Advertisement

Hydrogen Absorption and Critical Point Lowering in Thin PdHx Films

  • H. L. M. Bakker
  • G. J. de Bruin-Hordijk
  • R. Feenstra
  • R. Griessen
  • D. G. de Groot
  • J. Rector
Part of the NATO Conference Series book series (NATOCS, volume 6)

Abstract

The attractive hydrogen-hydrogen interaction which causes phase transitions in metalhydrides is of elastic origin1,2. Two hydrogen atoms embedded in a metal will see each other via their respective long-range displacement fields in the lattice. As the displacement field around a dilatation center falls off as 1/r2 the range of the perturbation in the lattice is infinite and the H-H interaction depends on the shape and the size of the sample. This has clearly been put in evidence by Zabel and Peis13. These authors showed that the spatial distribution of the segregated phases in cylindrically shaped Nb samples depended crucially on the ratio of the length to the radius of the samples.

Keywords

Hydrogen Absorption Quartz Crystal Critical Pressure Quartz Substrate Dilatation Center 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Alefeld: Ber. Bunsenges. Phys. Chem. 76, 746 (1972)Google Scholar
  2. 2.
    H. Wagner, H. Horner; Adv. Phys. 23, 587 (1974)ADSCrossRefGoogle Scholar
  3. 3.
    H. Zabel, H. Peisl; Acta Metall. 28, 589 (1979)Google Scholar
  4. 4.
    R.V. Bucur, V. Mecea, E. Indrea; J. Less Comm. Met. 49, 147 (1976)CrossRefGoogle Scholar
  5. 5.
    G.A. Frazier, R. Glosser; J. Phys. D 12, L113 (1979)ADSCrossRefGoogle Scholar
  6. 6.
    G.A. Frazier, R. Glosser; J. Less Comm. Met. 74, 89 (1980)CrossRefGoogle Scholar
  7. 7.
    H. Brodowski. E. Poeschel; Z. Phys. Chem. N.F. 44, 143 (1965)CrossRefGoogle Scholar
  8. 8.
    Y. de Ribaupierre, F.D. Manchester; J. Phys. C 7, 2126 (1974), 8, 1339 (1975)Google Scholar
  9. 9.
    H. Frieske, E. Wicke; Ber. Bunsenges. Phys. Chem. 77, 50 (1973)Google Scholar
  10. 10.
    H. Brodowski; Z. Phys. Chem. N.F. 44, 129 (1965)CrossRefGoogle Scholar
  11. 11.
    C. Picard, O.J. Kleppa, G. Boureau; J. Chem. Phys. 69, 5549 (1978)ADSCrossRefGoogle Scholar
  12. 12.
    E. Wicke, J. Blaurock; Ber. Bunsenges. Phys. Chem. 85, 1091 (1982)CrossRefGoogle Scholar
  13. 13.
    J.R. Lacher; Proc. Roy. Soc. (London) Ser. A 161, 525 (1937)ADSCrossRefGoogle Scholar
  14. 14.
    L.D. Landau, E.M. Lifshitz; Course of Theoretical Physics, vol. 5 Statistical Physics, Pergamon Press, Oxford (1980)Google Scholar
  15. 15.
    L.D. Landau, E.M. Lifshitz; Course of Theoretical Physics, vol. 7 Theory of elasticity, Pergamon Press, London (1959)Google Scholar
  16. 16.
    B.M. Geerken, R. Griessen, L.M. Huisman and E. Walker, to be published.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • H. L. M. Bakker
    • 1
  • G. J. de Bruin-Hordijk
    • 1
  • R. Feenstra
    • 1
  • R. Griessen
    • 1
  • D. G. de Groot
    • 1
  • J. Rector
    • 1
  1. 1.Natuurkundig LaboratoriumVrije UniversiteitAmsterdamThe Netherlands

Personalised recommendations