Use of Nuclear Magnetic Resonance to Observe Diffusion of Hydrogen in Metals

  • Robert M. Cotts
Part of the NATO Conference Series book series (NATOCS, volume 6)


Utilization of measured NMR relaxation rates and diffusion coefficients are described. With the recent availability in the literature of lattice-specific calculations relating relaxation rates to mean residence times, details of the diffusion process of H in metals can be deduced. None of the lattice-specific theories predicts the asymmetry in the temperature dependences of relaxation rates observed in some hydrides. Observed and theoretical frequency dependences of relaxation rates on the high and low temperature sides of T1 minmima are compared.


Nuclear Magnetic Resonance Relaxation Rate Near Neighbor Metal Hydride Gradient Nuclear Magnetic Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Bloembergen, E.M. Purcell, and R.V. Pound, Phys. Rev. 73, 679 (1948).ADSCrossRefGoogle Scholar
  2. 2.
    R.G. Barnes, in “Nuclear and Electron Spectroscopies Applied to Materials Science,” E.N. Kaufmann and G. Shenoy, Ed., Elsevier, North Holland (1981) pages 19–30.Google Scholar
  3. 3.
    R.M. Gotts, in “Hydrogen in Metals I,” G. Alefeld and J. Volkl, Ed., Springer-Verlag, Berlin (1978) pgs. 227–265.Google Scholar
  4. 4.
    B. Pedersen, “Hydrides for Energy Storage, Proceedings of an International Symposium at Geilo” (1977) pgs. 83–95.Google Scholar
  5. 5.
    R.C. Bowman, Jr., in “Metal Hydrides,” Vol. 76 NATO Advanced Study Institute Series B: Physics, Plenum, New York (1981) pages 109–44.Google Scholar
  6. 6.
    E.O. Stjeskal and J.E. Tanner, J. Chem. Phys. 42, 288 (1965).ADSCrossRefGoogle Scholar
  7. 7.
    J.E. Tanner, J. Chem. Phys. 52, 2523 (1970).ADSCrossRefGoogle Scholar
  8. 8.
    E.F.W. Seymour, R.M. Cotts, and W.D. Williams, Phys. Rev. Letters 35, 165 (1975).ADSCrossRefGoogle Scholar
  9. 9.
    P.P. Davis, E.F.W. Seymour, D. Zamir, W.D. Williams, and R.M. Gotts, J. the Less-Common Met. 49, 159 (1976).CrossRefGoogle Scholar
  10. 10.
    O.J. Zogal and R.M. Cotts, Phys. Rev. B11, 2443 (1975).ADSCrossRefGoogle Scholar
  11. 11.
    Y. Fukai, K.I. Kubo, and S. Kazama, Z. Phys. Chem. Wiesbaden 115, 181 (1979).CrossRefGoogle Scholar
  12. 12.
    D.L. Bustard, R.M. Cotts and E.F.W. Seymour, Phys. Rev. B22, 15 (1980).Google Scholar
  13. 13.
    W.D. Williams, E.F.W. Seymour, and R.M. Cotts, J. Mag. Resonance 31, 271 (1978).Google Scholar
  14. 14.
    P.E. Mauger, W.D. Williams, and R.M. Cotts, J. Phys. Chem. Solids 42, 821 (1981).ADSCrossRefGoogle Scholar
  15. 15.
    R.F. Karlicek, Jr. and I.J. Lowe, J. Mag. Resonance 37, 75 (1980).Google Scholar
  16. 16.
    R.F. Karlicek, Jr. and I.J. Lowe, J. Less-Common Met. 73, 219 (1980):Google Scholar
  17. 17.
    P.E. Mauger, Ph.D. Thesis, Cornell University, 1981 (unpublished).Google Scholar
  18. 18.
    H.C. Torrey, Phys. Rev. 96, 690 (1954).ADSCrossRefGoogle Scholar
  19. 19.
    H.A. Resing and H.C. Torrey, Phys. Rev. 131, 1102 (1963).ADSCrossRefGoogle Scholar
  20. 20.
    C.A. Sholl, J. Phys. C: Solid St. Phys. 7, 3378 (1974).ADSCrossRefGoogle Scholar
  21. 21.
    C.A. Sholl, J. Phys. C: Solid State Phys. 8, 1737 (1975).ADSCrossRefGoogle Scholar
  22. 22.
    D. Wolf, J. Phys. C: Solid St. Phys. 10, 3545 (1977).ADSCrossRefGoogle Scholar
  23. 23.
    P.A. Fedders and O.F. Sankey, Phys. Rev. B18, 5938 (1978).ADSCrossRefGoogle Scholar
  24. 24.
    W.A. Barton and C.A. Sholl, J. Phys. C: Solid St. Phys. 13, 2579 (1980).ADSCrossRefGoogle Scholar
  25. 25.
    O.F. Sankey and P.A. Fedders, Phys. Rev. B20, 39 (1979).ADSCrossRefGoogle Scholar
  26. 26.
    O.F. Sankey and P.A. Fedders, Phys. Rev. B22, 5135 (1980).ADSCrossRefGoogle Scholar
  27. 27.
    W.A. Barton and C.A. Sholl, J. Phys. C: Solid St. Phys. 9, 4315 (1976).ADSCrossRefGoogle Scholar
  28. 28.
    L.D. Bustard, Phys. Rev. B22, 1 (1980).ADSGoogle Scholar
  29. 29.
    C.A. Sholl, J. Phys. C: Sol. St. Phys. 14, 447 (1981).ADSCrossRefGoogle Scholar
  30. 30.
    H.J. de Bruin and G.E. March, Phil. Mag. 27, 1475 (1973).ADSCrossRefGoogle Scholar
  31. 31.
    P.A. Fedders, Phys. Rev. B25, 78 (1982).CrossRefGoogle Scholar
  32. 32.
    T.C. Jones and T.R. Halstead, J. Less-Common Met. 73, 209 (1980).CrossRefGoogle Scholar
  33. 33.
    A. Abragam, 1961 “The Principles of Nuclear Magnetism”, Chapter V III, Oxford, Clarendon.Google Scholar
  34. 34.
    J.F. Harmon and B.H. Muller, Phys. Rev. 182, 400 (1969).ADSCrossRefGoogle Scholar
  35. 35.
    L.D. Bustard, Private Communication.Google Scholar
  36. 36.
    N. Salibi and R.M. Cotts (unpublished).Google Scholar
  37. 37.
    L.P. Hwang and J.H. Freed, J. Chem. Phys. 63, 4017 (1975).MathSciNetADSCrossRefGoogle Scholar
  38. 38.
    T-T. Phua, R.G. Barnes, D.R. Torgeson, D.T. Peterson, M. Belhoul, and G.A. Styles, This Conference Proceedings.Google Scholar
  39. 39.
    P.M. Richards, Phys. Rev. B18, 635B (1978).Google Scholar
  40. 40.
    S.P. Vernon and V. Jaccarino, Phys. Rev. B24 3756 (1981).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Robert M. Cotts
    • 1
  1. 1.Cornell UniversityIthacaUSA

Personalised recommendations