Sponge Gemmule Coats: Germanium(Ge) Modification of a Collagenous Structure

  • T. L. Simpson
  • P-F. Langenbruch
  • R. Garrone
Part of the NATO ASI Series book series (NSSA, volume 93)


A few marine sponges and many freshwater species asexually develop small, dormant, reproductive, seed-like structures called gemmules which are bordered by a complex collagenous capsule, the gemmule coat (1). The morphogenesis of the coat includes a highly regular set of processes which provide an exceptional but rarely appreciated, model for investigating collagen secretion (2). Gemmule coats can act as barriers for the prevention of water loss from the internal cells and their differential permeability may provide the primary basis for dormancy regulation (3,4). Gemmule coats contain oriented silica structures embedded within them and thus morphologically suggest a possible relationship of silicon (Si) to collagen formation. Such has been demonstrated among vertebrates in which soluble forms of Si appear essential for normal collagen elaboration (5). Investigations which exclude Si from the experimental system are notoriously difficult to conduct and thus a related element, germanium (Ge), which can act either as a Si analogue (at low concentration) or as a competitive inhibitor of Si (at higher concentration), has been introduced as a tool for studying Si interactions and essentiality (6).


Collagen Fibril Marine Sponge Coat Layer Freshwater Sponge Coat Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. L. Simpson and P. E. Fell, Dormancy among the Porifera: Gemmule formation and germination in freshwater and marine sponges, Trans. Am. Micros. Soc. 93:544(1974).CrossRefGoogle Scholar
  2. 2.
    P-F. Langenbruch, Zur entstehung der gemmulae bei Ephydatiafluviatilis L.(Porifera), Zoomorph. 97:263(1981).CrossRefGoogle Scholar
  3. 3.
    T. L. Simpson, C. A. Vaccaro and R. I. Sha’afi, The role of intragemmular osmotic pressure in cell division and hatching of gemmules of the freshwater sponge Spongilla lacustris (Porifera), Z. Morph. Tiere 76:339(1973).CrossRefGoogle Scholar
  4. 4.
    T. L. Simpson, “The Cell Biology of Sponges,” Springer-Verlag, NY(1984).CrossRefGoogle Scholar
  5. 5.
    E. M. Carlisle, Silicon in bone formation, in: “Silicon and Siliceous Structures in Biological Systems,” T. L. Simpson and B. E. Volcani, eds, Springer-Verlag, NY(1981).Google Scholar
  6. 6.
    F. Azam and B. E. Volcani, Germanium-silicon interactions in bio logical systems, in: “Silicon and Siliceous Structures in Biological Systems,” T. L. Simpson and B. E. Volcani, eds, Springer-Verlag NY(1981).Google Scholar
  7. 7.
    L. De Vos, Etude ultrastructurale de la formation et de l’eclosion des gemmules d’Ephydatiafluviatilis, Thése, Université Libre de Bruxelles (1974).Google Scholar
  8. 8.
    J. L. Laseter and M. A. Poirrier, Free fatty acids in the protective coats of Spongilla wagneri gemmules, Lipids, 5:722 (1970).CrossRefGoogle Scholar
  9. 9.
    C. Jeniaux, “Chitine et Chitinolyse,” Masson, Paris(1963).Google Scholar
  10. 10.
    L. De Vos, Fibre géantes de collagène chez l’éponge Ephydatia fluviatilis, J. Micros. 15:247(1972).Google Scholar
  11. 11.
    D. Carrière, R. Connes and J. Paris, Ultrasturcture et nature chimique de la coque et du vitellus gemmulaires chez léponge marine: Suberites domuncula (Olivi) Nardo, C. R. Acad. Sci. Paris 278:1577(1980).Google Scholar
  12. 12.
    P-F. Langenbruch, Die entstehung der gemmula-schalen bei Spongilla fragilis Leidy (Porifera), Zoomorph. 99:221(1982).CrossRefGoogle Scholar
  13. 13.
    R. Connes and J-M. Artiges, Nature chimique, structure et biosynthese d l’enveloppe gemmulaire chez une demosponge marine, Arch. Zool. Exp. Gén. 121:213(1980).Google Scholar
  14. 14.
    L. De Vos, Morphogenesis of the collagenous shell of the gemmules of a fresh-water sponge Ephydatia fluviatilis, Arch. Biol. 88:479(1977).Google Scholar
  15. 15.
    P-F. Langenbruch, Vergleichende rasterelektronemikroskopische Darstellung der Gemmulaschalen von Ephydatiafluviatilis, E. muelleri und Spongillafragilis (Porifera), Zoomorph.104:79 (1984).CrossRefGoogle Scholar
  16. 16.
    J. Peetermans-Pé, L. De Vos and R. Rasmont, Reproduction asexuee de l’éponge siliceuse Ephydatiafluviatilis L. dans un milieu fortement apauvi rien silice, Vie Milieu 25:187(1975).Google Scholar
  17. 17.
    R. Garrone, “Phylogenesis of Connective Tissue. Morphological Aspects and Biosynthesis of Sponge Intercellular Matrix,” S. Karger, Basel(1978).Google Scholar
  18. 18.
    T. L. Simpson and P-F. Langenbruch, Effects of germanium on the morphogenesis of a complex silica structure and on the assembly of the collagenous gemmule coat in a freshwater sponge, Biol. Cell. 50:181 (1984).Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • T. L. Simpson
    • 1
    • 2
  • P-F. Langenbruch
    • 1
    • 2
  • R. Garrone
    • 1
    • 2
  1. 1.Laboratoire d’Histologie et Biologie TissulaireUniversité C. BernardVilleurbanneFrance
  2. 2.Zoologisches Institut der UniversitätBonnW. Germany

Personalised recommendations