Identification of Marine Chroococcoid Cyanobacteria by Immunofluorescence

  • Lisa Campbell
Part of the Lecture Notes on Coastal and Estuarine Studies book series (COASTAL, volume 25)


Cyanobacteria are a diverse group of photosynthetic prokaryotes that are widely distributed in terrestrial and aquatic environments. The two major groups of cyanobacteria in the marine plankton are filamentous Oscillatoria spp. (formerly Trichodesmium) and unicellular strains of the genera Synechococcus and Synechocystis. Because of their small size (mean diameter, 1 urn), for many years the unicellular forms were overlooked in oceanographic studies. Early work by van Baalen (1962) resulted in the isolation of many species of benthic phycocyanin-containing (PC) forms now assigned to the genus Synechococcus. The first oceanic phycoerythrin-containing (PE) Synechococcus clone was isolated by Guillard in 1965, but the importance of this group was not realized at that time.


Marine Cyanobacterium Offshore Station Woods Hole Oceanographic Institution Oceanic Sample Synechocystis Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alberte, R.S., A.M. Wood, T.A. Kursar and R.R.L. Guillard. 1984. Novel phycoerythrins in marine Synechococcus spp.: characterization and evolutionary and ecological implications. Plant Physiol. 75: 732–739.PubMedCrossRefGoogle Scholar
  2. Barlow, R.G. and R.S. Alberte. 1985. Photosynthetic characteristics of phycoerythrin-containing marine Synechococcus spp. I. Responses to growth photon flux density. Mar. Biol. 86: 63–74.CrossRefGoogle Scholar
  3. Bohlool, B.B. and E.L. Schmidt. 1980. The immunofluorescence approach in microbial ecology. IN: Advances in Microbial Ecology. M. Alexander (ed.). 4: 203–241.Google Scholar
  4. Campbell, D.H., J.S. Garvey, N.E. Cremer and D.H. Sussdorf. 1964. Methods in immunology. W.A. Benjamin, Inc. NY. pp. 22–23.Google Scholar
  5. Campbell, D.H., J.S. Garvey, N.E. Cremer and D.H. Sussdorf. 1964. Methods in immunology. W.A. Benjamin, Inc. NY. pp. 41–42.Google Scholar
  6. Campbell, L. 1985. Investigations of marine, phycoerythrin-containing Synechococcus spp. (Cyanobacteria): Distribution of serogroups and growth rate measurements. 186 pp. Ph.D. Dissertation, State University of New York, Stony Brook, NY.Google Scholar
  7. Campbell, L. and E.J. Carpenter. 1986. Characterization of phycoerythrin-containing Synechococcus populations by immunofluorescence. submitted.Google Scholar
  8. Campbell, L., E.J. Carpenter and V.J. Iacono. 1983. Identification and enumeration of marine Chroococcoid cyanobacteria by immunofluorescence. Appl. Environ. Microbiol. 46: 553–559.PubMedGoogle Scholar
  9. deMacario, E.C., M.J. Wolin and A.J.L. Macario. 1981. Immunology of Archaebacteria that produce methane gas. Science 214: 74–75.CrossRefGoogle Scholar
  10. Fliermans, C.B. and E.L. Schmidt. 1977. Immunofluorescence for autecological study of a unicellular bluegreen alga. J. Phycol. 13: 364–368.Google Scholar
  11. Glover, H.E. 1985. The physiology and ecology of the marine cyanobacterial genus Synechococcus. IN: Advances in aquatic microbiology. H.W. Jannasch and P.J. LeB Williams (eds.). Academic Press, NY. 4: 49–107.Google Scholar
  12. Glover, H.E., L. Campbell and B. Prezelin. 1986. Contribution of Synechococcus spp. to size-fractioned primary productivity in three water masses in the Northwest Atlantic. Mar. Biol. 91: 193–203.CrossRefGoogle Scholar
  13. Guillard, R.R.L. and J.H. Ryther. 1962. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8: 229–239.CrossRefGoogle Scholar
  14. Johnson, P.W. and J. McN. Sieburth. 1979. Chroococcoid cyanobacteria in the sea: A ubiquitous and diverse phototrophic biomass. Limnol. Oceanogr. 24: 928–935.CrossRefGoogle Scholar
  15. Kilpatrick, K.A. 1985. The development of a method to measure marine cyanobacterial phycoerythrin extracted in solvents. M.S. thesis, Texas A & M University. 74 pp.Google Scholar
  16. Kursar, T.A., H. Swift and R.S. Alberte. 1981. Morphology of a novel cyanobacterium and characterization of light-harvesting complexes from it: implications for phycobiliprotein evolution. Proc. Natl. Acad. Sci. USA. 78 (11): 6888–6892.PubMedCrossRefGoogle Scholar
  17. Murphy, L.S. and E. Haugen. 1985. The distribution and abundance of phototrophic ultraplankton in the North Atlantic. Limnol. Oceanogr. 30: 47–58.CrossRefGoogle Scholar
  18. Ong, L.J., A.N. Glazer and J.B. Waterbury. 1984. An unusual phycoerythrin from a marine cyanobacterium. Science. 224: 80–82.PubMedCrossRefGoogle Scholar
  19. Ouchterlony, O. and L.A. Nilsson. 1978. Immunodiffusion and Immunoelectrophoresis. IN: Handbook of Experimental Immunology. D.M. Weir (ed.). Oxford, Blackwell Scientific Publications. 3: 38.Google Scholar
  20. Perkins F.O., L.W. Haas, D.E. Phillips and K.L. Webb. 1981. Ultrastructure of a marine Synechococcus possessing spinae. Can. J. Microbiol. 27: 318–329.PubMedCrossRefGoogle Scholar
  21. Rantz, L.A. and E. Randall. 1955. Use of autoclaved extract of hemolytic Streptococci for serological grouping. Stanford Med. Bull. 13: 290–291.PubMedGoogle Scholar
  22. Rippka, R., J. Deruelles, J.B. Waterbury, M. Herdman, R.Y. Stanier. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111: 1–61.Google Scholar
  23. Sarokin, D.J. and E.J. Carpenter. 1981. Cyanobacterial spinae. Bot. Mar. 24: 389–392.CrossRefGoogle Scholar
  24. Smith, A.D. 1982. Immunofluorescence of sulphate-reducing bacteria. Arch. Microbiol. 133: 118–121.CrossRefGoogle Scholar
  25. Taubman, M. A. and D.J. Smith. 1974. Effects of local immunization with Streptococcus mutans on induction of salivary IgA antibody and experimental dental caries in rats. Infect. Immunity 9: 1079–1091.Google Scholar
  26. Ward, B.B. 1982. Oceanic distribution of ammonium-oxidizing bacteria determined by immunofluorescent assay. J. Mar. Res. 40: 1155–1172.Google Scholar
  27. van Baalen, C. 1962. Studies on marine blue-green algae. Bot. Mar. 3: 129–139.CrossRefGoogle Scholar
  28. Waterbury, J.B., S.W. Watson, R.R.L. Guillard and L.E. Brand. 1979. Wide-spread occurrence of a unicellular, marine, planktonic cyanobacterium. Nature 277: 293–294.CrossRefGoogle Scholar
  29. Waterbury, J.B., S.W. Watson, F.W. Valois and D.G. Franks. 1986. Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus. IN: Physiological Ecology of Picoplankton. T. Platt and W. Li (eds.).Google Scholar
  30. Waterbury, J.B., S.W. Watson, F.W. Valois and D.G. Franks. 1986. Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus. C.J.Fish. Aqua. Sci. 214: in press.Google Scholar
  31. Waterbury, J.B., J.M. Willey, D.G. Franks, F.W. Valois and S.W. Watson. 1985. A cyanobacterium capable of swimming motility. Science 230: 74–76.PubMedCrossRefGoogle Scholar
  32. Wetherell, J.R., Jr. and A.S. Bleiweiss. 1975. Antigens of Streptococcus mutans: Characterization of a polysaccharide antigen from walls of strain G5–5. Infect. Immun. 12: 1341–1348.PubMedGoogle Scholar
  33. Wood, A.M. 1982. Occurrence and ecological significance of different pigment types of marine Synechococcus. EOS 63: 960.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1988

Authors and Affiliations

  • Lisa Campbell
    • 1
  1. 1.Department of OceanographyUniversity of Hawaii, ManoaHonoluluUSA

Personalised recommendations