Long Pitch Helices in Invertebrate Collagens

  • Françoise Gaill
  • Yves Bouligand
Part of the NATO ASI Series book series (NSSA, volume 93)


There are several helicoidal levels in the molecular structure of collagen. The α-chains form left-handed helices wrapped around each other into a super triple helix, which is right-handed. The helical pitches are measured in Angstroms. Other helicoidal orders are observed in the crystalline packing of these triple helices. Our purpose is to consider helicoidal bundles of collagen fibrils, recognizable microscopically (electron or light microscopy), showing therefore much larger helicoidal pitches, such as 0.1 μm or more. Examples are found in numerous invertebrate extracellular matrices. We also intend to analyze geometrical aspects of these systems and to show the close relationship linking these long pitch helices to certain liquid crystalline architectures. The cuticle of certain marine worms will be considered as an example and a general discussion will be introduced about the origin of such helices.


Collagen Fibril Tangential Section Cholesteric Liquid Crystal Helical Pitch Pitch Helix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Gaill, Superhelicoidal structures in the cuticle of some annelids, Biol. of the Cell 49:27a (1983).Google Scholar
  2. 2.
    J.E. Harris, and H.D. Crofton, Structure and function in the nematodes: internal pressure and cuticular structure in Ascaris, J. Exp. Biol. 34:116 (1957).Google Scholar
  3. 3.
    L.E.R. Picken, “The organization of cells and other organisms,” Clarendon Press, Oxford (1960).Google Scholar
  4. 4.
    Y. Bouligand, Liquid Crystalline Order in Biological Materials, in: “Liquid Crystalline Order in Polymers,” Academic Press, New York (1978).Google Scholar
  5. 5.
    F. Livolant, and Y. Bouligand, New Observations on the Twisted Arrangement of Dinoflagellate Chromosomes, Chromo soma 68:21 (1978).Google Scholar
  6. 6.
    D.L. Lee, The ultrastructure of adult female Mermis nigrescens (Nematoda), J. Zool. Lond. 161:513 (1970).CrossRefGoogle Scholar
  7. 7.
    A.M. Shepherd, S.A. Clark, and P.J. Dart, Cuticle structure in the genus Heteroda, Nematologica 18:1 (1972).CrossRefGoogle Scholar
  8. 8.
    E. Anderson, and E. Huebner, Development of the oocyte and its accessory cells of the polychaete Diopatra cuprae (Bosc), J. Morphol. 126:163 (1968).CrossRefGoogle Scholar
  9. 9.
    J.M. Bassot, Une forme microtubulaire et paracristalline de réticulum endoplasmique dans les photocytes des Annélides Polynoinae, J. Cell Biol. 31:135 (1966).CrossRefGoogle Scholar
  10. 10.
    Y. Bouligand, Recherches sur les textures des états mésomorphes. 5. Noyaux, fils et rubans de Moebius dans les nématiques et les cholestériques peu torsadés, J. Physique 35:215 (1974).CrossRefGoogle Scholar
  11. 11.
    R. Garrone, J. Vacelet, M. Pavans de Ceccatty, S. Junqua, L. Robert, and A. Huc, Une formation collagène particulière: les filaments des Eponges Cornées Ircinia. Etude ultrastructurale, physicochimique, J. Microscopie 17:241 (1973).Google Scholar
  12. 12.
    P.J. Flory, On the Morphology of the Crystalline State in Polymers, J. Amer. Chem. Soc. 84:2857 (1962).CrossRefGoogle Scholar
  13. 13.
    C. Robinson, The cholesteric phase in polypeptide solutions and biological structures, Molecular Crystals 1:467 (1966).CrossRefGoogle Scholar
  14. 14.
    J.P. Sethna, Frustration and Curvature: Glasses and the Cholesteric Blue Phase, Phys. Rev. Let. 51:2198 (1983).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Françoise Gaill
    • 1
  • Yves Bouligand
    • 1
  1. 1.EPHE CNRSIvry/SeineFrance

Personalised recommendations