Advertisement

Superconductivity in Metal Hydrides

  • Michèle Gupta
Part of the NATO Conference Series book series (NATOCS, volume 6)

Abstract

Using the results of a systematic study of the electronic structure of stoichiometric metal hydrides the electron-phonon coupling parameter has been evaluated, within the McMillan approximation, for a series of mono and dihydrides. The electronic term n is calculated using the rigid-ion approximation while experimental data are used to estimate the phonon contribution. Systematic trends are observed in the variation of η due to the metal site M and hydrogen site H. Sizeable values of ηH are obtained for the metal hydrides with filled d bands such as PdH; ηH is also large when a metal-hydrogen antibonding band crosses the Fermi level, a case which happens in AlH and may happen for unstable dihydrides. The electronic contribution ηM is found to be small for all stable mono and dihydrides such as PdH, NiH, ZrH2 NbH2, LaH2 and for FeTiH and FeTiH2 although nothing prevents in principle ηM from being large in some metal hydrides, as the Fermi level sweeps through the metal d band. A good agreement is obtained with available experimental data for the occurrence of superconductivity in the hydrides under study.

Keywords

Fermi Level Metal Hydride Phonon Coupling Phonon Contribution Palladium Hydride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.B.Satterthwaite and I.L. Toepke, Phys. Rev. Lett. 25, 741 (1970)ADSCrossRefGoogle Scholar
  2. 2.
    T. Sckoskiewicz, Phys Status Solidi All, K123 (1972) B. Stritzker and W. B.Ckel, J. Phys. 257, 1 (1972).ADSGoogle Scholar
  3. 3.
    B. Stritzker and H. Wahl in Hydrogen in Metals I, Vol. 23, edited by G. Alfeld and J. Völkl, Springer, Berlin (1978) p 243, and references therein.Google Scholar
  4. 4.
    W.L. McMillan, Phys. Rev. 167, 331 (1968).ADSCrossRefGoogle Scholar
  5. 5.
    A.M. Lamoise, J. Chaumont, F. Meunier and H. Bernas, J. Phys. Lett. 36, L271 (1975).CrossRefGoogle Scholar
  6. 6.
    G.D. Gâspari and B.L. Gyorffy, Phys. Rev. Lett. 29, 801 (1972).CrossRefGoogle Scholar
  7. 7.
    J.M. Rowe, J.J. Rush, H.G. Smith, M. Mostoller and H. E. Flotow, Phys. Rev. Lett. 33, 1297 (1974).ADSCrossRefGoogle Scholar
  8. 8.
    A. Eichler; H. Wuhl and B. Stritzker, Solid State Commun. 17, 213 (1975).ADSCrossRefGoogle Scholar
  9. 9.
    D.S. Mc Lachlan, R. Mailfert, J.P. Burger and B. Souffaché, Solid State Commun. 17, 281 (1975).CrossRefGoogle Scholar
  10. 10.
    D.A. Papaconstantopoulos and B.M. Klein, Phys. Rev. Lett. 35, 110 (1975).ADSCrossRefGoogle Scholar
  11. 11.
    A.C. Switendick in Hydrogen in Metals I, Vol. 23, edited by G. Alefeld and J. Völkl, Springer, Berlin (1973) chap 5 and references there in.Google Scholar
  12. 12.
    M. Gupta in Proceedings of the NATO Summer Institute on Metal Hydrides 1980, edited by G. Bambakidis, Plenum, in print and references there in.Google Scholar
  13. 13.
    M. Gupta and J.P. Burger, J. Phys. F: Metal Phys. 10, 2649 (1980)ADSCrossRefGoogle Scholar
  14. 14.
    D.A. Papaconstantopoulos, E.N. Economou, B.M. Klein and L.L. Boyer, Phys. Rev. B 20, 177 (1979).ADSCrossRefGoogle Scholar
  15. 15.
    T. Springer in Hydrogen in Metals I, Vol. 23, edited by G. Alefeld and J. Völkl, Springer, Berlin (1973) and references there in.Google Scholar
  16. 16.
    J. Eckert, J.A. Goldstone, and D. Richter, J. Phys. F: Metal Phys. 11, L101 (1981).ADSCrossRefGoogle Scholar
  17. 17.
    H. Wenzl and S. Pietz Solid State Comm. 33, 1163 (1980).ADSCrossRefGoogle Scholar
  18. 18.
    D.S. McLachlan, I. Papadopoulos and T.B. Doyle, J. Physique Coll 6, 430 (1978).Google Scholar
  19. 19.
    S. Barisic, J. Labbé and J. Friedel, Phys. Rev. Lett. 25, 919 (1970).ADSCrossRefGoogle Scholar
  20. 20.
    J.M. Rowe, N. Vagelatos, J.J. Rush and H.E. Flotow, Phys. Rew B 12, 2959 (1975).ADSCrossRefGoogle Scholar
  21. 21.
    M.F. Merriam and D.S. Schreiber, J. Phys. Chem. Solids 24, 1375 1963 )ADSCrossRefGoogle Scholar
  22. 22.
    W.E. Picket, A.J. Freeman and D.D. Koelling, Phys. Rev B 22, 2695 (1980).ADSCrossRefGoogle Scholar
  23. 23.
    D.L. Johnson and D.K.Finnemore, Phys. Rev. 158, 376 (1967).ADSCrossRefGoogle Scholar
  24. 24.
    Z. Bieganski, D. Gonzalez Alvarez and F.W. Klaaysen, Physica 37, 153 (1967).ADSCrossRefGoogle Scholar
  25. 25.
    C.G. Robbins and J. Muller, J. Less. Common. Met. 42, 19 (1975); C.G.Robbins,M. Ishikawa, A. Treyvand and J. Muller, Solid State Comm. 17, 903 (1975).Google Scholar
  26. 26.
    C.B. Satterthwaite and D.T. Peterson, J. Less. Common Met. 26, 361 (1972).CrossRefGoogle Scholar
  27. 27.
    W.H. Butler, Phys. B 15, 5267 (1977).Google Scholar
  28. 28.
    D.A. Papaconstantopoulos, L. L. Boyer, B.M. Klein, A.R. Williams, V.L. Morruzzi and J.F. Janak, Phys. Rev. B 15, 4221 (1977).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Michèle Gupta
    • 1
    • 2
  1. 1.Centre de Mécanique Ondulatoire Appliquée du C.N.R.S.ParisFrance
  2. 2.Université Paris-SudOrsayFrance

Personalised recommendations