Chemical Bonding and the Sulfur K X-Ray Spectrum

  • D. W. Wilbur
  • J. W. Gofman


An investigation has been made of the relative K β intensities in different chemical states of the sulfur atom using the K α lines, with appropriate corrections, to provide the intensity standards. Both inorganic and organic compounds were included in the study. The data for each compound appear to be reliable to about ± 0.5%, while the whole series of compounds shows a variation greater than 20% in the corrected K β/K α ratios. Energies were also measured, particularly the K α energies, and their shifts were studied relative to the K β intensity shifts. The work was done with a plane, single-crystal, helium-path spectrometer with proportional counter and pulse-height analysis for detection. The results are indicative of the usefulness of the method both in clarifying an uncertain chemical state and in studying the electronic structure of the bonded atom.


Sulfur Atom Proportional Counter Mass Absorption Coefficient Methionine Sulfoxide Pure Sulfur 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. E. Lindh and O. Lundquist, “Die Struktur der Kß,-Linie des Schwefels,” Ark. Mat. Astr. Fysi. 18 (14): 3–11, 1924.Google Scholar
  2. 2.
    A. Faessler,“Roentgenspektrum und Bindungszustand,” in: Landolt-Börnstein Zahlenwerte und Funktionen, Sixth edition; Vol. 1, Atom-und Molekularphysik, Pt. 4, Kristalle, 1955, pp. 769–868.Google Scholar
  3. 3.
    A. Faessler and M. Goehring, “Roentgenspektrum und Bindungszustand—Die Ka-Fluoreszenstrahlung des Schewfels,” Naturwissenschaften 19: 169–177, 1952.CrossRefGoogle Scholar
  4. 4.
    A. Faessler, and E. D. Schmid, “Uber die Struktur des Roentgen-K5-Spektrums von Schwefel,” Z. Physik 138: 71–79, 1954.Google Scholar
  5. 5.
    A. T. Shuvaev, “Influence of the Chemical Bond on the Energy and Intensity of the X-Ray Lines of Atoms in Compounds,” Izv. Akad. Nauk SSSR Ser. Fiz. 25: 986–991, 1961 (Columbia Technical Translations).Google Scholar
  6. 6.
    E. Schnell, “Zur Roentgenfluoreszenzanalyse,” 1. Mitt: “Die Intensitätsverhaeltnisse der K-Linien dee Roentgenspektrums von Chlor in Abhängigkeit von der chemischen Bindung,” Monatsh. 93: 1383–1387, 1962; 3. Mitt.: “Die Aenderung der Relativen Intensitaeten der Kß-Strahlung der Elemente Schwefel, Phosphor, Silicium, und Aluminium bei Verbindungsbildung,” Monatsh. 94: 703–713, 1963.CrossRefGoogle Scholar
  7. 7.
    M. A. Blokhin, A. T. Shuvaev, and V. V. Gorskii, “X-Ray Study of the Chemical Bonds in Sulfur Compounds,” Ixv. Akad. Nauk SSSR Ser. Fix. 28: 801–804, 1964 (trans!. J. A. S. Bradley).Google Scholar
  8. 8.
    C. A. Coulson and C. Zauli, “The Ka Transitions in Compounds of Sulfur,” Mol. Phys. 6: 525–533, 1963.Google Scholar
  9. 9.
    G. L. Bendazzoli, P. Palmieri, and C. Zauli, “X-Ray Transitions in Compounds of Sulfur: Frequency and Intensity Shift of K. transitions,” Boll. Sci. Fac. Chins. Ind. Bologna 22 (3–4): 97–101, 1964.Google Scholar
  10. 10.
    A. T. Shuraev, “Determination of Ionic Charges in Compounds of the Third-Period Elements by Means of X-Ray Emission Spectra,” Ixv. Akad. Nauk SSSR Ser. Fix. 28: 758–764, 1964 (transl. J. A. S. Bradley).Google Scholar
  11. 11.
    E. A. Burke and R. M. Pettit, “Absorption Analysis of X-Ray Spectra Produced by Beryllium Window Tubes Operated at 20 to 50 Kvp,” Radiation Res. 13: 271–285, 1960.CrossRefGoogle Scholar
  12. 12.
    J. Sherman, “The Theoretical Derivation of Fluorescent X-Ray Intensities from Mixtures,” Spectrochim. Acta 7: 283–306, 1955.Google Scholar
  13. 13.
    M. Renaud, “Le Calcul du Transfert de Rayonnement en Fluorescence X., L’effet de Matrice; L’equation de Transfert,” Compt. Rend. 256: 3086–3089, 1963.Google Scholar
  14. 14.
    Anonymous, “Table of X-Ray Mass Absorption Coefficients,” Norelco Rept. 9 (3): 1962.Google Scholar
  15. 15.
    J. A. Bearden, “X-Ray Wavelengths,” U.S. At. Energy Comm. Rept. NYO-10586, 1964.Google Scholar
  16. 16.
    J. A. Bearden, A. Henins, J. G. Marzolf, W. C. Sauder, and J. S. Thomsen, “Precision Redetermination of Standard Reference Wavelengths for X-Ray Spectroscopy,” Phys. Rev. 135A: 899–910, 1964.CrossRefGoogle Scholar
  17. 17.
    J. Valasek, “Effects of Chemical Combination on the X-Ray Emission Spectrum of Sulfur,” Phys. Rev. 43: 612–614, 1933; “X-Ray Emission Spectra of Sulfides and Sulfates,” Phys. Rev. 51: 832–834, 1937.CrossRefGoogle Scholar
  18. 18.
    B. Kern, “Die Si K3-Banden der Roentgenemissionsspektren von elementarem Silicium, Siliciumcarbid, und Siliciumdioxyd,” Z. Physik 159: 178–193, 1960.CrossRefGoogle Scholar
  19. 19.
    A. V. Ivanov, “Las X-Ray Emission Spectra of Sulfur in Sulfides,” Ixv. Akad. Nauk SSSR Ser. Fiz. 26: 405–408, 1962 (Columbia Technical Translations).Google Scholar

Copyright information

© Springer Science+Business Media New York 1966

Authors and Affiliations

  • D. W. Wilbur
    • 1
  • J. W. Gofman
    • 1
  1. 1.Lawrence Radiation LaboratoryUniversity of CaliforniaLivermoreUSA

Personalised recommendations