Collagen Gene Structure

  • Helga Boedtker
  • Sirpa Aho
Part of the NATO ASI Series book series (NSSA, volume 93)


In the last two years, the known diversity of vertebrate collagens has increased dramatically. The number of different types of collagen has doubled, from five to more than nine composed of twenty or more genetically distinct polypeptide chains (1–10). As suggested by Kuhn and Timpl (11), these types can be grouped into families, based on their molecular and macromolecular structure.


Codon Usage Osteogenesis Imperfecta Silk Fibroin Collagen Gene Helical Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. J. Miller and S. Gay, Collagen: an overview, Methods Enzymol. 82:3–32 (1982).CrossRefGoogle Scholar
  2. 2.
    E. Odermatt, J. Risteli, V. van Delden and R. Timpl, Structural diversity and domain composition of a unique collagenous fragment (intima collagen) obtained from human placenta, Biochem. J. 211:295–303 (1983).Google Scholar
  3. 3.
    H. Furthmayr, H. Wiedemann, R. Timpl, E. Odermatt and J. Engel, Electron microscopical approach to a structural model of intima collagen, Biochem. J. 211:303–311 (1983).Google Scholar
  4. 4.
    H. Bentz, N. P. Morris, L. W. Murray, L. Y. Sakai, D. W. Hollister and R. E. Burgeson, Isolation and partial characterization of a new human collagen with an extended triplehelical structural domain, Proc. Natl. Acad. Sci. USA 80:3168–3172 (1983).ADSCrossRefGoogle Scholar
  5. 5.
    H. Sage, B. Trueb and P. Bornstein, Biosynthetic and structural properties of endothelial cell type VIII collagen, J. Biol. Chem. 258:13391–13401 (1983).Google Scholar
  6. 6.
    C. A. Reese, H. Wiedemann, K. Kuhn and R. Mayne, Characterization of a highly soluble collagenous molecule isolated from chicken hyaline cartilage, Biochem. 21:826–830 (1982).CrossRefGoogle Scholar
  7. 7.
    P. Bruckner, R. Mayne and L. Tuderman, p-HMW-collagen, a minor collagen obtained from chick embryo cartilage without proteolytic treatment of the tissue, Eur. J. Biochem. 136:333–339 (1983).CrossRefGoogle Scholar
  8. 8.
    K. von der Mark, M. van Menxel and H. Wiedemann, Isolation and characterization of a precursor form of M collagen from embryonic chick cartilage, Eur. J. Biochem. 138:629–33 (1984).CrossRefGoogle Scholar
  9. 9.
    G. J. Gibson, C. M. Kielty, C. Garner, S. L. Schor and M. E. Grant, Identification and partial characterization of three low molecular weight collagenous polypeptides synthesized by chondrocytes cultured within collagen gels in the absence and in the presence of fibronectin, Biochem. J. 211:417 (1983).Google Scholar
  10. 10.
    T. M. Schmid and T. T. Linsenmayer, A short chain (pro)collagen from aged endochondral chondrocytes, J. Biol. Chem. 258:9504–9509 (1983).Google Scholar
  11. 11.
    K. Kühn and R. Timpl, Collagen families — evolutionary adaptation of molecular and macromolecular structures to physiological function, in: “Abst. 1st International Symposium Biology of Invertebrate and Lower Vertebrate Collagens,” (1984).Google Scholar
  12. 12.
    A. Nordwig and U. Hayduk, Invertebrate collagens: isolation, characterization and phylogenetic aspects, J. Mol. Biol. 44: 161–172 (1969).CrossRefGoogle Scholar
  13. 13.
    J. Gross, The behavior of collagen units as a model in morphogenesis, J. Biophys. Biochem. Cytol. 2:261–274 (1956).CrossRefGoogle Scholar
  14. 14.
    J. H. Fessier, H. P. Bächinger, G. Lunstrum and L. I. Fessier, Biosynthesis and processing of some procollagens, in: “New Trends in Basement Membrane Research,” K. Kuhn, H. Schone and R. Timpl, ed., Raven Press, New York (1982).Google Scholar
  15. 15.
    V. Tate, M. Finer, H. Boedtker and P. Doty, Procollagen genes: further sequence studies and interspecies comparisons, Cold Spring Harbor Symp. Quant. Biol. 47:1039–1049 (1982).CrossRefGoogle Scholar
  16. 16.
    H. Boedtker, F. Fuller and V. Tate, The structure of collagen genes, Int. Rev. Conn. Tissue Res. 10:1–63 (1983).Google Scholar
  17. 17.
    H. Boedtker and S. Aho, Collagen gene structure: the paradox may be resolved, Biochemical Soc. Symp. 49, in press (1984).Google Scholar
  18. 18.
    C. D. Boyd, P. Tolstoshev, M. P. Schafer, B. C. Trapnell, H. C. Coon, P. J. Kretschmer, A. W. Nienhuis and R. C. Crystal, Isolation and characterization of a 15 kb genomic sequence coding for part of the pro α2 chain of sheep type I collagen, J. Biol. Chem. 255:3212–3220 (1980).Google Scholar
  19. 19.
    G. Vogeli, V. E. Awedimento, M. Sullivan, J. V. Maizel, Jr., G. Lozano, S. L. Adams, I. Pastan and B. de Crombrugghe, Isolation and characterization of genomic DNA coding for α2 type I collagen, Nucleic Acids Res. 8:1823–1837 (1980).CrossRefGoogle Scholar
  20. 20.
    G. Vogeli, H. Ohkubo, V. E. Awedimento, M. Sullivan, Y. Yamada, M. Mudryj, I. Pastan and B. de Crombrugghe, A repetitive structure in the chick α2 collagen gene, Cold Spring Harbor Symp. Quant. Biol. 45:777–783 (1980).CrossRefGoogle Scholar
  21. 21.
    H. Ohkubo, G. Vogeli, M. Mudryj, V. E. Awedimento, M. Sullivan, I. Pastan and B. de Crombrugghe, Isolation and characterization of overlapping genomic clones covering the chicken α2 (type I) collagen gene, Proc. Natl. Acad. Sci. USA 77:7059–7063 (1980).ADSCrossRefGoogle Scholar
  22. 22.
    Y. Yamada, V. E. Awedimento, M. Mudryj, H. Ohkubo, G. Vogeli, M. Irani, I. Pastan and B. de Crombrugghe, The collagen gene: evidence for its evolutionary assembly by amplification of a DNA segment containing an exon of 54 bp, Cell 22:887 (1980).CrossRefGoogle Scholar
  23. 23.
    J. Wozney, D. Hanahan, R. Morimoto, H. Boedtker and P. Doty, Fine structural analysis of the chicken pro α2 collagen gene, Proc. Natl. Acad. Sci. USA 78:712–716 (1981).ADSCrossRefGoogle Scholar
  24. 24.
    J. Wozney, D. Hanahan, V. Tate, H. Boedtker and P. Doty, Structure of the pro α2(I) collagen gene, Nature (London) 294:129–135 (1981).ADSCrossRefGoogle Scholar
  25. 25.
    J. Wozney and H. Boedtker, Structure of the triple helical coding region of the pro α2(I) collagen gene, in: “New Trends in Basement Membrane Research,” K. Kuhn, H. Schoene and R. Timpl, ed., Raven Press, New York (1982).Google Scholar
  26. 26.
    V. Tate, M. Finer, H. Boedtker and P. Doty, Chick pro α2(I) collagen gene: exon location and coding potential for the prepropeptide, Nucleic Acids Res. 11:91–104 (1983).CrossRefGoogle Scholar
  27. 27.
    S. Aho, V. Tate and H. Boedtker, Multiple 3′ ends of the chicken pro α2(I) collagen gene, Nucleic Acids Res. 11:5443 (1983).CrossRefGoogle Scholar
  28. 28.
    S. Aho, V. Tate and H. Boedtker, Location of the 11 bp exon in the chicken pro α2(I) collagen gene, Nucleic Acids Res., in press (1984).Google Scholar
  29. 29.
    S. Aho, F. Fuller and H. Boedtker, manuscript in preparation. (1984).Google Scholar
  30. 30.
    L. Dickson, Y. Ninomiyo, M. Bernard, J. Parsons, G. Green, P. Fietzek, B. de Crombrugghe and B. Olsen, The exon/intron structure of the 3′ region of the pro α2(I) collagen gene, J. Biol. Chem. 256:8407–8415 (1981).Google Scholar
  31. 31.
    K. Harbers, M. Kuehn, H. Delius and R. Jaenisch, Insertion of retrovirus into the first intron of α1(I) collagen gene leads to embryonic lethal mutation in mice, Proc. Natl. Acad. Sci. USA 81:1504–1508 (1984).ADSCrossRefGoogle Scholar
  32. 32.
    M. Chu, W. deWet, M. Bernard, J. E. Ding, M. Morabito, J. Myers, C. Williams and F. Ramirez, Structure of the human pro α1(I) collagen gene: evolutionary conservation of functional domains, Nature 310:337–340 (1984).ADSCrossRefGoogle Scholar
  33. 33.
    R. Breathnach, C. Benoist, K. O’Hare, F. Gannon and P. Chambon, Ovalbumin gene: evidence for a leader sequence in mRNA and DNA sequences at the exon-intron boundaries, Proc. Natl. Acad. Sci. USA 75:4853–4857 (1978).ADSCrossRefGoogle Scholar
  34. 34.
    V. Rogers and R. Wall, A mechanism for RNA splicing, Proc. Natl. Acad. Sci. USA 77:1877–1879 (1980).ADSCrossRefGoogle Scholar
  35. 35.
    M. R. Lerner, J. A. Boyle, S. M. Mount, S. L. Wollin and J. A. Steitz, Are snRNP’s involved in splicing?, Nature 283:220 (1980).ADSCrossRefGoogle Scholar
  36. 36.
    R. A. Padgett, S. M. Mount, J. A. Steitz and P. A. Sharp, Splicing of messenger RNA precursors is inhibited by antisera to small nuclear ribonucleoprotein, Cell 35:101–107 (1983).CrossRefGoogle Scholar
  37. 37.
    I. Kato, W. J. Kohr and M. J. Laskowski, in: “Proceedings of the 11th FEBS Meeting” 47, S. Magnuson, M. Ottesen, B. Taltman, K. Dano and H. Neurath, eds., New York, Pergamon Press (1978).Google Scholar
  38. 38.
    J. P. Stein, J. F. Catterall, P. Kristo, A. R. Means and B. W. O’Malley, Ovomucoid intervening sequences specify functional domains and generate protein polymorphism, Cell 21:681 (1980).CrossRefGoogle Scholar
  39. 39.
    F. Fuller, Determination and comparative analyses of two collagen mRNA and propeptide sequences, Ph.D. Dissertation, Harvard University, Cambridge, Massachusetts (1981).Google Scholar
  40. 40.
    Jeanne Myers, personal communication.Google Scholar
  41. 41.
    L. A. Dickson, T. Pihlajaniemi, S. Deak, F. M. Pope, A. Nicholls, D. J. Prockop and J. C. Myers, Nuclease S1 mapping of a homozygous mutation in the carboxy-propeptide coding region of the pro α2(I) collagen gene in a patient with osteogenesis imperfecta, Proc. Natl. Acad. Sci. USA, in press (1984).Google Scholar
  42. 42.
    C. Montell, E. F. Fisher, M. H. Caruthers and A. J. Berk, Inhibition of RNA cleavage but not polyadenylation by a point mutation in mRNA 3′ consensus sequence AAUAAA, Nature 305: 600–605 (1983).ADSCrossRefGoogle Scholar
  43. 43.
    Francesco Ramirez, personal communication.Google Scholar
  44. 44.
    J. C. Myers, L. A. Dickson, W. J. deWet, M. P. Bernard, M. DiLiberto, G. Pepe, F. O. Sangiorgi and F. Ramirez, Analysis of the 3′ end of the human pro α2(I) collagen gene, J. Biol. Chem. 258:10128–10135 (1983).Google Scholar
  45. 45.
    L. J. Sandell, H. L. Prentice, D. Kravis and W. J. Upholt, Structure and sequence of the chicken type II procollagen gene, J. Biol. Chem. 259:7826–7834 (1984).Google Scholar
  46. 46.
    Z. E. Zehner and B. M. Paterson, Characterization of the chicken vimentin gene: single copy producing multiple mRNAs, Proc. Natl. Acad. Sci. USA 80:911–915 (1983).ADSCrossRefGoogle Scholar
  47. 47.
    J. R. Pames, R. R. Robinson and J. G. Seidman, Multiple mRNA species with distinct 3′ termini are transcribed from the β2-microglobulin gene, Nature 302:449–452 (1983).ADSCrossRefGoogle Scholar
  48. 48.
    A. Razin and A. D. Riggs, DNA methylation and gene function, Science 210:604–610 (1980).ADSCrossRefGoogle Scholar
  49. 49.
    C. McKeon, H. Ohkubo, I. Pastan and B. de Crombrugghe, Unusual methylation pattern of the α2(I) collagen gene, Cell 29:203–210 (1982).CrossRefGoogle Scholar
  50. 50.
    Gary Brennan, unpublished data.Google Scholar
  51. 51.
    J. L. Tykocinski and E. E. Max, CG dinucleotide clusters in MHC genes and in 5′ demethylated genes, Nucleic Acids Res. 12: 4385–4396 (1984).CrossRefGoogle Scholar
  52. 52.
    M. H. Finer, E. J. B. Fodor, H. Boedtker and P. Doty, Endonuclease S1-sensitive site in chicken pro α2(I) collagen 5 flanking gene region, Proc. Natl. Acad. Sci. USA 81:1659–1663 (1984).ADSCrossRefGoogle Scholar
  53. 53.
    C. McKeon, I. Pastan and B. de Crombrugghe, DNase I sensitivity of the α2(I) collagen gene: correlation with its expression but not with its methylation pattern, Nucleic Acids Res. 12: 3491–3502 (1984).CrossRefGoogle Scholar
  54. 54.
    M. J. Nickol and G. Felsenfeld, DNA conformation at the 5′ end of the chicken adult β-globin gene, Cell 35:467–477 (1983).CrossRefGoogle Scholar
  55. 55.
    E. Schon, T. Evans, J. Welsh and A. Efstratiadis, Conformation of promoter DNA: fine structure mapping of S1-hypersensitive sites, Cell 35:837–848 (1983).CrossRefGoogle Scholar
  56. 56.
    H. A. F. Mace, H. R. B. Pelham and A. A. Travers, Association of an S1 nuclease-sensitive structure with short direct repeats 5′ of Drosophila heat shock genes, Nature 304:555–557 (1983).ADSCrossRefGoogle Scholar
  57. 57.
    Mitchell Finer, unpublished data.Google Scholar
  58. 58.
    J. M. Monson, J. Friedman and B. M. McCarthy, DNA sequence analysis of a mouse pro α1(I) procollagen gene: evidence for a mouse B1 element within the gene, Mol. Cell. Biol. 2:1362–1371 (1982).Google Scholar
  59. 59.
    L. J. Sandell, Y. Yamada, A. Dorfman and W. B. Upholt, Identification of genomic DNA coding for chicken type II procollagen, J. Biol. Chem. 258:11617–11621 (1983).Google Scholar
  60. 60.
    Linda Sandell, private communication.Google Scholar
  61. 61.
    Y. Yamada, K. Kuhn and B. de Crombrugghe, A conserved nucleotide sequence coding for a segment of the C-propeptide is found at the same location in different collagen genes, Nucleic Acids Res. 11:2733–2744 (1983).CrossRefGoogle Scholar
  62. 62.
    Francesco Ramirez, private communication.Google Scholar
  63. 63.
    F. Fuller and H. Boedtker, Sequence determination and analysis of the 3′ region of the chicken pro α1(I) and pro α2(I) collagen messenger ribonucleic acids including the carboxy terminal propeptide sequences, Biochemistry 20:996 (1981).CrossRefGoogle Scholar
  64. 64.
    M. P. Bernard, M. Chu, J. C. Myers, F. Ramirez, E. F. Eikenberry and D. J. Prockop, Nucleotide sequences of complementary deoxyribonucleic acids for the pro α1 chain of human type I procollagen. Statistical evaluation of structures that are conserved during evolution, Biochemistry 22:5213–5223 (1983).CrossRefGoogle Scholar
  65. 65.
    M. P. Bernard, J. C. Myers, M. Chu, F. Ramirez, E. F. Eikenberry and D. J. Prockop, Structure of a cDNA for the pro α2 chain of human type I procollagen. Comparison with chick cDNA for pro α2(I) identifies functionally important features of the protein and the gene, Biochemistry 22:1139–1145 (1983).CrossRefGoogle Scholar
  66. 66.
    B. Sykes and E. Solomon, Genetic control of collagen expression, Biology of Collagen 173:183–192 (1980).Google Scholar
  67. 67.
    C. Huerre, C. Junien, D. Weil, M. Chu, M. Morabito, C. Foubert, J. C. Myers, N. Van Cong, M. Gross, D. J. Prockop, A. Boule, J. Kaplan, A. de la Chapelle and F. Ramirez, Human type I procollagen genes are located on different chromosomes, Proc. Natl. Acad. Sci. USA 79:6627–6630 (1982).ADSCrossRefGoogle Scholar
  68. 68.
    E. Solomon, L. Hiorns, R. Dalgliesh, P. Tolstoshev, R. Crystal and B. Sykes, Revional localization of the human α2(I) collagen gene on chromosome 7, by molecular hybridization, Cytogenetics and Cell Genetics 35:64–66 (1983).CrossRefGoogle Scholar
  69. 69.
    G. I. Bell, R. L. Pictete, W. M. Rutter, B. Cordell, E. Tischer, and H. M. Goodman, Sequence of the human insulin gene, Nature 284:26–32 (1980).ADSCrossRefGoogle Scholar
  70. 70.
    T. Maniatis, E. F. Fritsch, J. Lauer and R. M. Lawn, The molecular genetics of human hemoglobins, Ann. Rev. Genet. 14:145–178 (1980).CrossRefGoogle Scholar
  71. 71.
    W. Lindenmaier, M. C. Nguyen-Huu, R. Lurz, M. Stratmann, N. Blin, T. Wurtz, H. J. Häuser, A. E. Sippel and G. Schutz, Arrangement of coding and intervening sequences of chicken lysozyme gene, Proc. Natl. Acad. Sci. USA 76:6196–6200 (1979).ADSCrossRefGoogle Scholar
  72. 72.
    E. C. Lai, J. P. Stein, J. F. Caterrall, S. L. C. Woo, M. L. Mace, A. R. Means and B. W. O’Malley, Molecular structure and flanking nucleotide sequences of the natural chicken ovomucoid gene, Cell 18:829–842 (1979).CrossRefGoogle Scholar
  73. 73.
    J. A. Fornwald, G. Kuncio, I. Peng and C. P. Ordahl, The complete nucleotide sequence of the chick α-actin gene and its evolutionary relationship to the actin gene family, Nucleic Acids Res. 10:3861–3876 (1982).CrossRefGoogle Scholar
  74. 74.
    A. Dugaiczyk, S. L. C. Woo, E. C. Lai, J. L. Mace, Jr., L. McReynolds and B. W. O’Malley, The natural ovalbumin gene contains seven intervening sequences, Nature 274:328 (1978).ADSCrossRefGoogle Scholar
  75. 75.
    M. Cochet, F. Gannon, R. Hen, L. Maroteaux, F. Perrin and P. Chambon, Organization and sequence studies of the 17-piece chicken conalbumin gene, Nature 282:567–574 (1979).ADSCrossRefGoogle Scholar
  76. 76.
    W. Wahli, I. B. Dawid, T. Wyler, R. Weber and G. U. Ryffel, Comparative analysis of the structural organization of two closely related vitellogenin genes in X. laevis, Cell 20: 107–117 (1980).CrossRefGoogle Scholar
  77. 77.
    H. Hirano, Y. Yamada, M. Sullivan, B. de Crombrugghe, I. Pastan and K. M. Yamada, Isolation of genomic DNA clones spanning the entire fibronectin gene, Proc. Natl. Acad. Sci. USA 80: 46–50 (1983).ADSCrossRefGoogle Scholar
  78. 78.
    J. M. Monson, J. Natzle, J. Friedman and B. W. McCarthy, Proc. Natl. Acad. Sci. USA 79:1761–1765 (1982).ADSCrossRefGoogle Scholar
  79. 79.
    J. M. Kramer, G. N. Cox and D. Hirsch, Comparisons of the complete sequences of two collagen genes from Caenorhabditis elegans, Cell 30:599–606 (1982).CrossRefGoogle Scholar
  80. 80.
    D. Shuppan, R. Timpl and R. W. Glanville, Discontinuities in the triple helical sequence Gly-X-Y of basement membrane (type IV) collagen, FEBS Lett. 115:297–300 (1980).CrossRefGoogle Scholar
  81. 81.
    Gabriel Vogeli, private communication.Google Scholar
  82. 82.
    J. C. Politz and R. S. Edgar, Overlapping stage-specific sets of numerous small collagenous polypeptides are translated in vitro from Caenorhabditis elegans RNA, Cell 37:861 (1984).CrossRefGoogle Scholar
  83. 83.
    H. Lehrach, A. M. Frischauf, D. Hanahan, J. Wozney, F. Fuller, C. Crkvenjakov, H. Boedtker and P. Doty, Construction and characterization of a 2.5 kilobase procollagen clone, Proc. Natl. Acad. Sci. USA 75:5417–5421 (1978).ADSCrossRefGoogle Scholar
  84. 84.
    R. F. Manning and L. P. Gage, Internal structure of the silk fibroin gene of Bombyx mori. II Remarkable polymorphism of the organization of crystalline and amorphous coding sequences, J. Biol. Chem. 255:9451–9457 (1980).Google Scholar
  85. 85.
    W. de Wet, T. Pihlajaniemi, J. Myers, T. E. Kelly and D. J. Prockop, Synthesis of a shortened pro α2(I) chain and decreased synthesis of pro α2(I) chains in a proband with osteogenesis imperfecta, J. Biol. Chem. 258:7721–7727 (1983).Google Scholar
  86. 86.
    M. Chu, C. J. Williams, G. Pepe, J. L. Hirsh, D. J. Prockop and F. Ramirez, Literal deletion in a collagen gene in a perinatal lethal form of osteogenesis imperfecta, Nature 304: 78–80 (1983).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Helga Boedtker
    • 1
  • Sirpa Aho
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyHarvard UniversityCambridgeUSA

Personalised recommendations