom in nitrogen-limited continuous culture. J. Phycol. 10: 15–23.Google Scholar
  12. Evans, J.E. 1983. Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L.) Plant. Physiol. 72: 279–302.Google Scholar
  13. Fourcroy, D. Klein-Eude and C. Lambert. 1985. Phytochrome control of gene expression in radish seedlings. II. Far-red light mediated appearance of ribulose-1,5-bisphosphate carboxylase and the mRNA for its small subunit. Pl. Sc. Lett. 37: 235–244.CrossRefGoogle Scholar
  14. Freyssinet, G., M. Freyssinet and D.E. Buetow. 1983. Immunodetection of ribulose-1,5-bisphosphate carboxylase in mutants of Euglena gracilis impaired in photosynthesis. Plant Sci. Lett. 32: 61–72.CrossRefGoogle Scholar
  15. Friedrich, J.W. and R.C. Huffaker. 1980. Photosynthesis, leaf resistances, and ribulose-1,5-biphosphate carboxylase degradation in senescing barley leaves. Plant Physiol. 65: 1103–1107.PubMedCrossRefGoogle Scholar
  16. Gray, J.C. and R.G.O. Kekwick. 1974. An immunological investigation of the structure and function of ribulose-1,5-bisphosphate carboxylase. Eur. J. Biochem. 44: 481–489.PubMedCrossRefGoogle Scholar
  17. Hattersley, P.W., L. Watson and C.B. Osmond. 1977. In situ immunofluorescent labelling of ribulose-1,5-bisphosphate carboxylase in leaves of C3 and C4 plants. Aust. J. Plant Physiol. 4: 523–539.CrossRefGoogle Scholar
  18. Holm-Hansen, O., C.J. Lorenzen, W.R Holmes and J.D.H. Strickland. 1965. Fluorometric determination of chlorophyll. J. Cons. Int. Exp. Mer. 30: 3–15.Google Scholar
  19. Hurkman, W.J. 1979. Ultrastructural changes of chloroplast in attached and detached, aging in primary wheat leaves. Am. J. Bot. 66: 64–70.CrossRefGoogle Scholar
  20. Hum, B.A.L. and S.M. Chantier. 1980. Production of reagent antibodies. Methods in Enzymology. 70: 105 – 142.Google Scholar
  21. Kawamura, A., Jr., and Y. Aoyama. 1983. Immunofluorescence in Medical Science. University of Tokyo Press, Springer-Verlag, New York. 262 pp.Google Scholar
  22. Kiss, J.Z., A.C. Vasconcelos and R.E. Triemer. 1986. Paramylon synthesis and chloroplast structure associated with nutrient levels in Euglena (Euglenophyceae). J. Phycol. 22: 327–333.CrossRefGoogle Scholar
  23. Ku, M.S.B., M.R. Schmitt and G.E. Edwards. 1979. Quantitative determination of RuBP carboxylase oxygenase protein in leaves of several C3 and C4 plants. J. Exp. Bot. 30: 89–98.CrossRefGoogle Scholar
  24. Kuppers, U. and M. Weidner. 1980. Seasonal variation of enzyme activities in Laminaria hyperborea. Planta 148: 222–230.CrossRefGoogle Scholar
  25. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.PubMedCrossRefGoogle Scholar
  26. Lapointe, B.E. and C.S. Duke. 1984. Biochemical strategies for growth of Gracilaria tikvahiae (Rhodophyta) in relation to light intensity and nitrogen availability. J. Phycol. 20: 488–495.CrossRefGoogle Scholar
  27. Laws, E.A. and T.T. Bannister. 1980. Nutrient and light-limited growth of Thalassiosira fluviatilis in continuous culture, with implications for phytoplankton growth in the ocean. Limnol. Oceanogr. 25: 457–473.CrossRefGoogle Scholar
  28. Lorenzen, C. J. 1966. A method for the continuous measurement of invivo chlorophyll concentration. Deep Sea Res. 13: 223–227.Google Scholar
  29. Madhavan, S. and B.N. Smith. 1982. Localization of ribulose bisphosphate carboxylase in the guard cells by an immunofluorescence technique. Plant Physiol. 69: 273–277.PubMedCrossRefGoogle Scholar
  30. Makino, A., T. Mae and K. Ohira. 1983a. Photosynthesis and ribulose-1,5-bisphosphate carboxylase in rice leaves. Plant Physiol. 73: 1002–1007.CrossRefGoogle Scholar
  31. Makino, A., T. Mae and K. Ohira. 1983b. Effect of nitrogen, phosphorus or potassium on the photosynthetic rate and ribulose-1,5-bisphosphate carboxylase content in rice leaves during expansion. Soil Sci. Plant Nutr. 30: 63–70.Google Scholar
  32. McFadden, B.A. 1980. A perspective of ribulose bisphosphate carboxylase/oxygenase, the key catalyst in photosynthesis and photorespiration. Acc. Chem. Res. 13: 394–399.CrossRefGoogle Scholar
  33. Miziorko, H.M. and G.H. Lorimer. 1983. Ribulose-1,5-bisphosphate carboxylase-oxygenase. Ann. Rev. Biochem. 52: 507–535.PubMedCrossRefGoogle Scholar
  34. Navaluna, N., and M.J. Perry. (submitted) The effect of chemical fixation on some optical properties of phytoplankton.Google Scholar
  35. Newman, S.M. and R.A. Cattolico. (in press) Is RuBPCase in Olisthodiscus luteus an evolutionary divergent enzyme? Plant. Physiol.Google Scholar
  36. Newman, S.M., M.V. Orellana, R.A. Cattolico and M.J.Perry. (in preparation) Structure of ribulose-1,5-bisphosphate carboxylase-oxygenase among plants.Google Scholar
  37. Peoples, M.B., V.C. Beilharz, S.P. Waters, R.J. Simpson and M.J. Dalling. 1980. Nitrogen redistribution during grain growth in wheat (Triticum aestivum L.) II. Chloroplast senescence and the degradation of ribulose-1,5-bisphosphate carboxylase. Planta. 149: 241 – 251.CrossRefGoogle Scholar
  38. Perchorowicz, J.T., D.A. Raynes and R.G. Jensen. 1981. Light limitation of photosynthesis and activation of ribulose bisphosphate carboxylase in wheat seedlings. Proc. Natl. Acad. Sci. USA. 78: 2985 – 2989.PubMedCrossRefGoogle Scholar
  39. Perry, M.J., M.C. Talbot and R.S. Alberte. 1981. Photoadaptation in marine phytoplankton: Response of the photosynthetic unit. Mar. Biol. 62: 91–101.CrossRefGoogle Scholar
  40. Perry, M.J., J. Smith, M.C. Talbot and N. Welschmeyer, (submitted a) Nitrogen limitation in marine phytoplankton: response of the photosynthetic apparatus. Mar. Ecol. Prog. Ser.Google Scholar
  41. Perry, M.J., J. Smith, and N. Welschmeyer. (submitted b) Resource exploitation in phytoplankton: the role of photosynthetic nitrogen. Amer. Nat.Google Scholar
  42. Peterson, D.H., M.H. Perry, K.E. Bencala and MC. Talbot. (in press). Phytoplankton productivity in relation to light intensity: a simple equation. Est. Coastal Shelf Sci.Google Scholar
  43. Plumley, F.G., D.L. Kirchman, R.E. Hodson and G.W. Schmidt. 1986. Ribulose biphosphate carboxylase from three chlorophyll c-containing algae: physical and immunological characterizations. Plant Physiol. 80: 685–691.PubMedCrossRefGoogle Scholar
  44. Prezelin, B.B. 1982. Effects on light intensity on aging of the dinoflagellate Gonyaulax polyedra. Mar. Biol. 69: 129–135.CrossRefGoogle Scholar
  45. Prezelin, B.B. and F.T. Haxo. 1976. Purification and characterization of peridinin-chorophyll a-proteins from the marine dinoflagellates Glenodinium sp. and Gonyalax polyedra. Planta. 128: 133–141.CrossRefGoogle Scholar
  46. Prezelin, B.B. and H.A. Matlick. 1980. Time course photoadaptation in the photosynthesis-irradiance relationship of dinoflagellate exhibiting photosynthetic periodicity. Mar. Biol. 58: 85–96.CrossRefGoogle Scholar
  47. Prezelin, B.B. and H.A. Matlick. 1983. Nutrient dependent low-light adaptation in the dinoflagellate Gonyaulax polyedra. Mar. Biol. 74: 141–150.CrossRefGoogle Scholar
  48. Prezelin, B.B. and B.M. Sweeney. 1979. Photoadaptation of photosynthesis in Gonyaulax polyedra. Mar. Biol. 48: 27–35.CrossRefGoogle Scholar
  49. Rabinowitz, H., A. Reisfeld, D. Sagher and M. Edelman. 1975. Ribulose diphosphate carboxylase from autotrophic Euglena gracilis. Plant Physiol. 56: 345–350.PubMedCrossRefGoogle Scholar
  50. Raven, J.A. 1984. Energetics and transport in aquatic plants. MBL Lectures in Biology. 4: 587 pp.Google Scholar
  51. Reed, J.E. and R. Chollet. 1985. Immunofluorescent localization of phosphoenolpyruvate carboxylase and ribulose-1,5-bisphosphate carboxylase/oxygenase proteins in leaves of C3, C4 and C3–C4 intermediate Flaveria species. Planta. 165: 439–445.CrossRefGoogle Scholar
  52. Rhiel, E., E. Morschel and W. Wehrmeyer. 1985. Correlation of pigment deprivation and ultrastructural organization of thylakoid membranes in Cryptomonas maculata following nutrient deficiency. Protoplasma 129: 62–73.CrossRefGoogle Scholar
  53. Rivkin, R.B. and H.H. Seliger. 1981. Liquid scintillation counting for 14C uptake of single algal cells isolated from natural samples. Limnol. Oceanogr. 26: 780–785.CrossRefGoogle Scholar
  54. Rosen, B.H. and R.L. Lowe. 1984. Physiological and ultrastructural responses of Cyclotella meneghiniana (Bacillariophyta) to light intensity and nutrient limitation. J. Phycol. 20: 173–183.CrossRefGoogle Scholar
  55. Shapiro, H.M., 1985. Practical Flow Cytometry, Alan R. Liss, Inc., NY, 295 pp.Google Scholar
  56. Smith, J.C., T. Platt and W.G. Harrison. 1983. Photoadaptation of carboxylating enzymes and photosynthesis during a spring bloom. Prog. Oceanogr. 12: 425–459.CrossRefGoogle Scholar
  57. Steeman-Nielsen, E. 1952. The use of radioactive carbon (14C) for measuring organic production in the sea. J. Cons. Int. Explor. Mer. 18: 117–140.Google Scholar
  58. Stevens, S.E., D.L. Balkwill and D.A.M. Paone. 1981. The effects of nitrogen limitation on the ultrastructure of the cyanobacterium Agmenellum quadruplicatum. Arch. Microbiol. 130: 204–212.CrossRefGoogle Scholar
  59. Strickland, J.D.H. and T.R. Parsons. 1972. A practical handbook of seawater analysis. 310 pp. Otawa. Fish. Res. Board Can. Bull. 167.Google Scholar
  60. Sugiyama, T., M. Mizuno and M. Hayashi. 1984. Partitioning of nitrogen among ribulose-1,5-bisphosphate carboxylase/oxygenase, phosphoenolpyruvate carboxylase, and pyruvate orthophosphate dikinase as related to biomass productivity in maize seedlings. Plant. Physiol. 75: 665–669.PubMedCrossRefGoogle Scholar
  61. Talbot, M.C., D.S. Thoreson and M.J. Perry. 1985. Photosynthesis vs. light intensity measurements: A miniaturized incubator. ONR Technical Report 406: 1–13.Google Scholar
  62. Thornber, J.P and R.S. Alberte. 1976. Chorophyll-proteins: membrane-bound photoreceptor complexes in plants. IN: The Enzymes of Biological Membranes. M. Martonosi (ed.). 3: 163–190.Google Scholar
  63. Towbin, H., T. Staehelin and J. Gordon. 1979. Electrophoretic transfer of proteins from Polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Sci. USA 76: 4350–4354.CrossRefGoogle Scholar
  64. Vaitukaitis, J.L. 1981. Production of antisera with small doses of immunogen: Multiple intradermal injections. Methods in Enzymology. 73: 46–75.PubMedCrossRefGoogle Scholar
  65. von Caemmerer, S. and G.D. Farquhar. 1981. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153: 376–387.CrossRefGoogle Scholar
  66. Waaland, S.D. and B.A. Watson. 1980. Isolation of a cell-fusion hormone from Griffithsia pacifica Kylin, a red alga. Planta 149: 493–497.CrossRefGoogle Scholar
  67. Wittenbach, V.A., R.C. Ackerson, R.T. Giaquinta and R.R. Hebert. 1980. Changes in photosynthesis, ribulose bisphosphate carboxylase, proteolytic activity and ultrastructure of soybean leaves during senescence. Crop Sci. 20: 225–231.CrossRefGoogle Scholar
  68. Yentsch, C.M., P.K. Horan, K. Muirhead, Q. Dortch, E. Haugen, L. Legendre, L.S. Murphy, M.J. Perry, D.A. Phinney, S.A. Pomponi, R.W. Spinrad, M. Wood, C.S. Yentsch and B.J. Zahuranec. 1983. Flow cytometry and cell sorting: a technique for analysis and sorting of aquatic particles. Limnol. Oceanog. 28: 1275–1280.CrossRefGoogle Scholar
  69. Yentsch, C.M., T.L. Cucci and D. A. Phinney. 1984. Flow cytometry and cell sorting: problems and promises for biological ocean science research. IN: Marine Phytoplankton and Productivity. Holm-Hansen, O., L. Bolis and R. Gilles, (eds.). Springer-Verlag, Berlin.Google Scholar
  70. Yentsch, C.M. and C.S. Yentsch. 1984. Emergence of optical instrumentation for measuring biological properties. Oceanogr. Mar. Biol. Ann. Rev. 22: 55–98.Google Scholar
  71. Zemel, E. and S. Gepstein. 1985. Immunological evidence for the presence of ribulose bisphosphate carboxylase in guard cells chloroplasts. Plant. Physiol. 78: 586–590PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1988

Authors and Affiliations

  • M. V. Orellana
    • 1
  • M. J. Perry
    • 1
  • B. A. Watson
    • 1
  1. 1.School of Oceanography and Department of BotanyUniversity of WashingtonSeattleUSA

Personalised recommendations