Dielectric Spectroscopy in Collagen

  • Marie-Françoise Harmand
  • Alain Lamure
  • Najia Hitmi
  • Colette Lacabanne
Part of the NATO ASI Series book series (NSSA, volume 93)


A lot of interest has been devoted to the study of the physical properties of collagen1,3. Nevertheless, because of different experimental conditions (temperature, frequency….) a significant discrepancy of data has been observed. Their interpretation, at the molecular level, remains speculative.


Glass Transition Triple Helix Compensation Temperature Relaxation Mode External Applied Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Brodsky and E. F. Eikenberry, Characterization of fibrous forms of collagen, in: “Methods in Enzymology,” L. W. Cumingham, and D. W. Frederiksen, ed., Acad. Press, New York (1982).Google Scholar
  2. 2.
    D. A. Torchia, Solid state NMR studies of molecular motion in collagen fibrils, in: “Methods in Enzymology,” L. W. Cumingham, and D. W. Frederiksen, ed., Acad. Press, New York (1982).Google Scholar
  3. 3.
    A. Veis, Characterization of soluble collagens by physical techniques, in: “Methods in Enzymology,” L. W. Cumingham, and D. W. Frederiksen, ed., Acad. Press, New York (1982).Google Scholar
  4. 4.
    E. Marchai and C. Lacabanne, Dielectric aspects of biological materials, in: “Digest of litterature on dielectrics,” A. Yelon and M. R. Wertheimer, ed., NAS4I (1977).Google Scholar
  5. 5.
    J. Guillet, G. Seytre, D. Chatain, C. Lacabanne, and J. C. Monpajens, TSH and dielectric study of multiple relaxations in Poly-L-Proline, J. Polym. Sci., 541 (1977).Google Scholar
  6. 6.
    A. Lamure, N Hitmi, M.-F. Harmand, E. Maurel, M.-Th. Pieraggi, and C. Lacabanne, Etude des mouvements moléculaires dans les tissus calcifiés par les techniques thermostimulées, ITBM, 4:308 (1983).Google Scholar
  7. 7.
    N. Hitmi, Etude des transitions dans les composantes minérale et organique des tissus calcifiés par spectroscopie diélectrique basse fréquence, PhD Thesis, Toulouse Univ. (1983).Google Scholar
  8. 8.
    C. A. J. Hoeve, and A. S. Taba, The structure of water absorbed in collagen, J. Phys. Chem., 82:1660 (1978).CrossRefGoogle Scholar
  9. 9.
    J. Guillet, Etude du comportement électrique de la Poly-L-Proline II selon les états d’hydratation, PhD Thesis, Toulouse Univ. (1975).Google Scholar
  10. 10.
    S. Nomura, A. Hiltner, J.B. Lando, and E. Baer, Interaction of water with native collagen, Biopolymers, 16:231 (1977).CrossRefGoogle Scholar
  11. 11.
    M. H. Pineri, M. Escoubes, and G. Roche, Water-collagen inter-action calorimetric and mechanical experiments, Biopolymers, 17:2799 (1978).CrossRefGoogle Scholar
  12. 12.
    G. A. Gordon, Glass transitions in nylons, J. Polym. Sci. Az., 9:1693 (1971).Google Scholar
  13. 13.
    I. V. Yamas, Collagen and gelatin in the solid state, J. Macromol. Sci. Revs. Macromol. Chem. C7, 1:49 (1972).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Marie-Françoise Harmand
    • 1
  • Alain Lamure
    • 2
  • Najia Hitmi
    • 2
  • Colette Lacabanne
    • 2
  1. 1.INSERM-SC 31Université de Bordeaux IIBordeaux CedexFrance
  2. 2.Laboratoire de Physique des Solides, C.N.R.S. LA 74Université Paul SabatierToulouse CedexFrance

Personalised recommendations