The Collagen of the Echinodermata

  • Allen J. Bailey
Part of the NATO ASI Series book series (NSSA, volume 93)


The present-day members of the phylum Echinodermata appear to be very distinct from other phyla, although it is generally considered that they form a link to the chordates.


Collagen Fibre Amino Acid Composition Collagen Fibril Body Wall Coelomic Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashhurst, D.E. and Bailey, A.J., 1980, Locust collagen: morphological and biochemical characterisation, Eur. J. Biochem., 103:75.CrossRefGoogle Scholar
  2. Astbury, W.T., 1939, X-ray studies on the structure of compounds of biological interest, Ann. Rev. Biochem., 8:113.CrossRefGoogle Scholar
  3. Baccetti, B., 1967, High resolutions on collagen of Echinodermata, Monitore Zool. Ital., 1:201.Google Scholar
  4. Bailey, A.J., 1968, The nature of collagen, in: “Comprehensive Biochemistry”, Vol.26B, M. Florkin and E.H. Stotz, eds., Elsevier Publ. Co., Amsterdam.Google Scholar
  5. Bailey, A.J., 1971, Comparative studies on the nature of the crosslinks stabilising the collagen fibres of invertebrates, cyclo-stomes and elasmobranchs, FEBS Lett., 18:154.CrossRefGoogle Scholar
  6. Bailey, A.J., Gathercole, L.J., Dlugosz, J., Keller, A. and Voyle, C.A., 1982, Proposed resolution of the paradox of extensive crosslinking and low tensile strength of cuvierian tubule collagen of the sea cucumber Holothuria forskali, Int. J. Biol. Macromol., 4:329.CrossRefGoogle Scholar
  7. Bailey, A.J., Robins, S.P. and Balian, G., 1974, The biological significance of crosslinks in collagen, Nature, 251:105.ADSCrossRefGoogle Scholar
  8. Bear, R.S., 1952, The structure of collagen fibrils, Adv. Protein Chem., 7:69.CrossRefGoogle Scholar
  9. Berg, R.A., Kishida, Y., Kobayashi, Y., Inouye, K., Tonelli, A.E., Sakakibara, S. and Prockop, D.J., 1973, A model for the triple-helical structure of (Pro-Hyp-Gly)io involving a cis peptide bond and inter-chain hydrogen-bonding to the hydroxy group of hydroxyproline, Biochim. Biophys. Acta, 328:553.Google Scholar
  10. Chatfield, D. and Collins, A.J., 1980, “Introduction to Multivariate Analysis”, Chapman and Hall, London.MATHGoogle Scholar
  11. Currey, J.D. and Nichols, D., 1967, Absence of organic phase in echinoderm calcite, Nature, 214:81.ADSCrossRefGoogle Scholar
  12. Dlugosz, J., Gathercole, L.J. and Keller, A., 1979, Cholesteric analogue packing of collagen fibrils in the cuvierian tubules, Micron, 10:81.Google Scholar
  13. Emson, R.H. and Wilkie, I.C., 1980, Fission and autotomy in echinoderms, Oceanogr. Mar. Biol. Ann. Rev., 18:155.Google Scholar
  14. Eylers, J., 1977, Aspects of skeletal mechanics of the starfish, J. Morph., 149:353.CrossRefGoogle Scholar
  15. Eyre, D.R. and Glimcher, M.J, 1971, Comparative biochemistry of collagen crosslinks. Reducible bonds in invertebrate collagen, Biochim. Biophys. Acta, 243:528.Google Scholar
  16. Eyre, D.R. and Glimcher, M.J., 1973, Evidence for glycosylated crosslinks in body wall collagen of the sea cucumber, Proc. Soc. Expt. Biol. Med., 144:400.Google Scholar
  17. Fell, H.B., 1948, Echinoderm embryology and the origins of chordates, Biol. Rev., 23:81.CrossRefGoogle Scholar
  18. Freinkel, W.D. and Hepburn, H.R., 1975, Dermal stiffness and collagen crosslinking in a sea cucumber, South African J. Sci., 71:280.Google Scholar
  19. Gathercole, L.J., Bailey, A.J., Dlugosz, J. and Keller, A., 1980, The cuvierian tubules of Holothuria; design for successful failure in a collagenous system, in: “Mechanical Properties of Biological Materials”, J.F.V. Vincent and J.D. Currey, eds., Cambridge University Press, Cambridge.Google Scholar
  20. Gustavson, K.H., 1956, ed., in: “The Chemistry and Reactivity of Collagens”, Academic Press, New York, pp.224–225.Google Scholar
  21. Hidaka, M., 1983, Effects of certain physico-chemical agents on the mechanical properties of the catch apparatus of the sea-urchin spine, J. Exp. Biol., 103:15.Google Scholar
  22. Hidaka, M. and Takahashi, K., 1983, Fine structure and mechanical properties of the catch apparatus of the sea-urchin spine, a collagenous connective tissue with muscle-like holding capacity, J. Exp. Biol., 103:1.Google Scholar
  23. Hyman, L.H., 1955, “The Invertebrates. Echinodermata, the Coelomate Bilateria”, McGraw-Hill, New York.Google Scholar
  24. Isemura, M. and Ikenaka, T., 1977, Collagen glycopeptides from the sea-cucumber, Experientia, 33:871.CrossRefGoogle Scholar
  25. Isemura, M., Zahn, K. and Schmid, K., 1973, A new neuraminic acid derivative of three types of glycopeptides isolated from cuvierian tubules, Biochem. J., 131:509.Google Scholar
  26. Junqueira, L.C.U., Montes, G.S., Mourao, P.A.S., Carneiro, J., Salles, L.M.M. and Bonetti, S.S., 1980, Collagen-proteoglycan interactions during autotomy in the sea cucumber, Rev. Can. Biol., 39:157.Google Scholar
  27. Katzman, R.L., Bhattacharyya, A.K. and Jeanloz, R.W., 1969, The amino acid and carbohydrate composition of the collagen from Thyone Briareus, Biochim. Biophys. Acta, 184:523.CrossRefGoogle Scholar
  28. Klein, L. and Currey, J.D., 1970, Echinoid skeleton, absence of a collagenous matrix, Science, 169:1209.ADSCrossRefGoogle Scholar
  29. Kulonen, E. and Pikkarainen, J., 1970, Comparative studies on the chemistry and chain structure of collagen, in: “Chemistry and Molecular Biology of the Intercellular Matrix”, Vol.1, E.A. Balazs, ed., Academic Press, New York.Google Scholar
  30. Markel, K., 1970, Tooth skeleton of Echinometra mathaei, Annot. Zool. Jap., 43:188.Google Scholar
  31. Matsumura, T., 1972, Relationship between amino acid composition and differentiation of collagen, Int. J. Biochem., 3:265.CrossRefGoogle Scholar
  32. Matsumura, T., 1973, Shape, size and amino acid composition of collagen fibres of the starfish, Comp. Biochem. Physiol., 44B:1197.Google Scholar
  33. Matsumura, T., 1974, Collagen fibrils of the sea cucumber, Connect. Tiss. Res., 2:117.CrossRefGoogle Scholar
  34. Matsumura, T., Hazegawa, M. and Shigei, M., 1979, Collagen biochemistry and phylogeny of echinoderms, Comp. Biochem. Physiol., 62B:101.Google Scholar
  35. Matsumura, T., Shinmei, M. and Nagai, Y., 1973, Disaggregation of connective tissue. Preparation of fibrous components from sea cucumber body wall and calf skin, J. Biochem., 73:155.Google Scholar
  36. Minafra, S., Pucci-Minafra, I., Casano, C. and Gianguzza, F., 1975, Chromatographic characterisation of soluble collagen in sea urchin embryos, Bull. Zool., 42:205.CrossRefGoogle Scholar
  37. Motokawa, T., 1981, The stiffness change of the holothurian dermis caused by chemical and electrical stimulation, Comp. Biochem. Physiol., 70C:41.Google Scholar
  38. Motokawa, T., 1982, Factors regulating the mechanical properties of holothurian dermis, J. Exp. Biol., 99:29.Google Scholar
  39. Motokawa, T. and Takahashi, K., 1978, Structure and function of the central ligament of Diadema spine, Zool. Mag., 87:424.Google Scholar
  40. Muller, W.E.G., Zahn, R.K. and Schmid, K., 1972, The adhesive behaviour in cuvierian tubules of the Holothuria forskali, Cytobiologie, 5:335.Google Scholar
  41. Nichols, D., 1962, “Echinoderms”, Hutchinson & Co., London.Google Scholar
  42. Nordwig, A., Nowack, H. and Hieberg-Rogall, E., 1973, Sea-anemone collagen: further evidence for the existence of only one α-chain type, J. Molec. Evol., 2:175.CrossRefGoogle Scholar
  43. Piez, K.A. and Gross, J., 1959, The amino acid composition and morphology of some invertebrate and vertebrate collagens, Biochim. Biophys. Acta, 34:24.CrossRefGoogle Scholar
  44. Pikkarainen, J., Rantanen, J., Vastamaki, M., Lampiaho, K., Kari, A. and Kulonen, E., 1968, On collagens of invertebrates with special reference to Mytilus edulis, Eur. J. Biochem., 4:555.CrossRefGoogle Scholar
  45. Pucci-Minafra, I., Galante, R. and Minafra, S., 1978, Identification of collagen in the Aristotles Lantern of Paracentrotus lividus, J. Submicr. Cytol., 10:53.Google Scholar
  46. Pucci-Minafra, I., Minafra, S., Gianguzza, F. and Casano, C., 1975, Amino acid composition of collagen extracted from spicules of sea-urchin embryos, Bull. Zool., 42:201.CrossRefGoogle Scholar
  47. Ramachandran, G.N., Bansal, M. and Bhatnagar, R.S., 1973, A hypothesis on the role of hydroxyproline in stabilizing collagen structure, Biochim. Biophys. Acta, 322:166.Google Scholar
  48. Rao, N.V. and Harrington, W.F., 1966, Relationship between the positioning of pyrrolidine residues and the stability of collagen, J. Mol. Biol., 21:577.CrossRefGoogle Scholar
  49. Smith, D.S., Wainwright, S.A., Baker, J. and Cayer, M.L., 1981, Structure features associated with movement and ‘catch’ of sea-urchin spines, Tissue and Cell, 13:299.CrossRefGoogle Scholar
  50. Smith, G.N. and Greenberg, M. J., 1973, Chemical control of the evisceration process in Thyone Brareus, Biol. Bull., 144:421.CrossRefGoogle Scholar
  51. Stott, R.S.H., Hepburn, H.R., Joffe, I. and Heffron, J.A., 1974, The mechanical defensive mechanism of a sea cucumber, South African J. Sci., 70:46.Google Scholar
  52. Takahashi, K., 1967, The catch apparatus of the sea-urchin spine. III. Responses to stimuli, J. Facul. Sci. Univ. Tokyo, IV, 11:121.Google Scholar
  53. Travis, D., Francois, C.J., Bonar, L.C. and Glimcher, M.J., 1967, Comparative studies of the organic matrices of invertebrate mineralised tissues, J. Ultrastruct. Res., 18:519.CrossRefGoogle Scholar
  54. Watson, M.R. and Sylvester, N.R., 1959, Studies of invertebrate collagen preparations, Biochem. J., 71:578.Google Scholar
  55. Wilkie, I.C., 1978a, Arm autotomy in brittle-stars, J. Zool. Lond., 186:311.CrossRefGoogle Scholar
  56. Wilkie, I.C., 1978b, Nervously mediated change in the mechanical properties of a brittle-star ligament, Mor. Behav. Physiol., 5:289.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Allen J. Bailey
    • 1
  1. 1.AFRC Meat Research InstituteBristolUK

Personalised recommendations