Advertisement

Theory of the Diffusion of Hydrogen in Metals

  • K. W. Kehr
Part of the NATO Conference Series book series (NATOCS, volume 6)

Abstract

Hydrogen in metals has large diffusion coefficients compared to other interstitials.1 They are particularly large in the bcc metals V, Nb, and Ta; see Fig.1. In Nb and Ta the isotope H shows a lower activation energy for diffusion below 250 K, resulting in a large isotope effect at lower temperatures. In the last few years the study of positive muons has added new, often unexpected, information on the motion of a light isotope of hydrogen (mU/mH ≈ 1/9). This gives strong incentives for considering the possible diffusion mechanisms of light particles in a metal and to compare theoretical models with experiments on actual systems.

Keywords

Isotope Effect Hydrogen Diffusion Jump Rate Positive Muon Muon Spin Rotation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For a review see J. Völkl and G. Alefeld, in “Hydrogen in Metals I,” Topics in Applied Physics, Vol. 28, G. Alefeld and J. Völkl, eds., Springer, Berlin (1978).CrossRefGoogle Scholar
  2. 2.
    Zh. Qi, J. Völkl, R. Lässer, and H. Wenzl, to be published.Google Scholar
  3. 3.
    For a review see T. Geisel, in “Superionic Conductors,” Topics in Current Physics, Vol. 15, M.B. Salamon, ed., Springer, Berlin (1979).Google Scholar
  4. 4.
    C.T. Chudley and R.J. Elliott, Proc.Phys.Soc.(London) 77: 353 (1971).ADSCrossRefGoogle Scholar
  5. 5.
    J.M. Rowe, K. Sköld, and H.E. Flotow, J.Phys.Chem.Solids 32: 41 (1971).ADSCrossRefGoogle Scholar
  6. 6.
    J.M. Rowe, J.J. Rush, L.A. de Graaf, and G.A. Ferguson, Phys. Rev.Lett. 29: 1250 (1972).ADSCrossRefGoogle Scholar
  7. 7.
    V. Lottner, U. Buchenau, and W.J. Fitzgerald, Z.Physik B 35: 35 (1979).ADSCrossRefGoogle Scholar
  8. 8.
    H. Eyring, J.Chem.Phys. 3: 107 (1932).ADSCrossRefGoogle Scholar
  9. 9.
    C. Wert and C. Zener, Phys.Rev. 76: 1169 (1949).ADSCrossRefGoogle Scholar
  10. 10.
    G.H. Vineyard, J.Phys.Chem.Solids 3: 121 (1957).ADSCrossRefGoogle Scholar
  11. 11.
    A.D. Le Claire, Phil.Mag. 14: 1271 (1966).Google Scholar
  12. 12.
    Y. Ebisuzaki, W.J. Kass, and M. O’Keeffe, J.Chem.Phys. 46: 1373 (1967);ADSCrossRefGoogle Scholar
  13. Y. Ebisuzaki, W.J. Kass, and M. O’Keeffe, Phil.Mag. 15: 1071 (1967).ADSCrossRefGoogle Scholar
  14. 13.
    J.G. Mullen, Phys.Rev. 121: 1649 (1961).ADSCrossRefGoogle Scholar
  15. 14.
    L. Katz, M. Guinan, and R.J. Borg, Phys.Rev.B 4: 330 (1971).ADSCrossRefGoogle Scholar
  16. 15.
    G. Sicking and H. Buchold, Z.Naturforsch. 26a: 1973 (1971).ADSGoogle Scholar
  17. 16.
    W. Jost and A. Widmann, Z.Phys.Chem. B29: 247 (1935);Google Scholar
  18. W. Jost and A. Widmann, Z.Phys.Chem. B45: 285 (1940).Google Scholar
  19. 17.
    K.W. Kehr, in “Hydrogen in Metals I,” Topics in Applied Physics, Vol. 28, G. Alefeld and J. Völkl, eds., Springer, Berlin (1978).CrossRefGoogle Scholar
  20. 18.
    G. Lang, Diploma thesis, unpublished, Techn.Univ.München (1976).Google Scholar
  21. 19.
    L.A. de Graaf, J.J. Rush, H.E. Flotow, and J.M. Rowe, J.Chem. Phys. 56: 4574 (1972).ADSCrossRefGoogle Scholar
  22. 20.
    V. Lottner, J.W. Haus, A. Heim, and K.W. Kehr, J.Phys.Chem. Solids 40: 557 (1979).ADSCrossRefGoogle Scholar
  23. 21.
    T. Holstein, Ann.Phys.(NY) 8: 325 (1959).ADSMATHCrossRefGoogle Scholar
  24. T. Holstein, Ann.Phys.(NY) 8: 343 (1959).ADSCrossRefGoogle Scholar
  25. 22.
    C.P. Flynn and A.M. Stoneham, Phys.Rev.B 1: 3966 (1970).ADSCrossRefGoogle Scholar
  26. 23.
    H. Teichler, Phys.Lett. 64A: 78 (1977).ADSGoogle Scholar
  27. 24.
    D. Herlach, in “Recent Developments in Condensed Matter Physics,” Vol.1, J.T. Devreese, ed., Plenum, New York (1981).Google Scholar
  28. 25.
    H. Graf, G. Balzer, E. Recknagel, A. Weidinger, and R.I. Grynszpan, Phys.Rev.Lett. 44: 1333 (1980).ADSCrossRefGoogle Scholar
  29. 26.
    A. Möslang, unpublished (1980).Google Scholar
  30. 27.
    K.W. Kehr, D. Richter, J.M. Welter, O. Hartmann, L.O. Norlin, E. Karlsson, T.O. Niinikoski, J. Chappert, and A. Yaouanc, in “Proceedings of the Second International Topical Meeting on Muon Spin Rotation,” J.H. Brewer and P.W. Percival, eds., North Holland, Amsterdam (1981).Google Scholar
  31. 28.
    D. Emin, M.I. Baskes, and W.D. Wilson, Phys.Rev.Lett. 42: 791 (1979).ADSCrossRefGoogle Scholar
  32. 29.
    H. Teichler, Phys.stat.sol.(b) 104: 239 (1981).ADSCrossRefGoogle Scholar
  33. 30.
    Yu. Kagan and M.I. Klinger, J.Phys.C 7: 2791 (1974).ADSCrossRefGoogle Scholar
  34. 31.
    K.W. Kehr, Suppl.Trans.Japan Inst. Met. 21: 181 (1980).Google Scholar
  35. 32.
    D. Emin, in “Proceedings of the Second International Topical Meeting on Muon Spin Rotation,” J.H. Brewer and P.W. Percival, eds., North Holland, Amsterdam (1981).Google Scholar
  36. 33.
    A.M. Browne and A.M. Stoneham, to be published.Google Scholar
  37. 34.
    O. Hartmann, E. Karlsson, L.O. Norlin, T.O. Niinikoski, K.W. Kehr, D. Richter, J.M. Welter, A. Yaouanc, and J. LeHéricy, Phys.Rev.Lett. 44: 337 (1980).ADSCrossRefGoogle Scholar
  38. 35.
    T.O. Niinikoski, O. Hartmann, E. Karlsson, L.O. Norlin, K. Pernestâl, K.W. Kehr, D. Richter, E. Walker, and K. Schulze, in “Proceedings of the First International Topical Meeting on Muon Spin Rotation,” F.N. Gygax, W. Kündig, and P.F. Meier, eds., North Holland, Amsterdam (1979).Google Scholar
  39. 36.
    A.F Andreev and I.M. Lifshitz, Sov.Phys.-JETP 29: 1107 (1969).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • K. W. Kehr
    • 1
  1. 1.Institut für FestkörperforschungKernforschungsanlage JülichJülichFederal Republic of Germany

Personalised recommendations