On the Electronic Structure of Hydrogen in Metals in the Light of Muon Knight Shift Measurements

  • Alexander Schenck
Part of the NATO Conference Series book series (NATOCS, volume 6)


The Knight shift of positive muons has been measured up to now in 18 elemental nontransition (simple) metals and in the transition metals V, Nb, Ta, Pd and Ni. In addition data are available from the hydrogen storage system LaNi5Hx. Except for the latter substance all data correspond to the limit of zero hydrogen concentration. Since the bare muon like the proton carries a single elementary positive charge and introduces a strongly disturbing Coulomb potential into the host lattice it is expected that both particles induce the same local electronic structure, subject perhaps to isotope effects. The total Knight shift, consisting of paramagnetic and diamagnetic contributions, allows thereby to test certain features of the local electronic structure. The data will be compared with existing predictions obtained from jellium, cluster and band structure calculations. Some interesting systematics of the data and possible isotope effects will be pointed out.


Band Structure Calculation Knight Shift Core Polarization Bulk Susceptibility Jellium Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.M.Cotts, in Hydrogen in Metals I, eds feld and J. Völkl, Springer Verlag(1978).Google Scholar
  2. S.Kazama, Y. Fukai, J. Less-Common Met. (1977).Google Scholar
  3. 3.
    A.Schenck, Heiv. Phys. Acta (in press).Google Scholar
  4. E.Zaremba, D. Zobin, Phys. Rev. B22: 5490 (1980).Google Scholar
  5. P.Jena, Hyperfine Interactions 6: 5 (1979).ADSCrossRefGoogle Scholar
  6. R.M. Nieminen, Hyperfine Interactions 8: 437 (1981).ADSCrossRefGoogle Scholar
  7. J.Keller, Hyperfine Interactions 6: 15 (1979).ADSCrossRefGoogle Scholar
  8. J.Kanamori, H.K. Yoshida, K. Terakura, Interactions (1981).Google Scholar
  9. M.Camani et al, Phys. Rev. Lett. 42: 679 (1979).Google Scholar
  10. 10.
    F.N. Gygax et al, Hyperfine Interactions 8:573 (1981).11. W. Studer et al, this conference.Google Scholar
  11. 12.
    M. Manninen, R.M. Nieminen, J. Phys. F9: 1333 (1978).ADSCrossRefGoogle Scholar
  12. 13.
    J.P. Bugeat et al, Phys. Lett. 71A: 93 (1979).CrossRefGoogle Scholar
  13. 14.
    Hartmann et al, Phys. Rev. Lett. 41: 1055 (1978).ADSCrossRefGoogle Scholar
  14. 15.
    M. Camani et al, Phys. Rev. Lett. 39: 836 (1977).ADSCrossRefGoogle Scholar
  15. 16.
    J. Keller et al, preprint ( U.N.A.M. Mexico, 1981 ).Google Scholar
  16. 17.
    J. Keller, A. Schenck, Hyperfine Interactions 6: 39 (1979).ADSCrossRefGoogle Scholar
  17. 18.
    F.N. Gygax et al, Solid State Communic. 38: 1245 (1981).ADSCrossRefGoogle Scholar
  18. 19.
    F.N. Gygax et al, J.M.M.M. 15–18: 1191 (1980).Google Scholar
  19. 20.
    J.A. Seitchik et al, Phys. Rev. 136: A1119 (1964).ADSCrossRefGoogle Scholar
  20. 21.
    P.J. Segransan et al, J. Phys. F6: L153 (1976).ADSCrossRefGoogle Scholar
  21. 22.
    A.B. Dennison, Hely. Phys. Act. 52: 460 (1979).Google Scholar
  22. 23.
    H. Katayama et al, Solid State Communic. 29: 431 (1979).ADSCrossRefGoogle Scholar
  23. 24.
    P. Brill, J. Voitländer, Ber. Bunsenges. Phys.Chem. 77:1097 (1973), and private communication.Google Scholar
  24. 25.
    C.L. Wiley, F.Y. Fradin, Phys. Rev. B17: 3462 (1978).ADSCrossRefGoogle Scholar
  25. 26.
    R.G. Barnes et al, J. Less-Common Met. 49: 483 (1976).Google Scholar
  26. 27.
    F.N. Gygax et al, in Recent developments in condensed matter physics, Vol. 2, Eds. J.T. Devreese et al, (Plenum Press 1981 ).Google Scholar
  27. 28.
    P. Jena, Solid State Communic. 15: 1509 (1974).CrossRefGoogle Scholar
  28. 29.
    J. Keller, M. Castro, preprint (U.N.A.M. Mexico,1979).Google Scholar
  29. 30.
    Jepsen et al, Solid State Communic. 34: 575 (1980).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Alexander Schenck
    • 1
  1. 1.Laboratorium für HochenergiephysikETH Zürich c/o SINVilligenSwitzerland

Personalised recommendations