Invertebrate Collagens in the Scheme of Things

  • Jerome Gross
Part of the NATO ASI Series book series (NSSA, volume 93)


In trying to answer the question, “why are we interested in the invertebrate collagens”, one is led to the broad issues of morphogenesis, the origins of multicellularity, the evolutionary influences on structure and function of proteins and of more immediate importance, the interrelationships among the matrix components themselves and with the cells. How does the mix give rise to a functioning, developing and evolving organism? Since collagen is an all pervasive, easily identifiable structural element of the intercellular matrix we are intrigued with the possibility of using it as a lead to better understanding of these broad questions.


Collagen Fibril Silk Fibroin Triple Helix Sponge Collagen Collagen Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aaronson, S., 1970, Molecular evidence for evolution in the algae: A possible affinity between plant cell walls and animal skeletons, Ann. N.Y. Acad. Sci., 175: 531.ADSCrossRefGoogle Scholar
  2. Akabori, S., Satake, K., and Oono, A., 1950, Studies on the aminoGoogle Scholar
  3. acid components of spongin, the protein in sponge, Science (Japan), 20: 132.Google Scholar
  4. Amos, W. B., Grimstone, A. E., Rothschild, L. J., and Allen, R. D., 1979, Structure, protein composition and birefringence of the costa: a motile flagellar root fibre in the flagellate, Trichomonas, J. Cell Sci., 35: 139.Google Scholar
  5. Anderson, E., and Beams, H. W., 1959, The cytology of Tritrichomonas as revealed by the electron microscope, J. Morphol., 104: 205.CrossRefGoogle Scholar
  6. Astbury, W. T., 1943, X-rays and stoichiometry or proteins, Adv. Enzymol., 3: 63.Google Scholar
  7. Bear, R. S., 1942, Long x-ray diffraction spacings of collagen, J. Am. Chem. Soc., 64: 727.CrossRefGoogle Scholar
  8. Bear, R. S., 1944, X-ray diffraction studies on protein fibers, I. The large fiber-axis period of collagen, J. Am. Chem. Soc., 66: 1297.CrossRefGoogle Scholar
  9. Bear, R. S., 1951, X-ray diffraction studies. A review of recent researches which concern collagen, J. Am. Leath. Chem. Assn., XLVI: 438.Google Scholar
  10. Bear, R. S., 1952, The structure of collagen Fibrils, in: “Adv. Protein Chem.”, 7, M.L. Anson, K. Bailey, and J.T. Edsall, eds, Academic Press, Inc., New York.Google Scholar
  11. Blout, E. R., Carver, J. P., and Gross, J., 1963, Intrinsic Cotton effects in collagen and poly-L-proline, J. Am. Chem. Soc., 85: 644.CrossRefGoogle Scholar
  12. Bruns, R. R., Hulmes, D. J. S., Therrien S. F. and Gross, J., 1979, Procollagen segment-long-spacing crystallites: Their role in collagen fibrillogenesis, Proc. Natl. Acad. Sci. U.S.A., 76: 313.ADSCrossRefGoogle Scholar
  13. Carver, J.R., and Blout, E. R., 1967, Polypeptide models for collagen. in: “Treatise on Collagen”, Vol. I, G. N. Ramachandran, ed., Academic Press, New York.Google Scholar
  14. Champetier, G., et Fauré-Fremiet, E., 1937a, Etude röentgenographique de la structure des fibres d’élastoidine, J.Chim. Phys., 34: 197Google Scholar
  15. Champetier, G., et Fauré-Fremiet, E., 1937b, Etude röentgenographique d’une protéine intracellulaire, C. R. Acad. Sci., 204: 1901.Google Scholar
  16. Champetier, G., et Fauré-Fremiet, E., 1938, Etude röentgenographique des kératines secretées, C. R. Acad. Sci., 207: 1133.Google Scholar
  17. Champetier, G., et Fauré-Fremiet, E., 1942, Etude röentgenographique de quelques cornéines d’Anthozoaires. C.R. Acad. Sci., 215: 94.Google Scholar
  18. Clancy, V. J., 1926, CL. The constitution of sponges. I. The common bath sponge, Hippospongia equina, Biochem. J., 20: 1186.Google Scholar
  19. Dougherty, E. C., 1963, “The Lower Metazoa: Comparative Biology and Phylogeny,” “University of California Press, Berkeley.Google Scholar
  20. Doyle, B. B., Bendit, E. G., and Blout, E. R., 1975, Infrared spectroscopy of collagen and collagen-like polypeptides, Biopolymers, 14: 937.CrossRefGoogle Scholar
  21. Fauré-Fremiet, E., 1941, La nature chimique du pédoncule des vorticellides, Bull. Soc. Zool. France, LXVI: 277.Google Scholar
  22. Fauré-Fremiet, E., Favard, P., and Carrasso, N., 1962, Etude au Microscope Electronique des Ultrastructures d’Epistylis anastatica (Cilié,Peritriche). J. Microscopie, 1: 287.Google Scholar
  23. Fauré-Fremiet, E., et Garrault, H., 1937, Le tissu conjonctif aciculaire de la vessie natatoire, Arch. d’Anat. Microscop., 33: 81.Google Scholar
  24. Fauré-Fremiet, E., et Garrault, H., 1944, Propriétés physiques de l’ascarocollagène, Bull. Biologique, LXVIII: 207.Google Scholar
  25. Fawcett, D. W., and Porter, K. R., 1954, A study of the fine structure of ciliated epithelia. J. Morph., 94: 221.CrossRefGoogle Scholar
  26. Filhol, J., and Garrault, H., 1938, La secretion de la prokératine et la formation de la capsule ovulaire chez les selaciens, Arch. Anat. Microscop., 34: 105.Google Scholar
  27. Flower, N. E., and Kenchington, W., 1966, Study on insect fibrous proteins: The larval silk of Apis, Bombus and Vespa (Hymenoptera: Aculeata), J. Royal Microscop. Soc., 86: 297.CrossRefGoogle Scholar
  28. Fujimoto, D., and Adams, E., 1964, Intraspecies composition difference in collagen from cuticle and body of Ascaris and Lumbricus, Biochem. Biophys. Res. Commun., 17: 437.CrossRefGoogle Scholar
  29. Fulton, A. B., 1978a, Colonial development in Pandorina morum. I. Stucture and composition of the extracellular matrix, Develop. Biol., 64: 224.CrossRefGoogle Scholar
  30. Fulton, A. B., 1978b, Colonial development in Pandorina morum. II. Colony morphogenesis and formation of the extracellular matrix., Develop. Biol., 64: 236.CrossRefGoogle Scholar
  31. Fulton, C., 1977, Intracellular regulation of cell shape and motility in Naegleria. First insights and a working hypothesis, J. Supramol.. Struct., 6: 13.CrossRefGoogle Scholar
  32. Fulton, C., and Walsh, C., 1980, Cell differentiation and flagellar elongation. Dependence on transcription and translation, J. Cell Biol, 58: 346.CrossRefGoogle Scholar
  33. Garrone, R., 1978, “Phylogenesis of connective tissue”, S. Karger, Basel.Google Scholar
  34. Grant, P., 1978, “Biology of Developing Systems”, Holt. Rinehart and Winston, Pub., New York.Google Scholar
  35. Gross, J., 1956, The behavior of collagen units as a model in morphogenesis, J. Biophys. Biochem. Cytol, Suppl. 2: 26.CrossRefGoogle Scholar
  36. Gross, J., 1963, Comparative Biochemistry of Collagen, in: “Comparative Biochemistry”, vol. 5, M. Florkin and H.S. Mason, eds., Academic Press, New York.Google Scholar
  37. Gross, J., 1980, Some aspects of the Biology of the extracellular Matrix, in: “Gene Families of Collagen and Other Proteins,” D. J. Prockop and P. Champe, eds, Elsevier North Holland, Inc., New York.Google Scholar
  38. Gross, J., and Bruns, R. R., 1984, Another Look at fibrillogenesis, in: “The Role of Extracellular Matrix in Development,” R. L. Trelstad, ed.s, Alan R. Liss, Inc., New York, in press.Google Scholar
  39. Gross, J., and Dumsha, B., 1958, Elastoidin: a two-component member of the collagen class, Biochim. Biophys. Acta, 28: 268.CrossRefGoogle Scholar
  40. Gross, J., Dumsha, B., and Glaer, N., 1958, Comparative Biochemistry of collagen. Some amino acids and carbohydrates, Biochim. Biophys. Acta, 30: 293.CrossRefGoogle Scholar
  41. Gross, J., and Piez, K. A., 1960, The Nature of Collagen. I. Inverterbate Collagens, in: “Calcification in Biological Systems,” Am. Assoc. Adv. Sci., Washington, D.C.Google Scholar
  42. Gross, J., Sokal, Z., and Rougvie, M., 1956, Structural and chemical studies on the connective tissue of marine sponges, J. Histochem. Cytochem., 4: 227.CrossRefGoogle Scholar
  43. Gustavson, K. H., 1956, The Chemistry and Reactivity of Collagen, Academic Press, New York.Google Scholar
  44. Hall, E. C., Jakus, M. A., Schmitt, F. O., 1942, Electron microscope observations of collagen, J. Am. Chem. Soc, 64: 1234.CrossRefGoogle Scholar
  45. Hay, E. D., and Dodson, J. W., 1973, Secretion of collagen by corneal epithelium. I. Morphology of the collagenous products produced by isolated epithelia grown on frozen killed lens., J. Cell Biol., 57: 190.CrossRefGoogle Scholar
  46. Heathcote, J. G., Eyre, D. R., and Gross, J., 1982, Mature bovine Descemet’s membrane containes desmosine and isodesmosine, Biochem. Biophys. Res. Commun., 108: 1588.CrossRefGoogle Scholar
  47. Hedley, R. H., and Wakefield, J. St. J., 1967, A collagen-like sheath in arenaceous foraminifer Haliphysema (Protozoa), J. Royal Microscop. Soc., 87: 475.CrossRefGoogle Scholar
  48. Hedley, R. H., and Wakefield, J. St. J., 1969, Fine structure of Gromia oviformis (Rhizopodea: Protozoa), in: “Bull. Brit. Museum (Zoology Vol. 18), British Museum (Natural History), London.Google Scholar
  49. Hibbard, D. J., 1976, The fine structure of the colonial colorless flagellates Rhipidodendron splendidum Stein and Spongomonas uvella Stein with special reference to the flagellar apparatus, J. Protozool., 23: 374.Google Scholar
  50. Homer, R. B., Roberts, K., 1979, Glycoprotein conformation in plant cell walls. Circular dichroism reveals a polyproline II structure, Planta, 146: 217.CrossRefGoogle Scholar
  51. Hulmes, D. J. S., Bruns, R. R., and Gross, J., 1983, On the state of aggregation of newly secreted procollagen, Proc. Natl. Acad. Sci., U.S.A. 80: 388.ADSCrossRefGoogle Scholar
  52. Hutner, S. H., 1961, Plant-animals as experimental tools for growth studies, Bull. Torrey Bot. Club., 88: 339CrossRefGoogle Scholar
  53. Hyman, L. H., 1940, The Invertebrates: Protoza through Ctenophora, McGraw-Hill, New York.Google Scholar
  54. Jakus, M. A., 1945, The structure and properties of the trichocysts of Paramecium, J. Exp. Zool., 100: 457.CrossRefGoogle Scholar
  55. Jakus, M. A., 1956, Studies on the cornea. II. The fine structure of Descemet’s membrane, J. Biophys. Biochem. Cytol., 2: 241.CrossRefGoogle Scholar
  56. Jakus, M. A., and Hall, C. E., 1946, Electron microscope observations of the trichocysts and cilia of Paramecium, Biol. Bull., 91: 141.CrossRefGoogle Scholar
  57. Kimura, S., Tanaka, H., and Park, Y-H., 1983, Annelid skin collagen: Occurence of collagen with the structure of (α1)α2 in Urechis unicinctus, Comp. Biochem. Physiol., 75B: 681.Google Scholar
  58. Kratke, O., and Sekora, J., 1943, Die Auffindung von grosse Netzeben-abstanden bei Kanguruh-Schwanzsehne, J. makromol. Chem., 1: 113.Google Scholar
  59. Lackey, J. B., 1959, Morphology and biology of a species of Protospongia, Trans Am. Micro Soc., 78: 202.CrossRefGoogle Scholar
  60. Lamport, D. T. A., 1969, The isolation and partial characterization of hydroxyproline-glycopeptides obtained by enzymic degradation of primary cell walls, Biochem., 8: 1155.CrossRefGoogle Scholar
  61. Lamport, D. T. A., 1974, The role of hydroxyrproline-rich proteins in the extracellular matrix of plants, Soc. Devel. Biol. 30th Symposium, 113.Google Scholar
  62. Larson, D. E., and Dingle, A. D., 1981, Isolation, ultrastructure, and protein composition of the flagellar rootlet of Naegleria gruberi, J. Cell Biol., 89: 424.CrossRefGoogle Scholar
  63. Marks, M. H., Bear, R. S., and Blake, C. H., 1949, X-ray diffraction evidence of collagen-type protein fibers in the Echinodermata, Coelenterata and Porifera, J. Exp. Zool., 111: 55.CrossRefGoogle Scholar
  64. Meek, K. M., Chapman, J. A., and Hardcastle, R. A., 1979, The staining of collagen fibrils, J. Biol. Chem., 254: 10710.Google Scholar
  65. Miller, E. J., and Matukas, V. J., 1969, Chick cartilage collagen: a new type of α1 chain not present in bone or skin of the species, Proc. Natl. Acad. Sci. U.S.A., 64: 1264.ADSCrossRefGoogle Scholar
  66. Miller, D. H., Mellman, I. S., Lamport, D. T. A., and Miller, M., 1974, The chemical composition of the cell wall of Chlamydomonas gymnogama and the concept of a plant cell wall protein, J. Cell Biol., 63: 420.CrossRefGoogle Scholar
  67. Mitchell, B. A., 1980, Evidence for polyhydroxyproline in the extracellular matrix of Volvox, Thesis, Michigan State University.Google Scholar
  68. Nageotte, J., 1927, Action des sels neutres sur les formation du caillot artificiel de collagène, C. R. Séances Soc. Biol., XCVI: 828.Google Scholar
  69. Nageotte, J., 1972, Metastructure et croissance des fibrilles, des faisceaux dans le caillot artificiel de collagène, C. R. Séances Soc. Biol., XCVI: 1268.Google Scholar
  70. Nageotte, J., et Guyon, L., 1930, Considerations générales sure la trame conjonctive, Arch. Biol., XLI: 1.Google Scholar
  71. Nageotte, J., 1931, Essais de reproduction in vitro de la trame collagène et hypothèses relatives a la construction de cette trame in vivo, Ann. d’Anat. Path, et D’Anat. Norm. Med. Chir., VIII: 1.Google Scholar
  72. Odermatt, E., Risteli, J., van Delden, D. and Timpl, R., 1983, Structural diversity and domain composition of a unique collagenous fragment (intima collagen) obtained from human placenta, Biochem. J., 211: 295.Google Scholar
  73. Piez, K. A., and Gross, J., 1959, The amino acid composition and morphology of some invertebrate and vertebrate collagens, Biochem. Biophys. Acta, 34: 24.CrossRefGoogle Scholar
  74. Piez, K. A., and Gross, J., 1960, The amino acid composition of some fish collagens: The relation between composition and structure, J. Biol. Chem., 235: 995.Google Scholar
  75. Piez, K. A., and Likins, R. C., 1960, The Nature of Collagen. II. Vertebrate Collagens, in: “Calcification in Biological Systems,” Am. Assn. Adv. Sci., Washington, D.C..Google Scholar
  76. Piez, K. A., and Scherman, M. R., 1970, Characterization of the product formed by renaturation of α1-CB2, a small peptide from collagen, Biochemistry, 9: 4129.CrossRefGoogle Scholar
  77. Prockop, D. J., and Champe, P., eds. 1980, Gene Families of Collagen and Other Proteins. Elsevier-North Holland, Inc., New York.Google Scholar
  78. Prockop, D. J., and Kivirikko, K. I., 1969, Effect of polymer size on the inhibition of procollagen proline hydroxylase by polyproline II, J. Biol. Chem., 244: 6468.Google Scholar
  79. Pujol, J. P., Rolland, M., Lasry, S., Vinet, S., 1970, Comparative study of the amino acid composition of the byssus in some common bivalve mollusks, Comp. Biochem. Physiol., 34: 193.CrossRefGoogle Scholar
  80. Ramachandran G. N., and Kartha, G., 1954, Structure of collagen, Nature, 174: 269.ADSCrossRefGoogle Scholar
  81. Ramachandran, G. N., and Kartha, G., 1955, Nature, 176: 593.ADSCrossRefGoogle Scholar
  82. Rich, A., and Crick, F. H. C., 1955, The structure of collagen, Nature, 176: 915.ADSCrossRefGoogle Scholar
  83. Reid, K. B. M., and Porter, R. R., 1976, Subunit composition and structure of subcomponent Clq of the first component of human complement, Biochem. J., 155: 19.Google Scholar
  84. Reid K. B. M., and Solomon, E., 1977, Biosynthesis of the first component of complement by human fibroblasts, Biochem. J., 167: 647.Google Scholar
  85. Reid, K. B. M., 1979, Complete amino acid sequences of the three collagen-like regions present in subcomponent Clq of the first component of human complement. Biochem. J., 179: 367.Google Scholar
  86. Rosenberry, T. L., and Richardson, J. M., 1977, Structure of 18S and 14S acetylcholinesterase. Identification of collagenlike subunits that are linked by disulfide bonds to catalytic subunits, Biochem., 16: 3550.CrossRefGoogle Scholar
  87. Rouiller, C., et Fauré-Fremiet, E., 1957, Ultrastructure reticulée d’une fibre squelettique chez un cilié, J. Ultrastruct. Res., 1: 1.CrossRefGoogle Scholar
  88. Rudall, K. M., 1955, The distribution of collagen and chitin, Symp. Soc. Exp. Biol., IX: 51.Google Scholar
  89. Rudall, K. M., 1968, Comparative Biology and Biochemistry of Collagen, in: “Treatise on Collagen,” vol 2, pt A., B. Gould, ed., Academic Press, New York.Google Scholar
  90. Rudall, K. M., and Kenchington, W., 1971, Arthropod silks. The problem of fibrous proteins in animal tissue, Ann. Rev. Entomol., 16: 73.CrossRefGoogle Scholar
  91. Sadava, D., and Chrispeels, M. J., 1971, Hydroxyproline biosynthesis in plant cells peptidylproline: hydroxylase from carrot disks, Biochim. Biophys. Acta, 227: 278.Google Scholar
  92. Saville Kent, W., 1880, Manual of the Infusoria. Flagellate, Ciliate and Tentaculiferous Protozoa. Organization and Affinities of the Sponge, vol. 1. London.Google Scholar
  93. Schmitt, F. O., 1951, Structural and chemical studies on collagen, J. Am. Leath. Chemists, XLVI: 539.Google Scholar
  94. Schmitt, F. O., Hall, C. E., Jakus, M. A., 1942, Electron microscope investigations of the structure of collagen, J. Cell. Comp. Physiol., 20: 11.CrossRefGoogle Scholar
  95. Steers, E., Jr., Beisson, J., and Marchesi, V. T., 1969, A structural protein extracted from the trichocyst of Paramecium aurelia, Exp. Cell Res., 57: 392.CrossRefGoogle Scholar
  96. Stephens, R. E., 1975, The basal apparatus. Mass isolation from molluscan ciliated gill epithelium and a preliminary characteriazion of striated rootlets, J. Cell Biol., 64: 408.CrossRefGoogle Scholar
  97. Tanaka, M., Sato, K., and Uchida, T., 1981, Plant prolyl hydroxylase recognizes poly(L-proline) II helix, J. Biol. Chem., 256: 11397.Google Scholar
  98. van Holst, G-J., and Varner, J. E., 1984, Reinforced polyproline II conformation in a hydroxyproline-rich cell wall glycoprotein from carrot root, Plant Physiol., 74: 247.ADSCrossRefGoogle Scholar
  99. von Hippel, P. H., and Harrignton, W. F., 1959, Enzymic studies of the gelatin- collagen-fold transitions, Biochim. Biophys. Acta, 36: 427.CrossRefGoogle Scholar
  100. Williams, N. E., Vandaux, P. E., and Skriver, L., 1979, Cytoskeletal proteins of the cell surface in Tetrahymena, I. Identification and localization of major proteins, Exp. Cell Res., 123: 311.CrossRefGoogle Scholar
  101. Willmer, E. N., 1960, Cytology and Evolution, Academic Press, New York.Google Scholar
  102. Wolpers, C., 1943, Kollagenquerstreifung und Grundsubstanz, Klin. Wochenschr., 22: 624.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Jerome Gross
    • 1
    • 2
  1. 1.Developmental Biology LaboratoryMedical Services Massachusetts General HospitalBostonUSA
  2. 2.Department of MedicineHarvard Medical SchoolBostonUSA

Personalised recommendations